Articles | Volume 12, issue 6
https://doi.org/10.5194/se-12-1335-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1335-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
now at: Geological Institute, ETH Zürich, Zurich, Switzerland
Jaime D. Barnes
CORRESPONDING AUTHOR
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
Whitney M. Behr
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
now at: Geological Institute, ETH Zürich, Zurich, Switzerland
Alissa J. Kotowski
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
now at: Department of Earth and Planetary Sciences, McGill University, Montréal, Canada
Daniel F. Stockli
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
Konstantinos Soukis
Faculty of Geology and Geoenvironment, NKUA, Athens, Greece
Related authors
No articles found.
Lonnie Justin Hufford, Leif Tokle, Whitney Maria Behr, Luiz Grafula Morales, and Claudio Madonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-531, https://doi.org/10.5194/egusphere-2025-531, 2025
Preprint withdrawn
Short summary
Short summary
We conducted load stepping deformation experiments on glaucophane aggregates in the shear geometry, where we constrained dislocation creep and dislocation glide flow laws. We then extrapolate our flow laws to geologic conditions to better understand subduction zone rheology.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Cited articles
Adams, H. G., Cohen, L. H., and Rosenfeld, J. L.: Solid inclusion piezothermometry I: comparison dilatometry, Am. Mineral., 60, 574–583, 1975a.
Adams, H. G., Cohen, L. H., and Rosenfeld, J. L.: Solid inclusion piezothermometry II: geometric basis, calibration for the association quartz-garnet, and application to some pelitic schists, Am. Mineral., 60, 584–598, 1975b.
Alvaro, M., Mazzucchelli, M. L., Angel, R. J., Murri, M., Campomenosi, N., Scambelluri, M., Nestola, F., Korsakov, A., Tomilenko, A. A., Marone, F., and Morana, M.: Fossil subduction recorded by quartz from the coesite stability field, Geology, 48, 24–28, https://doi.org/10.1130/G46617.1, 2020.
Angel, R. J., Alvaro, M., Miletich, R., and Nestola, F.: A simple and generalised P–T–V EoS for continuous phase transitions, implemented in EosFit and applied to quartz, Contrib. Mineral. Petr., 172, 29, https://doi.org/10.1007/s00410-017-1349-x, 2017a.
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., and Nestola, F.: EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry, Am. Mineral., 102, 1957–1960, https://doi.org/10.2138/am-2017-6190, 2017b.
Angel, R. J., Murri, M., Mihailova, B., and Alvaro, M.: Stress, strain and Raman shifts, Zeitschrift für Kristallographie – Crystalline Materials, 234, 129–140, https://doi.org/10.1515/zkri-2018-2112, 2019.
Ashley, K. T., Caddick, M. J., Steele-MacInnis, M. J., Bodnar, R. J., and Dragovic, B.: Geothermobarometric history of subduction recorded by quartz inclusions in garnet, Geochem. Geophy. Geosy., 15, 350–360, https://doi.org/10.1002/2013GC005106, 2014.
Ashley, K. T., Steele-MacInnis, M., Bodnar, R. J., and Darling, R. S.: Quartz-in-garnet inclusion barometry under fire: Reducing uncertainty from model estimates, Geology, 44, 699–702, https://doi.org/10.1130/G38211.1, 2016.
Augier, R., Jolivet, L., Gadenne, L., Lahfid, A., and Driussi, O.: Exhumation kinematics of the Cycladic Blueschists unit and back-arc extension, insight from the Southern Cyclades (Sikinos and Folegandros Islands, Greece), Tectonics, 34, 152–185, https://doi.org/10.1002/2014TC003664, 2015.
Avigad, D.: High-pressure metamorphism and cooling on SE Naxos (Cyclades, Greece), Eur. J. Mineral., 10, 1309–1319, 1998.
Baxter, E. F.: Natural constraints on metamorphic reaction rates, Geological Society, London, Special Publications, 220, 183–202, https://doi.org/10.1144/GSL.SP.2003.220.01.11, 2003.
Behr, W. M., Kotowski, A. J., and Ashley, K. T.: Dehydration-induced rheological heterogeneity and the deep tremor source in warm subduction zones, Geology, 46, 475–478, https://doi.org/10.1130/G40105.1, 2018.
Berman, R. G.: Thermobarometry using multi-equilibrium calculations; a new technique, with petrological applications, Can. Mineral., 29, 833–855, 1991.
Bonazzi, M., Tumiati, S., Thomas, J., Angel, R. J., and Alvaro, M.: Assessment of the reliability of elastic geobarometry with quartz inclusions, Lithos, 350–351, 105201, https://doi.org/10.1016/j.lithos.2019.105201, 2019.
Breeding, C. M., Ague, J. J., and Bröcker, M.: Fluid–metasedimentary rock interactions in subduction-zone mélange: Implications for the chemical composition of arc magmas, Geology, 32, 1041–1044, https://doi.org/10.1130/G20877.1, 2004.
Brichau, S., Ring, U., Carter, A., Monié, P., Bolhar, R., Stockli, D., and Brunel, M.: Extensional faulting on Tinos Island, Aegean Sea, Greece: How many detachments?, Tectonics, 26, TC4009, https://doi.org/10.1029/2006TC001969, 2007.
Bröcker, M. and Franz, L.: Dating metamorphism and tectonic juxtaposition on Andros Island (Cyclades, Greece): results of a Rb–Sr study, Geol. Mag., 143, 609–620, https://doi.org/10.1017/S001675680600241X, 2006.
Bröcker, M., Kreuzer, H., Matthews, A., and Okrusch, M.: and oxygen isotope studies of polymetamorphism from Tinos Island, Cycladic blueschist belt, Greece, J. Metamorph. Geol., 11, 223–240, https://doi.org/10.1111/j.1525-1314.1993.tb00144.x, 1993.
Bröcker, M., Baldwin, S., and Arkudas, R.: The geological significance of and Rb–Sr white mica ages from Syros and Sifnos, Greece: a record of continuous (re)crystallization during exhumation?, J. Metamorph. Geol., 31, 629–646, https://doi.org/10.1111/jmg.12037, 2013.
Campomenosi, N., Mazzucchelli, M. L., Mihailova, B., Scambelluri, M., Angel, R. J., Nestola, F., Reali, A., and Alvaro, M.: How geometry and anisotropy affect residual strain in host-inclusion systems: Coupling experimental and numerical approaches, Am. Mineral., 103, 2032–2035, https://doi.org/10.2138/am-2018-6700CCBY, 2018.
Carlson, W. D.: Scales of disequilibrium and rates of equilibration during metamorphism, Am. Mineral., 87, 185–204, https://doi.org/10.2138/am-2002-2-301, 2002.
Cesare, B., Parisatto, M., Mancini, L., Peruzzo, L., Franceschi, M., Tacchetto, T., Reddy, S., Spiess, R., Nestola, F., and Marone, F.: Mineral inclusions are not immutable: Evidence of post-entrapment thermally-induced shape change of quartz in garnet, Earth Planet. Sci. Lett., 555, 116708, https://doi.org/10.1016/j.epsl.2020.116708, 2021.
Cisneros, M.: Applications and limitations of elastic thermobarometry: insights from elastic modeling of inclusion-host pairs and example case studies, ETH Zürich, https://doi.org/10.3929/ethz-b-000437754, 2020.
Cisneros, M. and Befus, K. S.: Applications and Limitations of Elastic Thermobarometry: Insights From Elastic Modeling of Inclusion-Host Pairs and Example Case Studies, Geochem. Geophy. Geosy., 21, e2020GC009231, https://doi.org/10.1029/2020GC009231, 2020.
Cisneros, M., Ashley, K. T., and Bodnar, R. J.: Evaluation and application of the quartz-inclusions-in-epidote mineral barometer, Am. Mineral., 105, 1140–1151, https://doi.org/10.2138/am-2020-7379, 2020.
Cliff, R. A., Bond, C. E., Butler, R. W. H., and Dixon, J. E.: Geochronological challenges posed by continuously developing tectonometamorphic systems: insights from Rb–Sr mica ages from the Cycladic Blueschist Belt, Syros (Greece), J. Metamorph. Geol., 35, 197–211, https://doi.org/10.1111/jmg.12228, 2017.
Cooperdock, E. H. G. and Stockli, D. F.: Unraveling alteration histories in serpentinites and associated ultramafic rocks with magnetite geochronology, Geology, 44, 967–970, https://doi.org/10.1130/G38587.1, 2016.
Dragovic, B., Samanta, L. M., Baxter, E. F., and Selverstone, J.: Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece, Chem.Geol., 314–317, 9–22, https://doi.org/10.1016/j.chemgeo.2012.04.016, 2012.
Dragovic, B., Baxter, E. F., and Caddick, M. J.: Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece, Earth Planet. Sci. Lett., 413, 111–122, https://doi.org/10.1016/j.epsl.2014.12.024, 2015.
Enami, M., Nishiyama, T., and Mouri, T.: Laser Raman microspectrometry of metamorphic quartz: A simple method for comparison of metamorphic pressures, Am. Mineral., 92, 1303–1315, https://doi.org/10.2138/am.2007.2438, 2007.
Essene, E. J.: The current status of thermobarometry in metamorphic rocks, Geological Society, London, Special Publications, 43, 1–44, https://doi.org/10.1144/GSL.SP.1989.043.01.02, 1989.
Franz, G. and Liebscher, A.: Physical and Chemical Properties of the Epidote Minerals – An Introduction, Rev. Mineral. Geochem., 56, 1–81, https://doi.org/10.2138/gsrmg.56.1.1, 2004.
Gatta, G. D., Merlini, M., Lee, Y., and Poli, S.: Behavior of epidote at high pressure and high temperature: a powder diffraction study up to 10 GPa and 1,200 K, Phys. Chem. Miner., 38, 419–428, https://doi.org/10.1007/s00269-010-0415-y, 2011.
Gautier, P., Brun, J.-P., and Jolivet, L.: Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece), Tectonics, 12, 1180–1194, https://doi.org/10.1029/93TC01131, 1993.
Grasemann, B., Schneider, D. A., Stöckli, D. F., and Iglseder, C.: Miocene bivergent crustal extension in the Aegean: Evidence from the western Cyclades (Greece), Lithosphere, 4, 23–39, https://doi.org/10.1130/L164.1, 2012.
Grasemann, B., Huet, B., Schneider, D. A., Rice, A. H. N., Lemonnier, N., and Tschegg, C.: Miocene postorogenic extension of the Eocene synorogenic imbricated Hellenic subduction channel: New constraints from Milos (Cyclades, Greece), GSA Bulletin, 130, 238–262, https://doi.org/10.1130/B31731.1, 2018.
Groppo, C., Forster, M., Lister, G., and Compagnoni, R.: Glaucophane schists and associated rocks from Sifnos (Cyclades, Greece): New constraints on the P–T evolution from oxidized systems, Lithos, 109, 254–273, https://doi.org/10.1016/j.lithos.2008.10.005, 2009.
Guillot, S., Schwartz, S., Reynard, B., Agard, P., and Prigent, C.: Tectonic significance of serpentinites, Tectonophysics, 646, 1–19, https://doi.org/10.1016/j.tecto.2015.01.020, 2015.
Guiraud, M. and Powell, R.: P–V–T relationships and mineral equilibria in inclusions in minerals, Earth Planet. Sci. Lett., 244, 683–694, https://doi.org/10.1016/j.epsl.2006.02.021, 2006.
Gupta, S. and Bickle, M. J.: Ductile shearing, hydrous fluid channelling and high-pressure metamorphism along the basement-cover contact on Sikinos, Cyclades, Greece, Geological Society, London, Special Publications, 224, 161–175, https://doi.org/10.1144/GSL.SP.2004.224.01.11, 2004.
Gyomlai, T., Agard, P., Marschall, H. R., Jolivet, L., and Gerdes, A.: Metasomatism and deformation of block-in-matrix structures in Syros: The role of inheritance and fluid-rock interactions along the subduction interface, Lithos, 386–387, 105996, https://doi.org/10.1016/j.lithos.2021.105996, 2021.
Hamelin, C., Brady, J. B., Cheney, J. T., Schumacher, J. C., Able, L. M., and Sperry, A. J.: Pseudomorphs after lawsonite from Syros, Greece, J. Petrol., 59, 2353–2384, https://doi.org/10.1093/petrology/egy099, 2018.
Holland, T. and Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Holland, T. and Powell, R.: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 29, 333–383, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 2011.
Isaak, D. G., Anderson, O. L., and Oda, H.: High-temperature thermal expansion and elasticity of calcium-rich garnets, Phys. Chem. Miner., 19, 106–120, https://doi.org/10.1007/BF00198608, 1992.
Jamtveit, B., Austrheim, H., and Putnis, A.: Disequilibrium metamorphism of stressed lithosphere, Earth-Sci. Rev., 154, 1–13, https://doi.org/10.1016/j.earscirev.2015.12.002, 2016.
Javoy, M.: Stable isotopes and geothermometry, J. Geol. Soc., 133, 609–636, https://doi.org/10.1144/gsjgs.133.6.0609, 1977.
Ji, S. and Martignole, J.: Ductility of garnet as an indicator of extremely high temperature deformation, J. Struct. Geol., 16, 985–996, https://doi.org/10.1016/0191-8141(94)90080-9, 1994.
Jolivet, L. and Brun, J.-P.: Cenozoic geodynamic evolution of the Aegean, Int. J. Earth Sci. (Geol. Rundsch.), 99, 109–138, https://doi.org/10.1007/s00531-008-0366-4, 2010.
Jolivet, L., Lecomte, E., Huet, B., Denèle, Y., Lacombe, O., Labrousse, L., Le Pourhiet, L., and Mehl, C.: The North Cycladic Detachment System, Earth Planet. Sci. Lett., 289, 87–104, https://doi.org/10.1016/j.epsl.2009.10.032, 2010.
Keiter, M., Ballhaus, C., and Tomaschek, F.: A new geological map of the Island of Syros (Aegean Sea, Greece): implications for lithostratigraphy and structural history of the Cycladic Blueschist Unit, Geological Society of America, 2011.
Kohn, M. J. and Spear, F.: Retrograde net transfer reaction insurance for pressure-temperature estimates, Geology, 28, 1127–1130, https://doi.org/10.1130/0091-7613(2000)28<1127:RNTRIF>2.0.CO;2, 2000.
Kotowski, A. J. and Behr, W. M.: Length scales and types of heterogeneities along the deep subduction interface: Insights from exhumed rocks on Syros Island, Greece, Geosphere, 15, 1038–1065, https://doi.org/10.1130/GES02037.1, 2019.
Kotowski, A. J., Behr, W. M., Cisneros, M., Stockli, D. F., Soukis, K., Barnes, J. D., and Ortega-Arroyo, D.: Subduction, underplating, and return flow recorded in the Cycladic Blueschist Unit exposed on Syros Island, Greece, American Geophysical Union, https://doi.org/10.1002/essoar.10504307.1, 2020.
Kuzmany, H.: Solid-state spectroscopy: an introduction, Springer Science & Business Media, 2009.
Lagos, M., Scherer, E. E., Tomaschek, F., Münker, C., Keiter, M., Berndt, J., and Ballhaus, C.: High precision Lu−Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece, Chem. Geol., 243, 16–35, https://doi.org/10.1016/j.chemgeo.2007.04.008, 2007.
Lamont, T. N., Searle, M. P., Gopon, P., Roberts, N. M. W., Wade, J., Palin, R. M., and Waters, D. J.: The Cycladic Blueschist Unit on Tinos, Greece: Cold NE Subduction and SW Directed Extrusion of the Cycladic Continental Margin Under the Tsiknias Ophiolite, Tectonics, 39, e2019TC005890, https://doi.org/10.1029/2019TC005890, 2020.
Lanari, P., Giuntoli, F., Loury, C., Burn, M., and Engi, M.: An inverse modeling approach to obtain P–T conditions of metamorphic stages involving garnet growth and resorption, Eur. J. Mineral., 29, 181–199, https://doi.org/10.1127/ejm/2017/0029-2597, 2017.
Laurent, V., Jolivet, L., Roche, V., Augier, R., Scaillet, S., and Cardello, G. L.: Strain localization in a fossilized subduction channel: Insights from the Cycladic Blueschist Unit (Syros, Greece), Tectonophysics, 672–673, 150–169, https://doi.org/10.1016/j.tecto.2016.01.036, 2016.
Laurent, V., Huet, B., Labrousse, L., Jolivet, L., Monié, P., and Augier, R.: Extraneous argon in high-pressure metamorphic rocks: Distribution, origin and transport in the Cycladic Blueschist Unit (Greece), Lithos, 272–273, 315–335, https://doi.org/10.1016/j.lithos.2016.12.013, 2017.
Laurent, V., Lanari, P., Naïr, I., Augier, R., Lahfid, A., and Jolivet, L.: Exhumation of eclogite and blueschist (Cyclades, Greece): Pressure–temperature evolution determined by thermobarometry and garnet equilibrium modelling, J. Metamorph. Geol., 36, 769–798, https://doi.org/10.1111/jmg.12309, 2018.
Liati, A. and Seidel, E.: Metamorphic evolution and geochemistry of kyanite eclogites in central Rhodope, northern Greece, Contrib. Mineral. Petr., 123, 293–307, https://doi.org/10.1007/s004100050157, 1996.
Lister, G. S. and Forster, M. A.: White mica 40Ar/39Ar age spectra and the timing of multiple episodes of high-P metamorphic mineral growth in the Cycladic eclogite–blueschist belt, Syros, Aegean Sea, Greece, J. Metamorph. Geol., 34, 401–421, https://doi.org/10.1111/jmg.12178, 2016.
Marschall, H. R., Ludwig, T., Altherr, R., Kalt, A., and Tonarini, S.: Syros Metasomatic Tourmaline: Evidence for Very High-δ11B Fluids in Subduction Zones, J. Petrol., 47, 1915–1942, https://doi.org/10.1093/petrology/egl031, 2006.
Matthews, A. and Schliestedt, M.: Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece, Contrib. Mineral. Petrol., 88, 150–163, https://doi.org/10.1007/BF00371419, 1984.
Mazzucchelli, M. L., Burnley, P., Angel, R. J., Morganti, S., Domeneghetti, M. C., Nestola, F., and Alvaro, M.: Elastic geothermobarometry: Corrections for the geometry of the host-inclusion system, Geology, 46, 231–234, https://doi.org/10.1130/G39807.1, 2018.
Mehl, C., Jolivet, L., and Lacombe, O.: From ductile to brittle: Evolution and localization of deformation below a crustal detachment (Tinos, Cyclades, Greece), Tectonics, 24, TC4017, https://doi.org/10.1029/2004TC001767, 2005.
miguelcisneros:
solid_inclusion_calculator_MATLAB, GitHub, available at: https://github.com/miguelcisneros/solid_inclusion_calculator_MATLAB, last access: 17 September 2020.
Milani, S., Angel, R. J., Scandolo, L., Mazzucchelli, M. L., Ballaran, T. B., Klemme, S., Domeneghetti, M. C., Miletich, R., Scheidl, K. S., Derzsi, M., Tokár, K., Prencipe, M., Alvaro, M., and Nestola, F.: Thermo-elastic behavior of grossular garnet at high pressures and temperatures, Am. Mineral., 102, 851–859, https://doi.org/10.2138/am-2017-5855, 2017.
Miller, D. P., Marschall, H. R., and Schumacher, J. C.: Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface, Lithos, 107, 53–67, https://doi.org/10.1016/j.lithos.2008.07.015, 2009.
Murri, M., Mazzucchelli, M. L., Campomenosi, N., Korsakov, A. V., Prencipe, M., Mihailova, B. D., Scambelluri, M., Angel, R. J., and Alvaro, M.: Raman elastic geobarometry for anisotropic mineral inclusions, Am. Mineral., 103, 1869–1872, https://doi.org/10.2138/am-2018-6625CCBY, 2018.
Murri, M., Alvaro, M., Angel, R. J., Prencipe, M., and Mihailova, B. D.: The effects of non-hydrostatic stress on the structure and properties of alpha-quartz, Phys. Chem. Miner., 46, 487–499, https://doi.org/10.1007/s00269-018-01018-6, 2019.
Nye, J. F.: Physical properties of crystals: their representation by tensors and matrices, Oxford University Press, Oxford, 1985.
Parra, T., Vidal, O., and Jolivet, L.: Relation between the intensity of deformation and retrogression in blueschist metapelites of Tinos Island (Greece) evidenced by chlorite–mica local equilibria, Lithos, 63, 41–66, https://doi.org/10.1016/S0024-4937(02)00115-9, 2002.
Pattison, D. R. M., Chacko, T., Farquhar, J., and McFarlane, C. R. M.: Temperatures of Granulite-facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange, J. Petrol., 44, 867–900, https://doi.org/10.1093/petrology/44.5.867, 2003.
Pawley, A. R., Redfern, S. A. T., and Holland, T. J. B.: Volume behavior of hydrous minerals at high pressure and temperature: I. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore, Am. Mineral., 81, 335–340, https://doi.org/10.2138/am-1996-3-407, 1996.
Peacock, S. M.: The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust, GSA Bulletin, 105, 684–694, https://doi.org/10.1130/0016-7606(1993)105<0684:TIOBED>2.3.CO;2, 1993.
Peillod, A., Ring, U., Glodny, J., and Skelton, A.: An Eocene/Oligocene blueschist-/greenschist facies P–T loop from the Cycladic Blueschist Unit on Naxos Island, Greece: Deformation-related re-equilibration vs. thermal relaxation, J. Metamorph. Geol., 35, 805–830, https://doi.org/10.1111/jmg.12256, 2017.
Peillod, A., Majka, J., Ring, U., Drüppel, K., Patten, C., Karlsson, A., Włodek, A., and Tehler, E.: Differences in decompression of a high-pressure unit: A case study from the Cycladic Blueschist Unit on Naxos Island, Greece, Lithos, 386–387, 106043, https://doi.org/10.1016/j.lithos.2021.106043, 2021.
Pe-Piper, G. and Piper, D. J. W.: The igneous rocks of Greece: The anatomy of an orogen, Geological Magazine, 140, 357–370, 2002.
Philippon, M., Brun, J.-P., and Gueydan, F.: Tectonics of the Syros blueschists (Cyclades, Greece): From subduction to Aegean extension: Tectonics of the Syros Blueschists, Tectonics, 30, TC4001, https://doi.org/10.1029/2010TC002810, 2011.
Powell, R. and Holland, T.: Optimal geothermometry and geobarometry, Am. Mineral., 79, 120–133, 1994.
Putlitz, B., Cosca, M. A., and Schumacher, J. C.: Prograde mica 40Ar/39Ar growth ages recorded in high pressure rocks (Syros, Cyclades, Greece), Chem. Geol., 214, 79–98, https://doi.org/10.1016/j.chemgeo.2004.08.056, 2005.
Qin, F., Wu, X., Wang, Y., Fan, D., Qin, S., Yang, K., Townsend, J. P., and Jacobsen, S. D.: High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa, Phys. Chem. Miner., 43, 649–659, https://doi.org/10.1007/s00269-016-0824-7, 2016.
Ridley, J.:
Evidence of a temperature-dependent `blueschist' to `eclogite' transformation in high-pressure metamorphism of metabasic rocks,
J. Petrol.,
25, 852–870, 1984.
Ring, U., Glodny, J., Will, T., and Thomson, S.: The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension, Annu. Rev. Earth Planet. Sci., 38, 45–76, https://doi.org/10.1146/annurev.earth.050708.170910, 2010.
Ring, U., Pantazides, H., Glodny, J., and Skelton, A.: Forced Return Flow Deep in the Subduction Channel, Syros, Greece, Tectonics, 39, e2019TC005768, https://doi.org/10.1029/2019TC005768, 2020.
Roche, V., Laurent, V., Cardello, G. L., Jolivet, L., and Scaillet, S.: Anatomy of the Cycladic Blueschist Unit on Sifnos Island (Cyclades, Greece), J. Geodyn., 97, 62–87, https://doi.org/10.1016/j.jog.2016.03.008, 2016.
Rosenbaum, G., Avigad, D., and Sánchez-Gómez, M.: Coaxial flattening at deep levels of orogenic belts: evidence from blueschists and eclogites on Syros and Sifnos (Cyclades, Greece), J. Struct. Geol., 24, 1451–1462, https://doi.org/10.1016/S0191-8141(01)00143-2, 2002.
Rosenfeld, J. L.: Stress effects around quartz inclusions in almandine and the piezothermometry of coexisting aluminum silicates, Am. J. Sci., 267, 317–351, https://doi.org/10.2475/ajs.267.3.317, 1969.
Rosenfeld, J. L. and Chase, A. B.: Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals?, Am. J. Sci., 259, 519–541, https://doi.org/10.2475/ajs.259.7.519, 1961.
Rubie, D. C.: Disequilibrium during metamorphism: the role of nucleation kinetics, Geological Society, London, Special Publications, 138, 199–214, https://doi.org/10.1144/GSL.SP.1996.138.01.12, 1998.
Schliestedt, M. and Matthews, A.: Transformation of blueschist to greenschist facies rocks as a consequence of fluid infiltration, Sifnos (Cyclades), Greece, Contrib. Mineral. Petrol., 97, 237–250, https://doi.org/10.1007/BF00371243, 1987.
Schmädicke, E. and Will, T. M.: Pressure–temperature evolution of blueschist facies rocks from Sifnos, Greece, and implications for the exhumation of high-pressure rocks in the Central Aegean, J. Metamorph. Geol., 21, 799–811, https://doi.org/10.1046/j.1525-1314.2003.00482.x, 2003.
Schmidt, C. and Ziemann, M. A.: In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures, Am. Mineral., 85, 1725–1734, https://doi.org/10.2138/am-2000-11-1216, 2000.
Schneider, D. A., Grasemann, B., Lion, A., Soukis, K., and Draganits, E.: Geodynamic significance of the Santorini Detachment System (Cyclades, Greece), Terra Nova, 30, 414–422, https://doi.org/10.1111/ter.12357, 2018.
Schumacher, J. C., Brady, J. B., Cheney, J. T., and Tonnsen, R. R.: Glaucophane-bearing Marbles on Syros, Greece, J. Petrol., 49, 1667–1686, https://doi.org/10.1093/petrology/egn042, 2008.
Sharp, Z. D.: A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides, Geochim. Cosmochim. Ac., 54, 1353–1357, https://doi.org/10.1016/0016-7037(90)90160-M, 1990.
Sharp, Z. D. and Kirschner, D. L.: Quartz-calcite oxygen isotope thermometry: A calibration based on natural isotopic variations, Geochim. Cosmochim. Acta, 58, 4491–4501, https://doi.org/10.1016/0016-7037(94)90350-6, 1994.
Skelton, A., Peillod, A., Glodny, J., Klonowska, I., Månbro, C., Lodin, K., and Ring, U.: Preservation of high-P rocks coupled to rock composition and the absence of metamorphic fluids, J. Metamorph. Geol., 37, 359–381, https://doi.org/10.1111/jmg.12466, 2018.
Soukis, K. and Stockli, D. F.: Structural and thermochronometric evidence for multi-stage exhumation of southern Syros, Cycladic islands, Greece, Tectonophysics, 595–596, 148–164, https://doi.org/10.1016/j.tecto.2012.05.017, 2013.
Spear, F. S. and Pattison, D. R. M.: The implications of overstepping for metamorphic assemblage diagrams (MADs), Chem. Geol., 457, 38–46, https://doi.org/10.1016/j.chemgeo.2017.03.011, 2017.
Spear, F. S. and Selverstone, J.: Quantitative P–T paths from zoned minerals: Theory and tectonic applications, Contrib. Mineral. Petrol., 83, 348–357, https://doi.org/10.1007/BF00371203, 1983.
Spear, F. S., Wark, D. A., Cheney, J. T., Schumacher, J. C., and Watson, E. B.: Zr-in-rutile thermometry in blueschists from Sifnos, Greece, Contrib. Mineral. Petr., 152, 375–385, https://doi.org/10.1007/s00410-006-0113-4, 2006.
Syracuse, E. M., van Keken, P. E., and Abers, G. A.: The global range of subduction zone thermal models, Phys. Earth Planet. Int., 183, 73–90, https://doi.org/10.1016/j.pepi.2010.02.004, 2010.
Thomas, J. B. and Spear, F. S.: Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer, Contrib. Mineral. Petr., 173, 42, https://doi.org/10.1007/s00410-018-1469-y, 2018.
Tomaschek, F., Kennedy, A. K., Villa, I. M., Lagos, M., and Ballhaus, C.: Zircons from Syros, Cyclades, Greece – Recrystallization and Mobilization of Zircon During High-Pressure Metamorphism, J. Petrol., 44, 1977–2002, https://doi.org/10.1093/petrology/egg067, 2003.
Trotet, F., Jolivet, L., and Vidal, O.: Tectono-metamorphic evolution of Syros and Sifnos islands (Cyclades, Greece), Tectonophysics, 338, 179–206, https://doi.org/10.1016/S0040-1951(01)00138-X, 2001a.
Trotet, F., Vidal, O., and Jolivet, L.: Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P–T paths, Eur. J. Mineral., 13, 901–902, https://doi.org/10.1127/0935-1221/2001/0013/0901, 2001b.
Urey, H. C.: The thermodynamic properties of isotopic substances, J. Chem. Soc. (London), 338, 562–581, 1947.
Uunk, B., Brouwer, F., ter Voorde, M., and Wijbrans, J.: Understanding phengite argon closure using single grain fusion age distributions in the Cycladic Blueschist Unit on Syros, Greece, Earth Planet. Sci. Lett., 484, 192–203, https://doi.org/10.1016/j.epsl.2017.12.031, 2018.
Walowski, K. J., Wallace, P. J., Hauri, E. H., Wada, I., and Clynne, M. A.: Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite, Nat. Geosci., 8, 404–408, https://doi.org/10.1038/ngeo2417, 2015.
Wang, J., Mao, Z., Jiang, F., and Duffy, T. S.: Elasticity of single-crystal quartz to 10 GPa, Phys. Chem. Miner., 42, 203–212, https://doi.org/10.1007/s00269-014-0711-z, 2015.
Wang, Z. and Ji, S.: Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa, Am. Mineral., 86, 1209–1218, https://doi.org/10.2138/am-2001-1009, 2001.
Wunder, B. and Schreyer, W.: Antigorite: High-pressure stability in the system (MSH), Lithos, 41, 213–227, https://doi.org/10.1016/S0024-4937(97)82013-0, 1997.
Zhang, Y.: Mechanical and phase equilibria in inclusion–host systems, Earth Planet. Sci. Lett., 157, 209–222, https://doi.org/10.1016/S0012-821X(98)00036-3, 1998.
Zhong, X., Moulas, E., and Tajčmanová, L.: Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry, Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, 2020.
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Constraining the conditions at which rocks form is crucial for understanding geologic processes....