Articles | Volume 12, issue 1
https://doi.org/10.5194/se-12-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion
Séverine Liora Furst
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, Univ. Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
Samuel Doucet
Fugro France, 115 Avenue de la Capelado, 34160 Castries, France
Philippe Vernant
Géosciences Montpellier, Université de Montpellier, CNRS UMR-5243, 34095 Montpellier, France
Cédric Champollion
Géosciences Montpellier, Université de Montpellier, CNRS UMR-5243, 34095 Montpellier, France
Jean-Louis Carme
Fugro France, 115 Avenue de la Capelado, 34160 Castries, France
Related authors
No articles found.
Jean Chéry, Michel Peyret, Cedric Champollion, and Bijan Mohammadi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3421, https://doi.org/10.5194/egusphere-2025-3421, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
While early scientists believed forests attract rain, later research provided conflicting views, and modern climate models remain inconclusive on natural forests' role in regional pluviometry. Using a parsimony model, we show that continental forests strongly enhance pluviometry if they are connected to underground aquifers. We conclude that natural afforestation should be an efficient way to reactivate precipitation and aquifers recharge.
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
Earth Surf. Dynam., 13, 629–645, https://doi.org/10.5194/esurf-13-629-2025, https://doi.org/10.5194/esurf-13-629-2025, 2025
Short summary
Short summary
The Armorican region (NW France) is marked by several old coastal and marine markers that are today located several tens of meters above sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g., mantle dynamics). In this study, we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci., 29, 2997–3018, https://doi.org/10.5194/hess-29-2997-2025, https://doi.org/10.5194/hess-29-2997-2025, 2025
Short summary
Short summary
This study explores the potential of the electrical self-potential (SP) method, a passive geophysical technique, to provide additional insights into tree transpiration rates. We measured SP and sap velocity in three tree species over a year in a Mediterranean climate. Results indicate SP may characterize transpiration rates, especially during dry seasons. Additionally, the electrokinetic coupling coefficients of these trees align with values typically found in porous geological media.
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst., 10, 65–79, https://doi.org/10.5194/gi-10-65-2021, https://doi.org/10.5194/gi-10-65-2021, 2021
Short summary
Short summary
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth is measured with gravimeters. Quantum gravimeters allow for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. We assess the capacity of the AQG#B01, developed by Muquans, as a field gravimeter for hydrogeophysical applications.
Cited articles
Abidin, H., Andreas, H., Gumilar, I., Yuwono, B., Murdohardono, D., and
Supriyadi: On Integration of Geodetic Observation Results for Assessment of Land Subsidence Hazard Risk in Urban Areas of Indonesia, edited by: Rizos, C. and Willis, P., IAG 150 Years, International Association of Geodesy Symposia, vol 143, Springer, Cham., https://doi.org/10.1007/1345_2015_82, 2015. a
Astakhov, D. K., Roadarmel, W. H., Nanayakkara, A. S., and Service, H.: SPE
151017 A New Method of Characterizing the Stimulated Reservoir Volume Using
Tiltmeter-Based Surface Microdeformation Measurements, in: SPE Hydraulic
Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012,
1–15, 2012. a
Bérest, P. and Brouard, B.: Safety of salt caverns used for underground
storage blow out; mechanical instability; seepage; cavern abandonment, Oil
Gas Sci. Technol., 58, 361–384, https://doi.org/10.2516/ogst:2003023,
2003. a
Bérest, P., Karimi-jafari, M., Brouard, B., Bazargan, B.,
Mécanique, L. D., Polytechnique, E., and Consulting, B.: In situ
mechanical tests in salt caverns, Solution Mining Research Institute,
Brussels, Belgium, 39 pp., 2006. a
Bérest, P., Djakeun-djizanne, H., Brouard, B., and Hévin, G.:
Rapid Depresurizations: Can they lead to irreversible damage?, in:
SMRI Spring Conference, Regina, Canada, 23–24 April 2012,
63–86, 2012. a
Burdack, J.: Combinaison des techniques PSinSAR et GNSS par cumul des
équations normales, Master thesis, Conservatoire National des Arts et
Métiers, Ecole Supérieure des Géomètres et
Topographes, Le Mans, France, 68 pp., 2013. a
Camacho, A. G., González, P. J., Fernández, J., and Berrino, G.:
Simultaneous inversion of surface deformation and gravity changes by means
of extended bodies with a free geometry: Application to deforming calderas,
J. Geophys. Res.-Solid Ea., 116, 1–15,
https://doi.org/10.1029/2010JB008165, 2011. a
Catalão, J., Nico, G., Hanssen, R., and Catita, C.: Integration of Insar
and Gps for Vertical Deformation Monitoring : a Case Study in Faial and Pico
Islands, in: Proceedings of the Fringe 2009 Workshop, Frascati, Italy, 30 November–4 December 2009, 1–7, 2009. a
Comerci, V. and Vittori, E.: The need for a standardized methodology for
quantitative assessment of natural and anthropogenic land subsidence: The
Agosta (Italy) gas field case, Remote Sensing, 11, 1178, https://doi.org/10.3390/rs11101178,
2019. a
Cressie, N.: Spatial prediction and ordinary kriging, Math. Geol.,
20, 405–421,
https://doi.org/10.1007/BF00892986, 1988. a
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N.,
and Crippa, B.: Persistent Scatterer Interferometry: A review, ISPRS
J. Photogramm., 115, 78–89,
https://doi.org/10.1016/j.isprsjprs.2015.10.011,
2016. a
Daya, A. A. and Bejari, H.: A comparative study between simple kriging and
ordinary kriging for estimating and modeling the Cu concentration in
Chehlkureh deposit, SE Iran, Arab. J. Geosci., 8, 8263–8275,
https://doi.org/10.1007/s12517-014-1618-1, 2015. a
Donadei, S. and Schneider, G. S.: Compressed Air Energy Storage in Underground
Formations, in: Storing Energy: With Special Reference to Renewable Energy
Sources, edited by: Letcher, T. M.,
Elsevier, 113–133, https://doi.org/10.1016/B978-0-12-803440-8.00006-3, 2016. a
Farr, T. G. and Kobrick, M.: Shuttle radar topography mission produces a
wealth of data, Eos, 81, 583–585, https://doi.org/10.1029/EO081i048p00583, 2000. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Douglas, B., and Alsdorf, D.:
The shuttle radar topography mission, Rev. Geophys., 45, 2005RG000183,
https://doi.org/10.1029/2005RG000183, 2007. a
Fokker, P. A., Visser, K., Peters, E., Kunakbayeva, G., and Muntendam-Bos,
A. G.: Inversion of surface subsidence data to quantify reservoir
compartmentalization: A field study, J. Petrol. Sci.
Eng., 96/97, 10–21, https://doi.org/10.1016/j.petrol.2012.06.032, 2012. a
Fuhrmann, T., Caro Cuenca, M., Knöpfler, A., van Leijen, F. J., Mayer,
M., Westerhaus, M., Hanssen, R. F., and Heck, B.: Estimation of small
surface displacements in the Upper Rhine Graben area from a combined analysis
of PS-InSAR, levelling and GNSS data, Geophys. J. Int.,
203, 614–631, https://doi.org/10.1093/gji/ggv328, 2015. a, b
Furst, S., Chéry, J., Peyret, M., and Mohammadi, B.: Tiltmeter data
inversion to characterize a strain tensor source at depth: application to
reservoir monitoring, J. Geodesy., 94, 48, https://doi.org/10.1007/s00190-020-01377-5,
2020. a
Galgana, G. A., Newman, A. V., Hamburger, M. W., and Solidum, R. U.: Geodetic
observations and modeling of time-varying deformation at Taal Volcano,
Philippines, J. Volcanol. Geoth. Res., 271, 11–23,
https://doi.org/10.1016/j.jvolgeores.2013.11.005,
2014. a
GenericMappingTools: gmt, available at: https://github.com/GenericMappingTools/gmt/releases/tag/6.1.1, last access: 7 January 2021. a
Gillhaus, A. and Horvath, P. L.: Compilation of geological and geotechnical
data of worldwide domal salt deposits and domal salt cavern fields, Solution
Mining Research Insitute and KBB Underground Technologies GmbH, Clarks Summit, PA, USA, 2008. a
Godano, M.: Etude théorique sur le calcul des mécanismes au foyer
dans un réservoir et application à la sismicité de la
saline de Vauvert (Gard), PhD thesis, Université Nice Sophia
Antipolis, Nice, France, 330 pp., 2009. a
Godano, M., Gaucher, E., Bardainne, T., Regnier, M., Deschamps, A., and
Valette, M.: Assessment of focal mechanisms of microseismic events computed
from two three-component receivers: Application to the Arkema-Vauvert field
(France), Geophys. Prospect., 58, 775–790,
https://doi.org/10.1111/j.1365-2478.2010.00906.x, 2010. a
Godano, M., Bardainne, T., Regnier, M., Deschamps, A., and Valette, M.:
Spatial and temporal evolution of a microseismic swarm induced by water
injection in the Arkema-Vauvert salt field (southern France), Geophys.
J. Int., 188, 274–292, https://doi.org/10.1111/j.1365-246X.2011.05257.x,
2012. a
Hager, B. H., King, R. W., and Murray, M. H.: Measurement of Crustal
Deformation Using the Global Positioning System, Annu. Rev. Earth
Pl. Sc., 19, 351–382, https://doi.org/10.1146/annurev.ea.19.050191.002031,
1991. a
Hammond, W., Lib, Z., and Plaga, H.: Integrated Insar and Gps Studies of
Crustal Deformation in the Western Great Basin, Western United States,
Int. Arch. Photogramm., XXXVIII, 39–43,
2010. a
Hastaoglu, K. O., Poyraz, F., Turk, T., Yılmaz, I., Kocbulut, F., Demirel, M.,
Sanli, U., Duman, H., and Balik Sanli, F.: Investigation of the success of
monitoring slow motion landslides using Persistent Scatterer Interferometry
and GNSS methods, Surv. Rev., 50, 475–486,
https://doi.org/10.1080/00396265.2017.1295631,
2017. a
Hengl, T., Heuvelink, G. B., and Stein, A.: A generic framework for spatial
prediction of soil variables based on regression-kriging, Geoderma, 120,
75–93, https://doi.org/10.1016/j.geoderma.2003.08.018, 2004. a, b
Hengl, T., Heuvelink, G. B., and Rossiter, D. G.: About regression-kriging:
From equations to case studies, Comput. Geosci., 120, 75–93,
https://doi.org/10.1016/j.cageo.2007.05.001, 2007. a
Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C.: Introduction
to GAMIT/GLOBK, Release 10.6, Tech. rep., Massachusetts Institute of
Technology, Cambridge, USA, 48 pp., 2015. a
Hooper, A., Zebker, H., Segall, P., and Kampes, B.: A new method for measuring
deformation on volcanoes and other natural terrains using InSAR persistent
scatterers, Geophys. Res. Lett., 31, 1–5,
https://doi.org/10.1029/2004GL021737, 2004. a
Ivorra, B. and Mohammadi, B.: Semi-deterministic global optimization method,
J. Optimiz. Theory App., 135, 549–561,
https://doi.org/10.1007/s10957-007-9251-8,
2007. a
Karila, K., Karjalainen, M., Hyyppä, J., Koskinen, J., Saaranen, V., and
Rouhiainen, P.: A comparison of precise leveling and Persistent Scatterer
SAR Interferometry for building subsidence rate measurement, ISPRS
Int. Geo-Inf., 2, 797–816,
https://doi.org/10.3390/ijgi2030797, 2013. a
Ligas, M. and Kulczycki, M.: Kriging approach for local height
transformations, Geodesy and Cartography, 63, 25–37,
https://doi.org/10.2478/geocart-2014-0002, 2015. a
Lu, C. H., Ni, C. F., Chang, C. P., Yen, J. Y., and Hung, W. C.: Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan, Proc. IAHS, 372, 77–82, https://doi.org/10.5194/piahs-372-77-2015, 2015. a, b
Lundgren, P., Hetland, E. A., Liu, Z., and Fielding, E. J.: Southern San
Andreas-San Jacinto fault system slip rates estimated from earthquake cycle
models constrained by GPS and interferometric synthetic aperture radar
observations, J. Geophys. Res.-Sol. Ea., 114, 1–18,
https://doi.org/10.1029/2008JB005996, 2009. a
Maisons, C., Raucoules, D., and Carnec, C.: Monitoring of slow ground
deformation by satellite differential radar-interferometry. A reference case
study, Solution Mining Research Institute, Brussels, Belgium, 10 pp., 2006. a
McCaffrey, R.: Block kinematics of the Pacific-North America plate boundary in
the southwestern United States from inversion of GPS, seismological, and
geologic data, J. Geophys. Res.-Sol. Ea., 110, 1–27,
https://doi.org/10.1029/2004JB003307, 2005. a, b
Mogi, K.: Relations between the eruptions of various volcanoes and the
deformations of the ground surfaces around them, 36, 99–134,
https://doi.org/10.1016/j.epsl.2004.04.016,
1958. a, b
Mohammadi, B.: Backward uncertainty propagation in shape optimization,
Int. J. Numer. Meth. Fl., 80, 285–305,
https://doi.org/10.1002/fld.4077, 2016. a
Mohammadi, B. and Pironneau, O.: Applied Shape Optimization for fluids,
Oxford University Press, Oxford, UK, 2009. a
Pebesma, E. J.: The role of external variables and GIS databases in
geostatistical analysis, T. GIS, 10, 615–632,
https://doi.org/10.1111/j.1467-9671.2006.01015.x, 2006. a
Peltier, A., Staudacher, T., and Bachèlery, P.: Constraints on magma
transfers and structures involved in the 2003 activity at Piton de La
Fournaise from displacement data, J. Geophys. Res.-Sol.
Ea., 112, 1–16, https://doi.org/10.1029/2006JB004379, 2007. a
Peltier, A., Froger, J., Villeneuve, N., and Catry, T.: Assessing the
reliability and consistency of InSAR and GNSS data for retrieving
3D-displacement rapid changes, the example of the 2015 Piton de la Fournaise
eruptions, J. Volcanol. Geoth. Res., 344, 106–120,
https://doi.org/10.1016/j.jvolgeores.2017.03.027,
2017. a, b
Raucoules, D., Maisons, C., Carnec, C., Le Mouelic, S., King, C., and
Hosford, S.: Monitoring of slow ground deformation by ERS radar
interferometry on the Vauvert salt mine (France): Comparison with
ground-based measurement, Remote Sens. Environ., 88, 468–478,
https://doi.org/10.1016/j.rse.2003.09.005, 2003. a, b, c, d, e, f, g, h, i
Raucoules, D., Maisons, C., and Carnec, C.: Monitoring subsidence on the
Vauvert salt mine using radar interferometry, in: Journées Nationales
de Géotechnique et de Géologie de l'ingénieur, Lille, France, 28–30 June 2004, 413–417, 2004. a
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak,
R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M.,
Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus,
A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V.,
Gomez, F., Al-Ghazzi, R., and Karam, G.: GPS constraints on continental
deformation in the Africa-Arabia-Eurasia continental collision zone and
implications for the dynamics of plate interactions, J. Geophys.
Res.-Sol. Ea., 111, 1–26, https://doi.org/10.1029/2005JB004051, 2006. a
RESIF: RESIF-RENAG French national Geodetic Network, RESIF – Réseau
Sismologique et géodésique Français,
https://doi.org/10.15778/resif.rg, 2017., a, b
Séranne, M., Benedicto, A., Labaum, P., Truffert, C., and Pascal, G.:
Structural style and evolution of the Gulf of Lion Oligo-Miocene rifting:
role of the Pyrenean orogeny, Mar. Petrol. Geol., 12, 809–820,
https://doi.org/10.1016/0264-8172(95)98849-Z, 1995.
a
Valette, M.: Etude structurale du gisement salifère oligocène de
Vauvert (Gard), PhD thesis, Université de Montpellier, Montpellier, France, 229 pp., 1991. a
Vasco, D. W., Ferretti, A., and Novali, F.: Reservoir monitoring and
characterization using satellite geodetic data: Interferometric synthetic
aperture radar observations from the Krechba field, Algeria, Geophysics, 73,
WA113, https://doi.org/10.1190/1.2981184, 2008. a
Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F.: Generic
mapping tools: Improved version released, Eos, 94, 409–410,
https://doi.org/10.1002/2013EO450001, 2013. a
Wright, T. J., Parsons, B. E., and Lu, Z.: Toward mapping surface deformation
in three dimensions using InSAR, Geophys. Res. Lett., 31, 1–5,
https://doi.org/10.1029/2003GL018827, 2004. a
Yamamoto, J. K.: Comparing ordinary kriging interpolation variance and
indicator kriging conditional variance for assessing uncertainties at
unsampled locations, in: Proceedings of the 32nd Int. Symposium on the Application of
Computers and Operations Research in the Mineral Industry, APCOM 2005,
Tucson, USA, 30 March–1 April 2005, 265–272,
https://doi.org/10.1201/9781439833407.ch34, 2005. a
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
We develop a two-step methodology combining multiple surface deformation measurements above a...