Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The damaging character of shallow 20th century earthquakes in the Hainaut coal area (Belgium)
Thierry Camelbeeck
CORRESPONDING AUTHOR
Royal Observatory of Belgium, Seismology-Gravimetry, Avenue Circulaire 3, 1180 Uccle, Belgium
Koen Van Noten
Royal Observatory of Belgium, Seismology-Gravimetry, Avenue Circulaire 3, 1180 Uccle, Belgium
Thomas Lecocq
Royal Observatory of Belgium, Seismology-Gravimetry, Avenue Circulaire 3, 1180 Uccle, Belgium
Marc Hendrickx
Royal Observatory of Belgium, Seismology-Gravimetry, Avenue Circulaire 3, 1180 Uccle, Belgium
Related authors
Baptiste Frankinet, Thomas Lecocq, and Thierry Camelbeeck
The Cryosphere, 15, 5007–5016, https://doi.org/10.5194/tc-15-5007-2021, https://doi.org/10.5194/tc-15-5007-2021, 2021
Short summary
Short summary
Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Having a complete catalogue of those icequakes provides a unique view on the ice dynamics. But the instruments recording these events are polluted by different noise sources such as the wind. Using the data from multiple instruments, we found how the wind noise affects the icequake monitoring at the Princess Elisabeth Station in Antarctica.
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Baptiste Frankinet, Thomas Lecocq, and Thierry Camelbeeck
The Cryosphere, 15, 5007–5016, https://doi.org/10.5194/tc-15-5007-2021, https://doi.org/10.5194/tc-15-5007-2021, 2021
Short summary
Short summary
Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Having a complete catalogue of those icequakes provides a unique view on the ice dynamics. But the instruments recording these events are polluted by different noise sources such as the wind. Using the data from multiple instruments, we found how the wind noise affects the icequake monitoring at the Princess Elisabeth Station in Antarctica.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
Kasper van Wijk, Calum J. Chamberlain, Thomas Lecocq, and Koen Van Noten
Solid Earth, 12, 363–373, https://doi.org/10.5194/se-12-363-2021, https://doi.org/10.5194/se-12-363-2021, 2021
Short summary
Short summary
The Auckland Volcanic Field is monitored by a seismic network. The lockdown measures to combat COVID-19 in New Zealand provided an opportunity to evaluate the performance of seismic stations in the network and to search for small(er) local earthquakes, potentially hidden in the noise during "normal" times. Cross-correlation of template events resulted in detection of 30 new events not detected by GeoNet, but there is no evidence of an increase in detections during the quiet period of lockdown.
Andrea Cannata, Flavio Cannavò, Giuseppe Di Grazia, Marco Aliotta, Carmelo Cassisi, Raphael S. M. De Plaen, Stefano Gresta, Thomas Lecocq, Placido Montalto, and Mariangela Sciotto
Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, https://doi.org/10.5194/se-12-299-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic, most countries put in place social interventions, aimed at restricting human mobility, which caused a decrease in the seismic noise, generated by human activities and called anthropogenic seismic noise. In densely populated eastern Sicily, we observed a decrease in the seismic noise amplitude reaching 50 %. We found similarities between the temporal patterns of seismic noise and human mobility, as quantified by mobile-phone-derived data and ship traffic data.
Cited articles
Ahorner, L. and Pelzing, R.: The Source Characteristics of the Liège
Earthquake on November 8, 1983, From Digital Recordings in West
Germany, in: Seismic activity in western Europe, edited by: Reidel, D.,
Publishing Company 1985, 263–289, https://doi.org/10.1007/978-94-009-5273-7_21, 1985. a
Alexandre, P., Kusman, D., and Camelbeeck, T.: La presse périodique, une
source pour l'histoire des tremblements de terre dans l'espace belge, Arch.
Bibl. Belg., 78, 257–278, 2007. a
Alexandre, P., Kusman, D., Petermans, T., and Camelbeeck, T.: The 18
September 1692 Earthquake in the Belgian Ardenne and Its
Aftershocks, in: Historical Seismology. Modern Approaches in Solid Earth Sciences, edited by Fréchet J., Meghraoui M., Stucchi M., Vol 2, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-8222-1_10, 2008. a
Association Française de génie Parasismique: Lorca earthquake (Spain), 11 May, Spain, AFPS,
http://www.afps-seisme.org/eng/EARTHQUAKES/Major-earthquakes/Lorca-earthquake-2011 ( last access: 12 July 2021),
2011. a
Atkinson, G. M.: The Intensity of Ground Motions from Induced Earthquakes with
Implications for Damage Potential, Bull. Seismol. Soc.
Am., 110, 2366–2379, https://doi.org/10.1785/0120190166, 2020. a, b
Bakun, W. and Scotti, O.: Regional intensity attenuation models for France
and the estimation of magnitude and location of historical earthquakes,
Geophys. J. Int., 164, 596–610, https://doi.org/10.1111/j.1365-246X.2005.02808.x, 2006. a
Barszez, A.-M.: Aléa sismique du Bassin de Mons et vulnérabilité des
bâtiments anciens – Analyse du risque sismique pour un quartier du
centre historique de Mons, MSc-thesis, Faculté Polytechnique de Mons,
Service d'Architecture et de Mines, 2005. a
Bossu, R., Landès, M., Roussel, F., and Steed, R.: Felt Reports for Rapid
Mapping of Global Earthquake Damage: The Doughnut Effect?,
Seismol. Res. Lett., 89, 138–144, https://doi.org/10.1785/0220170129,
2017. a
Calais, E., Camelbeeck, T., Stein, S., Liu, M., and Craig, T.: A New
Paradigm for Large Earthquakes in Stable Continental Plate
Interiors, Geophys. Res. Lett., 43, 10621–10637, https://doi.org/10.1002/2016GL070815,
2016. a
Camelbeeck, T.: Some Notes Concerning the Seismicity in Belgium –
Magnitude Scale – Detection Capability of the Belgian
Seismological Stations, in: Seismic Activity in Western Europe:
with Particular Consideration to the Liège Earthquake of 8 November 1983, edited by: Melchior, P. J., NATO ASI Series, Vol. 144,
Springer, Dordrecht, 99–108, https://doi.org/10.1007/978-94-009-5273-7_8,
1985a. a, b, c
Camelbeeck, T.: Recent Seismicity in Hainaut – Scaling Laws from the
Seismological Stations in Belgium and Luxemburg, in: Seismic activity
in western Europe, edited by: Melchior, P. J., NATO ASI Series, Vol. 144, Springer, Dordrecht, 109–126, https://doi.org/10.1007/978-94-009-5273-7_9,
1985b. a, b, c, d, e
Camelbeeck, T.: La séquence sismique dans la région de Dour de février à
mai 1987, Ann. Soc. Roy. Zool. Bel.,
74, 96–116, https://doi.org/10.3406/barb.1988.57756, 1988. a
Camelbeeck, T.: L'activité séismique actuelle (1985–1988) en Belgique,
Comparaison avec les données de séismicité historique et instrumentale,
Analyse séismotectonique, Ann. Soc. Roy. Zool. Bel.,
112, 347–365, 1990. a
Camelbeeck, T., van camp, M., Martin, H., Van de Putte, W., Bukasa, B.,
Castelein, S., Collin, F., Hendrickx, M., El Bouch, A., Petermans, T.,
Snissaert, M., Vanneste, K., and Verbeiren, R.: Les Effets en Belgique du
Tremblement de Terre du 12 Juillet 2002 dans le Graben de la Roer,
Ciel et Terre, 119, p. 13, 2003. a, b
Camelbeeck, T., de Viron, O., Van Camp, M., and Kusters, D.: Local stress
sources in Western Europe lithosphere from geoid anomalies, Lithosphere,
5, 235–246, https://doi.org/10.1130/L238.1, 2013. a
Camelbeeck, T., Alexandre, P., Sabbe, A., Knuts, E., Garcia Moreno, D., and
Lecocq, T.: The impact of earthquake activity in Western Europe from the
historical and architectural heritage records, in: Intraplate Earthquakes,
Solid Earth Geophysics, Cambridge University Press, 198–230,
https://doi.org/10.1017/CBO9781139628921.009, 2014. a
Carriere, D.: Geocoder, Github, https://github.com/DenisCarriere/geocoder, last access: 12 July 2021. a
Cecić, I. and Musson, R.: Macroseismic Surveys in Theory and Practice,
Nat. Hazards, 31, 39–61, https://doi.org/10.1023/B:NHAZ.0000020255.00986.37, 2004. a
Cornet, J.: Le tremblement de terre de Mons (12 avril 1911), Annales de la
Société géologique de Belgique, 39, 39–97, 1911. a
Descamps, L.: Relations entre l'activité sismique dans le Hainaut et
l’activité minière, Master's thesis, Faculté Polytechnique de Mons,
University of Mons, 2009. a
Drouet, S., Ameri, G., Le Dortz, K., Secanell, R., and Senfaute, G.: A
probabilistic seismic hazard map for the metropolitan France, Bull.
Earthq. Eng., 18, 1865–1898, https://doi.org/10.1007/s10518-020-00790-7,
2020. a
Faber, S. and Bonjer, K.-P.: Phase Recognition and Interpretation at
Regional Distances from the Liege Event of November 8, 1983, in:
Seismic Activity in Western Europe: with Particular Consideration
to the Liège Earthquake of 8 November 1983, edited by: Melchior,
P. J., NATO ASI Series, Springer Netherlands, Dordrecht, 249–262,
https://doi.org/10.1007/978-94-009-5273-7_20, 1985. a
García Moreno, D. and Camelbeeck, T.: Comparison of ground motions estimated from prediction equations and from observed damage during the M=4.6 1983 Liège earthquake (Belgium), Nat. Hazards Earth Syst. Sci., 13, 1983–1997, https://doi.org/10.5194/nhess-13-1983-2013, 2013. a, b
Gomberg, J. S., Shedlock, K. M., and Roecker, S. W.: The effect of S-wave
arrival times on the accuracy of hypocenter estimation, Bull.
Seismol. Soc. Am., 80, 1605–1628, 1990. a
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile,
T. A., Dost, B., Fernandez, M. G., Wiemer, S., and Dahm, T.: Current
challenges in monitoring, discrimination, and management of induced
seismicity related to underground industrial activities: A European
perspective, Rev. Geophys., 55, 310–340,
https://doi.org/10.1002/2016RG000542, 2017. a
Hinzen, K.-G. and Oemisch, M.: Location and Magnitude from Seismic
Intensity Data of Recent and Historic Earthquakes in the Northern
Rhine Area, Central Europe, Bull. Seismol. Soc.
Am., 91, 40–56, https://doi.org/10.1785/0120000036, 2001. a
Hough, S. E. and Martin, S. S.: Which Earthquake Accounts Matter?,
Seismol. Res. Lett., 92, 1069–1084, https://doi.org/10.1785/0220200366,
2021. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput.
Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jongmans, D. and Plumier, A.: Etude pilote du risque sismique sur une partie de
la ville de Liège (4 km2), Internal report, Faculté des Sciences
Appliquées, Université de Liège, 2000. a
Knuts, E., Camelbeeck, T., and Alexandre, P.: The 3 December 1828 moderate
earthquake at the border between Belgium and Germany, J.
Seismol., 20, 419–437, https://doi.org/10.1007/s10950-015-9535-7, 2016. a
Kárník, V.: Seismicity of the European Area: Part 2, Springer
Netherlands, https://doi.org/10.1007/978-94-010-3078-6, 1971. a, b
Kövesligethy, R.: Seismischer Stärkegrad und Intensität der Beben,
Gerl. Beitr. Geophys., 8, 1907. a
Lecocq, T., Camelbeeck, T., Rapagnani, G., Bukasa, B., Castelein, S., Collin,
F., Hendrickx, M., Martin, H., Vandercoilden, L., Van Camp, M., and Vanneste,
K.: Trente ans de surveillance sismique en Belgique, Ciel et terre, 129,
105–109, 2013. a
Leynaud, D., Jongmans, D., Teerlynck, H., and Camelbeeck, T.: Seismic hazard
assessment in Belgium, Geol. Belg., 3, 67–86,
https://doi.org/10.20341/gb.2014.024, 2001. a
Marlière, R.: Les tremblements de terre d'avril-mai 1949 dans la région de
Mons, Bulletin de la Société belge de Géologie, de Paléontologie et
d'Hydrologie, 60, 17–27, 1951. a
Martin, C., Secanell, R., Combes, R., and Lignon, G.: Preliminary probabilistic
seismic hazard assessement of France, London, 9–13 September, 2002. a
McKinney, W.: Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython, O'Reilly Media, Sebastopol, California, 2nd Edn., ISBN 13 978-1491957660,
2017. a
Nappi, R., Porfido, S., Paganini, E., Vezzoli, L., Ferrario, M. F., Gaudiosi,
G., Alessio, G., and Michetti, A. M.: The 2017, MD = 4.0, Casamicciola
Earthquake: ESI-07 Scale Evaluation and Implications for the Source Model,
Geosciences, 11, 44, https://doi.org/10.3390/geosciences11020044, 2021. a
Neefs, B., Van Noten, K., and Camelbeeck, T.: The complexity of modelling
anisotropic intensity attenuation in Belgium, 37th General Assembly of the
European Seismological Commission, Corfu, 19–24 September, 2021. a
Nievas, C. I., Bommer, J. J., Crowley, H., van Elk, J., Ntinalexis, M., and
Sangirardi, M.: A database of damaging small-to-medium magnitude earthquakes,
J. Seismol., 24, 263–292, https://doi.org/10.1007/s10950-019-09897-0, 2020. a
Oliphant, T. E.: A Guide to NumPy, Trelgol Publishing, ISBN 13 978-1517300074, 2006. a
Phillips, D. W.: Macroseismic Effects of the Liège Earthquake with
Particular Reference to Industrial Installations, in: Seismic
Activity in Western Europe: with Particular Consideration to the
Liège Earthquake of 8 November 1983, edited by: Melchior, P. J.,
NATO ASI Series, Springer Netherlands, Dordrecht, 369–384,
https://doi.org/10.1007/978-94-009-5273-7_30, 1985. a, b
Plumier, A.: Les effets sur les constructions, Les réparations., in: Le
séisme de Liège et ses implications pratiques, Vol. 4, Annales des
travaux publics de Belgique, edited by: Breesch, L., Camelbeeck, T.,
De Becker, M., Gurpinar, A., Monjoie, A., Plumier, A., and Van Gils, J. M., 346–353,
1985. a, b, c
Provost, L. and Scotti, O.: QUake‐MD: Open‐Source Code to Quantify
Uncertainties in Magnitude–Depth Estimates of Earthquakes from Macroseismic
Intensities, Seismol. Res. Lett., 91, 2520–2530,
https://doi.org/10.1785/0220200064, 2020. a
QGIS Development Team: QGIS Geographic Information System, Open
Source Geospatial Foundation,
http://qgis.osgeo.org, last access: 10 March 2021. a
Sbarra, P., Burrato, P., Tosi, P., Vannoli, P., De Rubeis, V., and Valensise,
G.: Inferring the depth of pre-instrumental earthquakes from macroseismic
intensity data: a case-history from Northern Italy, Sci. Rep.,
9, 15583, https://doi.org/10.1038/s41598-019-51966-4, 2019. a, b
Schlupp, A., Sira, C., Maufroy, E., Provost, L., Dretzen, R., Bertrand, E.,
Beck, E., and Schaming, M.: EMS98 intensities distribution of the
“Le Teil” earthquake, France, 11
November 2019 (Mw 4.9) based on macroseismic surveys and field
investigations, Compt. Rendus. Géosci., 353, 465–492, https://doi.org/10.5802/crgeos.88,2021. a, b, c
Sira, C.: Macroseismic Intervention Group: The Necessary Field Observation,
Springer International Publishing, Cham, 395–408,
https://doi.org/10.1007/978-3-319-16964-4_16, 2015. a, b
Sponheuer, W.: Untersuchungen Zur Seismizität von Deutschland,
Veröffentlichungen des Instituts für Bodenmechanik und Erdbebenforschung in
Jena, 72, 23–52, 1962. a
State Archives of Belgium:
http://arch.arch.be, last access: 10 March 2021. a
Stromeyer, D. and Grünthal, G.: Attenuation Relationship of Macroseismic
Intensities in Central Europe, Bull. Seismol. Soc.
Am., 99, 554–565, https://doi.org/10.1785/0120080011, 2009. a, b, c, d
Stromeyer, D., Grünthal, G., and Wahlström, R.: Chi-square regression for
seismic strength parameter relations, and their uncertainties, with
applications to an Mw based earthquake catalogue for central, northern and
northwestern Europe, J. Seismol., 8, 143–153,
https://doi.org/10.1023/B:JOSE.0000009503.80673.51, 2004.
a
Troch, K.: Une vulnérabilité délibérément acceptée par les pouvoirs
publics? Extraction du charbon et inondations dans la vallée de la
Haine, 1880–1940, VertigO – la revue électronique en sciences de
l'environnement, 3, 16, https://doi.org/10.4000/vertigo.17998, 2016. a
Troch, K.: Ne pas grever l'avenir au bénéfice du présent: Une histoire
environnementale de l'extraction du charbon de la fin du 18e siècle à
l'Entre-deux-guerres: un développement non soutenable: L’exemple
du Couchant de Mons et du Valenciennois, PhD Thesis, Université
Charles de Gaulle – Lille III; Université de Namur, https://tel.archives-ouvertes.fr/tel-02918115 (last access: 10 March 2021), 2018a. a, b
Troch, K.: Reforming Mineral Ownership and Ensuring Surface Owners'
Rights: The Gosselies Disaster, Global Environ., 11, 319–345,
https://doi.org/10.3197/ge.2018.110206, 2018b. a
Van Noten, K., Lecocq, T., Shah, A. K., and Camelbeeck, T.: Seismotectonic
significance of the 2008–2010 Walloon Brabant seismic swarm in the Brabant
Massif, Belgium, Tectonophysics, 656, 20–38,
https://doi.org/10.1016/j.tecto.2015.05.026, 2015. a
Van Noten, K., Lecocq, T., Sira, C., Hinzen, K.-G., and Camelbeeck, T.: Path and site effects deduced from merged transfrontier internet macroseismic data of two recent M4 earthquakes in northwest Europe using a grid cell approach, Solid Earth, 8, 453–477, https://doi.org/10.5194/se-8-453-2017, 2017. a, b
Vanneste, K., Vleminckx, B., Verbeeck, K., and Camelbeeck, T.: Development of
seismic hazard maps for Belgium, Seismic Hazard Harmonization
in Europe (SHARE): DGEB-Workshop, Print Office Schumacher, Herzogenrath, Vol. 16,
61–68, ISBN 9783930108121, 2014. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental
algorithms for scientific computing in Python, Nat. Methods, 17,
261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal,
G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S.,
Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., and
The SHARE Consortium: The 2013 European Seismic Hazard Model: key
components and results, Bull. Earthq. Eng., 13, 3553–3596,
https://doi.org/10.1007/s10518-015-9795-1, 2015. a
Short summary
Over the 20th century, shallow damaging seismicity occurred in and near the Hainaut coal mining area in Belgium. We provide an overview of earthquake parameters and impacts, combining felt and damage testimonies and instrumental measurements. Shallower earthquakes have a depth and timing compatible with mining activity. The most damaging events occurred deeper than the mines but could still have been triggered by mining-caused crustal changes. Our modelling can be applied to other regions.
Over the 20th century, shallow damaging seismicity occurred in and near the Hainaut coal mining...