Articles | Volume 14, issue 2
https://doi.org/10.5194/se-14-153-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-153-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Marion Roger
CORRESPONDING AUTHOR
Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, CNRS, IRD, 38000 Grenoble, France
Arjan de Leeuw
Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, CNRS, IRD, 38000 Grenoble, France
Peter van der Beek
Institut für Geowissenschaften, Universität Potsdam, 14476
Potsdam, Germany
Laurent Husson
Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, CNRS, IRD, 38000 Grenoble, France
Edward R. Sobel
Institut für Geowissenschaften, Universität Potsdam, 14476
Potsdam, Germany
Johannes Glodny
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Matthias Bernet
Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, CNRS, IRD, 38000 Grenoble, France
Related authors
No articles found.
Gino de Gelder, Navid Hedjazian, Laurent Husson, Thomas Bodin, Anne-Morwenn Pastier, Yannick Boucharat, Kevin Pedoja, Tubagus Solihuddin, and Sri Yudawati Cahyarini
Earth Surf. Dynam., 13, 941–958, https://doi.org/10.5194/esurf-13-941-2025, https://doi.org/10.5194/esurf-13-941-2025, 2025
Short summary
Short summary
Marine terrace sequences – staircase-shaped coastal landforms – record sea-level changes, vertical motions, and erosional processes that are difficult to untangle. To achieve this, we developed a numerical inversion approach: using the observed landscape as input, we constrained the ensemble of parameter ranges that could have created this landscape. We applied the model to marine terrace sequences in Santa Cruz (US) and Corinth (Greece) to reveal past sea or lake levels, uplift rates, and hydroclimates.
Zihao Zhao, Tianyi Shen, Guocan Wang, Peter van der Beek, Yabo Zhou, and Cheng Ma
Solid Earth, 16, 503–530, https://doi.org/10.5194/se-16-503-2025, https://doi.org/10.5194/se-16-503-2025, 2025
Short summary
Short summary
This study examines the evolution of the Harlik Mountains in the eastern Tian Shan. Low-relief surfaces were formed by the Early Cretaceous erosion and subsequent tectonic stability. Later fault activity segmented these surfaces, with uplift and tilting in the Cenozoic driven by tectonic reactivation. These findings provide insights into how landscapes evolve in response to geological and environmental changes over millions of years.
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024, https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
Peter van der Beek and Taylor F. Schildgen
Geochronology, 5, 35–49, https://doi.org/10.5194/gchron-5-35-2023, https://doi.org/10.5194/gchron-5-35-2023, 2023
Short summary
Short summary
Thermochronometric data can provide unique insights into the patterns of rock exhumation and the driving mechanisms of landscape evolution. Several well-established thermal models allow for a detailed exploration of how cooling rates evolved in a limited area or along a transect, but more regional analyses have been challenging. We present age2exhume, a thermal model that can be used to rapidly provide a synoptic overview of exhumation rates from large regional thermochronologic datasets.
Gerhard Franz, Peter Lyckberg, Vladimir Khomenko, Vsevolod Chournousenko, Hans-Martin Schulz, Nicolaj Mahlstedt, Richard Wirth, Johannes Glodny, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 19, 1795–1811, https://doi.org/10.5194/bg-19-1795-2022, https://doi.org/10.5194/bg-19-1795-2022, 2022
Short summary
Short summary
In pegmatites from Ukraine Precambrian fossils between 1.5 Ga and 1.76 Ga were preserved in cavities connected to the surface in a geyser system. The fossilization process is silicification of the outermost rim of the fossils, stabilizing the remaining part of the organisms. The variety of organisms points to an ecosystem of several microorganisms which was active in the continental environment, and igneous rocks such as the pegmatites seem to be an ideal habitat for the deep biosphere.
Coline Ariagno, Caroline Le Bouteiller, Peter van der Beek, and Sébastien Klotz
Earth Surf. Dynam., 10, 81–96, https://doi.org/10.5194/esurf-10-81-2022, https://doi.org/10.5194/esurf-10-81-2022, 2022
Short summary
Short summary
The
critical zonenear the surface of the Earth is where geologic substrate, erosion, climate, and life meet and interact. This study focuses on mechanisms of physical weathering that produce loose sediment and make it available for transport. We show that the sediment export from a monitored catchment in the French Alps is modulated by frost-weathering processes and is therefore sensitive to complex modifications in a warming climate.
Marguerite Mathey, Christian Sue, Colin Pagani, Stéphane Baize, Andrea Walpersdorf, Thomas Bodin, Laurent Husson, Estelle Hannouz, and Bertrand Potin
Solid Earth, 12, 1661–1681, https://doi.org/10.5194/se-12-1661-2021, https://doi.org/10.5194/se-12-1661-2021, 2021
Short summary
Short summary
This work features the highest-resolution seismic stress and strain fields available at the present time for the analysis of the active crustal deformation of the Western Alps. In this paper, we address a large dataset of newly computed focal mechanisms from a statistical standpoint, which allows us to suggest a joint control from far-field forces and from buoyancy forces on the present-day deformation of the Western Alps.
Xiong Ou, Anne Replumaz, and Peter van der Beek
Solid Earth, 12, 563–580, https://doi.org/10.5194/se-12-563-2021, https://doi.org/10.5194/se-12-563-2021, 2021
Short summary
Short summary
The low-relief, mean-elevation Baima Xueshan massif experienced slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma and then regional rock uplift at 0.25 km/Myr since ~10 Ma. The high-relief, high-elevation Kawagebo massif shows much stronger local rock uplift related to the motion along a west-dipping thrust fault, at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. Mekong River incision plays a minor role in total exhumation in both massifs.
Cited articles
Andreucci, B., Castelluccio, A., Jankowski, L., Mazzoli, S., Szaniawski, R., and
Zattin, M.: Burial and exhumation history of the Polish outer Carpathians:
discriminating the role of thrusting and post-thrusting extension,
Tectonophysics, 608, 866–883,
https://doi.org/10.1016/j.tecto.2013.07.030, 2013.
Andreucci, B., Castelluccio, A., Corrado, S., Jankowski, L., Mazzoli, S.,
Szaniawski, R., and Zattin, M.: Interplay between the thermal evolution of
an orogenic wedge and its retro-wedge basin: An example from the Ukrainian
Carpathians, Geol. Soc. Am. Bull., 127, 410–427,
https://doi.org/10.1130/B31067.1, 2015.
Andreyeva-Grigorovich, A. S., Oszczypko, N., Ślączka, A.,
Oszczypko-Clowes, M., Savitskaya, N. A., and Trofimovicz, N.: New data on the
stratigraphy of the folded Miocene zone at the front of the Ukrainian outer
Carpathians, Acta Geol. Pol., 58, 325–353, 2008.
Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th) He,
fission track, and trapped charge thermochronometry with applications to
earthquakes, weathering, surface-mantle connections, and the growth and
decay of mountains, Tectonics, 38, 3705–3739,
https://doi.org/10.1029/2018TC005312, 2019.
Barr, T. D. and Dahlen, F. A.: Constraints on friction and stress in the
Taiwan fold-and-thrust belt from heat flow and geochronology, Geology, 18,
111–115, https://doi.org/10.1130/0091-7613(1990)018<0111:cofasi>2.3.co;2, 1990.
Batt, G. E., Brandon, M. T., Farley, K. A., and Roden-Tice, M.: Tectonic
synthesis of the Olympic Mountains segment of the Cascadia wedge, using
two-dimensional thermal and kinematic modeling of thermochronological ages,
J. Geophys. Res., 106, 26731–26746, https://doi.org/10.1029/2001jb000288,
2001.
Beyssac, O., Simoes, M., Avouac, J.-P., Farley, K. A., Chen, Y.-G., Chan,
Y.-C., and Goffé, B.: Late Cenozoic metamorphic evolution and exhumation
of Taiwan, Tectonics, 26, TC6001, https://doi.org/10.1029/2006tc002064,
2007.
Brandon, M. T., Roden-Tice, M. K., and Garver, J. I.: Late Cenozoic
exhumation of the Cascadia accretionary wedge in the Olympic Mountains,
northwest Washington State, Geol. Soc. Am. Bull., 110, 985–1009,
https://doi.org/10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2, 1998.
Braun, J., van der Beek, P., and Batt, G. E.: Quantitative Thermochronology:
Numerical methods for the interpretation of thermochronological data,
Cambridge University Press, 271 pp., https://doi.org/10.1017/CBO9780511616433, 2006.
Carlson, W. D., Donelick, R. A., and Ketcham, R. A.: Variability of apatite
fission-track annealing kinetics: I. Experimental results, Am. Mineral., 84,
1213–1223, 1999.
Castelluccio, A., Mazzoli, S., Andreucci, B., Jankowski, L., Szaniawski, R.,
and Zattin, M.: Building and exhumation of the Western Carpathians: New
constraints from sequentially restored, balanced cross sections integrated
with low-temperature thermochronometry, Tectonics, 35, 2698–2733,
https://doi.org/10.1002/2016TC004190, 2016.
Cloetingh, S. A. P. L., Burov, E., Matenco, L., Toussaint, G., Bertotti, G.,
Andriessen, P. A. M., Wortel, M. J. R., and Spakman, W.: Thermo-mechanical
controls on the mode of continental collision in the SE Carpathians
(Romania), Earth Planet. Sc. Lett., 218, 57–76,
https://doi.org/10.1016/S0012-821X(03)00645-9, 2004.
Csontos, L. and Vörös, A.: Mesozoic plate tectonic reconstruction of the Carpathian region, Palaeogeogr. Palaeocl., 210, 1–56, https://doi.org/10.1016/j.palaeo.2004.02.033, 2004.
Csontos, L., Nagymarosy, A., Horváth, F., and Kovac, M.: Tertiary evolution of the Intra-Carpathian area: a model, Tectonophysics, 208, 221–241. 1992.
Dahlen, F. A., Suppe, J., and Davis, D.: Mechanics of fold-and-thrust belts
and accretionary wedges: Cohesive Coulomb Theory, J. Geophys. Res., 89,
10087–10101, https://doi.org/10.1029/JB089iB12p10087, 1984.
Davis, D., Suppe, J., and Dahlen, F. A.: Mechanics of fold-and-thrust belts
and accretionary wedges, J. Geophys. Res., 88, 1153,
https://doi.org/10.1029/JB088iB02p01153, 1983.
Docin, G.D.: State geological map of Ukraine (M34-30) scale 1:200 000,
State geological research institute UkrSGRI, 1963.
Dumitrescu, I., Mirăujā, O., Săndulescu, M., Stefănescu, M.,
Bandrabur, T.: Harta Geologică Republica Socialistă România,
scara 1:200.000, tiraj 2000, 1962.
Ehlers, T. A. and Farley, K. A.: Apatite (U–Th) He thermochronometry:
methods and applications to problems in tectonic and surface processes,
Earth Planet. Sc. Lett., 206, 1–14,
https://doi.org/10.1016/S0012-821X(02)01069-5, 2003.
Erlanger, E. D., Fellin, M. G., and Willett, S. D.: Exhumation and erosion of the Northern Apennines, Italy: new insights from low-temperature thermochronometers, Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, 2022.
Fillon, C., Gautheron, C., and van der Beek, P.: Oligocene–Miocene burial
and exhumation of the Southern Pyrenean foreland quantified by
low-temperature thermochronology, J. Geol. Soc. London, 170, 67–77,
https://doi.org/10.1144/jgs2012-051, 2013.
Flament, N., Gurnis, M., Müller, R. D., Bower, D. J., and Husson, L.:
Influence of subduction history on South American topography, Earth Planet.
Sc. Lett., 430, 9–18, https://doi.org/10.1016/j.epsl.2015.08.006, 2015.
Fuller, C. W., Willett, S. D., Fisher, D., and Lu, C. Y.: A thermomechanical
wedge model of Taiwan constrained by fission-track thermochronometry,
Tectonophysics, 425, 1–24, https://doi.org/10.1016/j.tecto.2006.05.018,
2006.
Gągała, Ł., Vergés, J., Saura, E., Malata, T., Ringenbach,
J.-C., Werner, P., and Krzywiec, P.: Architecture and orogenic evolution of
the northeastern Outer Carpathians from cross-section balancing and forward
modeling, Tectonophysics, 532–535, 223–241,
https://doi.org/10.1016/j.tecto.2012.02.014, 2012.
Galbraith, R. F. and Green, P. F.: Estimating the component ages in a finite mixture, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17, 197–206, https://doi.org/10.1016/1359-0189(90)90035-V, 1990.
Galbraith, R. F. and Laslett, G. M.: Statistical models for mixed fission track ages, Nucl. Tracks Rad. Meas., 21, 459–470, https://doi.org/10.1016/1359-0189(93)90185-C, 1993.
Galetto, A., Georgieva, V., García, V. H., Zattin, M., Sobel, E. R., Glodny, J., Bordese, S., Arzadún, G., Bechis, F., Caselli, A. T., Becchio, R.: Cretaceous and Eocene rapid cooling phases in the Southern Andes (36∘–37∘ S): Insights from low-temperature thermochronology, U-Pb geochronology, and inverse thermal modeling from Domuyo area, Argentina, Tectonics, 40, e2020TC006415, https://doi.org/10.1029/2020TC006415, 2021.
Gallagher, K.: Transdimensional inverse thermal history modeling for
quantitative thermochronology, J. Geophys. Res., 117, B02408,
https://doi.org/10.1029/2011JB008825, 2012.
Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M.: Effect of
alpha-damage annealing on apatite (U–Th) He thermochronology, Chem. Geol.,
266, 157–170, https://doi.org/10.1016/j.chemgeo.2009.06.001, 2009.
Gerasimov L. S., Makarov B. O., Chayi S. V., and Gerasinova I. I.: State geological
map of Ukraine (M34-24) scale 1:200 000, State geological research
institute UkrSGRI, 2005.
Gröger, H. R., Fügenschuh, B., Tischler, M., Schmid, S. M., and Foeken, J. P. T.: Tertiary cooling and exhumation history in the Maramures area (internal eastern Carpathians, northern Romania): thermochronology and structural data, Geological Society, London, Special Publications, 298, 169–195, https://doi.org/10.1144/SP298.9, 2008.
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester,
G.: Helium diffusion in natural zircon: Radiation damage, anisotropy, and
the interpretation of zircon (U-Th) He thermochronology, Am. J. Sci., 313,
145–198, https://doi.org/10.2475/03.2013.01, 2013.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding switches in
subduction polarity, slab gaps and surface motion, Int. J. Earth Sci., 104,
1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Horváth, F. and Cloetingh, S.: Stress-induced late-stage subsidence
anomalies in the Pannonian basin, Tectonophysics, 266, 287–300,
https://doi.org/10.1016/S0040-1951(96)00194-1, 1996.
Horváth, F., Szalay, A., Dovenyi, P., Rumpler, J., and Burrus, J.: Structural and thermal evolution of the Pannonian basin: an overview. Thermal Modelling in Sedimentary Basins, J. Burrus, Ed, Technip, Paris, 339–358, 1986.
Hoth, S., Hoffmann-Rothe, A., and Kukowski, N.: Frontal accretion: An
internal clock for bivergent wedge deformation and surface uplift, J.
Geophys. Res., 112, B06408, https://doi.org/10.1029/2006JB004357, 2007.
Hurford, A. J., and Green, P. F.: A users' guide to fission track dating
calibration, Earth Planet. Sc. Lett., 59, 343–354, 1982.
Husson, L. and Moretti, I.: Thermal regime of fold and thrust belts – an
application to the Bolivian sub Andean zone, Tectonophysics, 345, 253–280,
https://doi.org/10.1016/s0040-1951(01)00216-5, 2002.
Husson, L., Bernet, M., Guillot, S., Huyghe, P., Mugnier, J.-L., Replumaz,
A., Robert, X., and van der Beek, P.: Dynamics ups and downs of the
Himalaya, Geology, 42, 839–842, https://doi.org/10.1130/G36049.1, 2014.
Iliescu, V. and Kräutner, H. G.: Contributions to the knowledge of the palynological assemblages and the age of the metamorphic formations in the Rodna and Bistrita Mountains, Dari de seama ale sedintelor Institutului de Geologie si Geofizica, Bucharest, v. 61/4, 11–25, 1975 (in Romanian).
Kaban, M. K., Chen, B., Tesauro, M., Petrunin, A. G., El Khrepy, S., and Al‐Arifi, N.: Reconsidering Effective Elastic Thickness Estimates by Incorporating the Effect of Sediments: A Case Study for Europe, Geophys. Res. Lett., 45, 9523–9532, https://doi.org/10.1029/2018GL079732, 2018.
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., and Hurford, A.
J.: Improved modeling of fission-track annealing in apatite, Am. Mineral.,
92, 799–810, https://doi.org/10.2138/am.2007.2281, 2007.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long
alpha-particle stopping distances in (U–Th–Sm) He geochronology:
Refinement of the baseline case, Geochim. Cosmochim. Ac., 75,
7779–7791, https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Konecný, V., Kovác, M., Lexa, J., and Šefara, J.: Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle, EGU Stephan Mueller Special Publication Series, 1, 105–123, 2002.
Konstantinovskaia, E. and Malavieille, J.: Erosion and exhumation in
accretionary orogens: Experimental and geological approaches, Geochem.
Geophys. Geosyst., 6, Q02006, https://doi.org/10.1029/2004GC000794, 2005.
Kotarba, M. J. and Kołtun, Y. V.: The origin and habitat of hydrocarbons of
the Polish and Ukrainian parts of the Carpathian Province, in: The Carpathians and Their Foreland: Geology and
Hydrocarbon Resources, edited by: Golonka, J.
and Picha, F. J., AAPG Memoir 84, 395–442, 2006.
Kovács, I.: Seismic anisotropy and deformation patterns in upper mantle
xenoliths from the central Carpathian–Pannonian region: Asthenospheric flow
as a driving force for Cenozoic extension and extrusion?, Tectonophysics, 514–517, 168–179, https://doi.org/10.1016/j.tecto.2011.10.022, 2012.
Kräutner, H. G., Sassi, F. P., Zirpoli, G., and Zulian, T.: The
pressure characters of the pre-Alpine metamorphisms in the East Carpathians
(Romania), Neu. Jb. Mineral. Abh., 125, 278–296, 1975.
Krijgsman, W. and Piller, W. E.: Central and Eastern Paratethys. The Neogene Period, in: The Geologic Time Scale, edited by: Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G., 935–937, 2012.
Krzywiec, P., Jochym, P. T., Kusmierek, J., Lapinkiewicz, A. P., MackowskP, T., and Stefaniuk, M.: Quantifying effects of parameter variations on results of flexural modelling of continental collision zones: Polish Outer Carpathians, 1997.
Krzywiec, P.: Contrasting tectonic and sedimentary history of the central
and eastern parts of the Polish Carpathian foredeep basin – results of
seismic data interpretation, in: Marine and Petroleum Geology, 18,
Elsevier, 13–38, 2001.
Leever, K. A., Bertotti, G., Zoetemeijer, R., Matenco, L., and Cloetingh, S. A. P. L.: The effects of a lateral variation in lithospheric strength on foredeep evolution: Implications for the East Carpathian foredeep, Tectonophysics, 421, 251–267, https://doi.org/10.1016/j.tecto.2006.04.020, 2006.
Malusà, M. G. and Fitzgerald, P. G.: From Cooling to Exhumation: Setting the
Reference Frame for the Interpretation of Thermochronologic Data, in: Fission-Track Thermochronology and its
Application to Geology, edited by: Malusà, M. and Fitzgerald, P., Springer Textbooks in Earth Sciences, Geography and
Environment, Springer, Cham, https://doi.org/10.1007/978-3-319-89421-8_8, 2019.
Malusà, M. G. and Fitzgerald, P. G.: The geologic interpretation of the
detrital thermochronology record within a stratigraphic framework, with
examples from the European Alps, Taiwan and the Himalayas, Earth-Sci. Rev.,
201, 103074, 2020.
Matenco, L. and Bertotti, G.: Tertiary tectonic evolution of the external East Carpathians (Romania), Tectonophysics, 316, 255–286, https://doi.org/10.1016/S0040-1951(99)00261-9, 2000.
Matenco, L., Krézsek, C., Merten, S., Schmid, S., Cloetingh, S., and
Andriessen, P.: Characteristics of collisional orogens with low topographic
build-up: an example from the Carpathians, Terra Nova, 22, 155–165,
https://doi.org/10.1111/j.1365-3121.2010.00931.x, 2010.
Matskiv B. V., Pukach B. D., Kovalof Y. V., and Vorobkanich V. M.: State geological
map of Ukraine (M34-29, M34-35, L34-5) scale 1:200 000, State geological
research institute UkrSGRI, 2008.
Matskiv B. V., Pukach B. D., Vorobkaniv V. M., Pastukhanoa S. V., and Gnilko O. M.:
State geological map of Ukraine (M34-36, M35-31, L34-6, L35-1) scale 1:200 000, State geological research institute UkrSGRI, 2009.
Mazzoli, S., Jankowski, L., Szaniawski, R., and Zattin, M.: Low-T
thermochronometric evidence for post-thrusting (<11 Ma) exhumation
in the Western Outer Carpathians, Poland, C. R. Geosci., 342,
162–169, https://doi.org/10.1016/j.crte.2009.11.001, 2010.
Merten, S., Matenco, L., Foeken, J. P. T., Stuart, F. M., and Andriessen, P.
A. M.: From nappe stacking to out-of-sequence postcollisional deformations:
Cretaceous to Quaternary exhumation history of the SE Carpathians assessed
by low-temperature thermochronology, Tectonics, 29, TC3013,
https://doi.org/10.1029/2009TC002550, 2010.
Michel, L., Glotzbach, C., Falkowski, S., Adams, B. A., and Ehlers, T. A.: How steady are steady-state mountain belts? A reexamination of the Olympic Mountains (Washington state, USA), Earth Surf. Dynam., 7, 275–299, https://doi.org/10.5194/esurf-7-275-2019, 2019.
Nakapelyukh, M., Bubniak, I., Yegorova, T., Murovskaya, A., Gintov, O.,
Shlapinskyi, V., and Vikhot, Y.: Balanced geological cross-section of the
outer Ukrainian Carpathians along the pancake profile, J.
Geodyn., 108, 13–25, https://doi.org/10.1016/j.jog.2017.05.005, 2017.
Nakapelyukh, M., Bubniak, I., Bubniak, A., Jonckheere, R., and Ratschbacher,
L.: Cenozoic structural evolution, thermal history, and erosion of the
Ukrainian Carpathians fold-thrust belt, Tectonophysics, 722, 197–209,
https://doi.org/10.1016/j.tecto.2017.11.009, 2018.
Naylor, M. and Sinclair, H. D.: Punctuated thrust deformation in the context of doubly vergent thrust wedges: Implications for the localization of uplift and exhumation, Geology, 35, 559–562, https://doi.org/10.1130/G23448A.1, 2007.
Naylor, M. and Sinclair, H. D.: Pro- vs. retro-foreland basins, Basin Res.,
20, 285–303, https://doi.org/10.1111/j.1365-2117.2008.00366.x, 2008.
Nemcok, M., Pospisil, L., Lexa, J., and Donelick, R. A.: Tertiary subduction
and slab break-off model of the Carpathian–Pannonian region,
Tectonophysics, 295, 307–340,
https://doi.org/10.1016/S0040-1951(98)00092-4, 1998.
Nemčok, M., Pogácsás, G., and Pospíšil, L.: Activity
Timing of the Main Tectonic Systems in the Carpathian–Pannonian Region in
Relation to the Rollback Destruction of the Lithosphere, in: The Carpathians
and Their Foreland: Geology and Hydrocarbon Researces: AAPG Memoir 84,
edited by: Golonka, J. and Picha, F. J., The American Association of
Petroleum Geologists, Tulsa, Oklahoma, USA, 743–766,
https://doi.org/10.1306/985627M843083, 2006.
Oszczypko, N.: Late Jurassic-Miocene evolution of the Outer Carpathian
fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland), Geol. Q., 50, 169–194, 2006.
Oszczypko, N., Oszczypko-Clowes, M., Golonka, J., and Krobicki, M.: Position
of the Marmarosh Flysch (Eastern Carpathians) and its relation to the Magura
Nappe (Western Carpathians), Acta Geologica Hungarica, 48, 259–282,
https://doi.org/10.1556/AGeol.48.2005.3.2, 2005.
Oszczypko, N., Krzywiec, P., Popadyuk, I., and Peryt, T.: Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution, in: The Carpathians and Their Foreland: Geology and Hydrocarbon Researces: AAPG Memoir 84, edited by: Golonka, J. and Picha, F. J., The American Association of Petroleum Geologists, Tulsa, Oklahoma, U.S.A., 293–350, https://doi.org/10.1306/985612M843072, 2006.
Pharaoh, T. C.: Palaeozoic terranes and their lithospheric boundaries within
the Trans-European Suture Zone (TESZ): a review, Tectonophysics, 314,
17–41, https://doi.org/10.1016/S0040-1951(99)00235-8, 1999.
Poprawa P., Malata T., and Oszczypko N.: Ewolucja tektoniczna basenów
sedymentacyjnych polskiej czêœci Karpat zewnêtrznych w œwietle
analizy subsydencji, Prz. Geol., 11, 1092–1108, 2002 (in Polish with
English abstract).
Poprawa, P., Malata, T., Pécskay, Z., and Kusiak, M. A.: Geochronology of the Crystalline Basement of the Western Outer Carpathians' Source Areas-Constraints from Dating of Mica and Th–U–Pb Chemical Dating of Monazite from the Crystalline'Exotic'Pebbles, Geolines, 20, 110, 2006.
Pospíšil, L., Ádám A., Bimka J., Bodlak P., Bodoky T., Dövényi P., Granser H., Hegedüs E., Joo I., Kendzera A., Lenkey L., Nemčok M., Posgay K., Pylypyshyn B., Sedlák J., Stanley W. D., Starodub G., Szalaiová V., Šály B., Šutora A., Várga G., and Zsíros T.: Crustal and lithospheric structure of the Carpathian – Pannonian region – A geophysical perspective: Regional geophysical data on the Carpathian – Pannonian lithosphere, in: The Carpathians and their foreland: Geology and hydrocarbon resources, edited by: Golonka, J. and Picha, F. J., AAPG Memoir 84, 651–697, 2006.
Ratschbacher, L., Frisch, W., Linzer, H.G., Sperner, B., Meschede, M.,
Decker, K., Nemčok, M., Nemčok, J., and Grygar, R.: The Pieniny
Klippen Belt in the western Carpathians of northeastern Slovakia: structural
evidence for transpression, Tectonophysics 226, 471–483,
https://doi.org/10.1016/0040-1951(93)90133-5, 1993.
Roban, R. D., Ducea, M. N., Ma?enco, L., Panaiotu, G. C., Profeta, L.,
Krézsek, C., Melinte-Dobrinescu, M. C., Anastasiu, N., Dimofte, D.,
Apotrosoaei, V., and Francovschi, I.: Lower Cretaceous Provenance and
Sedimentary Deposition in the Eastern Carpathians: Inferences for the
Evolution of the Subducted Oceanic Domain and its European Passive
Continental Margin, Tectonics, 39, e2019TC005780, https://doi.org/10.1029/2019TC005780,
2020.
Roban, R. D., Ducea, M. N., Mihalcea, V. I., Munteanu, I., Barbu, V.,
Melinte-Dobrinescu, M. C., Olariu, C., and Vlăsceanu, M.: Provenance of
Oligocene lithic and quartz arenites of the East Carpathians: Understanding
sediment routing systems on compressional basin margins, Basin Res.,
35, 244–270, https://doi.org/10.1111/bre.12711, 2022.
Roure, F., Roca, E., and Sassi, W.: The Neogene evolution of the outer
Carpathian flysch units (Poland, Ukraine and Romania): kinematics of a
foreland/fold-and-thrust belt system, Sediment. Geol., 86, 177–201,
https://doi.org/10.1016/0037-0738(93)90139-V, 1993.
Royden, L. and Burchfiel, B. C.: Are systematic variations in thrust belt style related to plate boundary processes? (The western Alps versus the Carpathians), Tectonics, 8, 51–61, https://doi.org/10.1029/TC008i001p00051, 1989.
Royden, L. and Faccenna, C.: Subduction orogeny and the Late Cenozoic
evolution of the Mediterranean Arcs, Annu. Rev. Earth Pl. Sc., 46,
261–289, https://doi.org/10.1146/annurev-earth-060115-012419, 2015.
Royden, L. and Karner, G. D.: Flexure of lithosphere beneath Apennine and
Carpathian foredeep basins: Evidence for an insufficient topographic load,
Am Assoc. Petrol. Geol. Bull, 68, 704–712,
https://doi.org/10.1306/ad461372-16f7-11d7-8645000102c1865d, 1984.
Royden, L. H.: The tectonic expression of slab pull at continental convergent
boundaries, Tectonics, 12, 303–325, https://doi.org/10.1029/92tc02248,
1993a.
Royden, L. H.: Evolution of retreating subduction boundaries formed during continental collision, Tectonics, 12, 629–638, https://doi.org/10.1029/92TC02641, 1993b.
Sanders, C. A. E., Andriessen, P. A. M., and Cloetingh, S. A. P. L.: Life cycle of the East Carpathian orogen: Erosion history of a doubly vergent critical wedge assessed by fission track thermochronology, J. Geophys. Res., 104, 29095–29112, https://doi.org/10.1029/1998JB900046, 1999.
Sandulescu, M.: Essai de synthèse structurale des Carpathes, Bull. Soc.
Géol. France, 299–358, 1975.
Sandulescu, M.: Cenozoic Tectonic History of the Carpathians, in: The Pannonian Basin: A Study in Basin
Evolution, edited by: Royden,
L. H. and Horváth, F., Am. Assoc. Pet. Geol. Memoir, 45, 17–25, 1988.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K.: The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Seghedi, I., Downes, H., Pécskay, Z., Thirlwall, M. F., Szakács, A.,
Prychodko, M., and Mattey, D.: Magmagenesis in a subduction-related
post-collisional volcanic arc segment: the Ukrainian Carpathians, Lithos,
57, 237–262, https://doi.org/10.1016/S0024-4937(01)00042-1, 2001.
Şengül-Uluocak, E., Pysklywec, R. N., Göğüş, O. H.,
and Ulugergerli, E. U.: Multidimensional Geodynamic Modeling in the
Southeast Carpathians: Upper Mantle Flow-Induced Surface Topography
Anomalies, Geochem. Geophys. Geosyst., 20, 2019GC008277,
https://doi.org/10.1029/2019GC008277, 2019.
Shlapinskyi, V.: Geological map of the Ukrainian Carpathians, scale 1:100 000. Transcarpathian, Ivano–Frankivsk, Lviv, Tscernivtsi regions, in: Zvit ZAO “Koncern Nadra”, edited by: Krupsky, Y. Z., Kyiv, 228 pp., 2007 (in
Ukrainian).
Shlapinskyi, V.: The Geological Architecture of the Skyba, Krosno,
DuklyaChornogora Nappes of the Ukrainian Carpathians and Prospects of Oil
and Gas (unpublished doctoral thesis), Institute of Geology and Geochemistry
of Combustible Minerals, Lviv, 2015 (in Ukrainian).
Simpson, G. D. H.: Modelling interactions between fold-thrust belt
deformation, foreland flexure and surface mass transport, Basin Res.,
18, 125–143, https://doi.org/10.1111/j.1365-2117.2006.00287.x, 2006.
Sinclair, H.: Thrust Wedge/Foreland Basin Systems, in: Tectonics of
Sedimentary Basins, edited by: Busby, C. and Azor, A., John Wiley & Sons,
Ltd, Chichester, UK, 522–537, https://doi.org/10.1002/9781444347166.ch26,
2012.
Sinclair, H. D. and Naylor, M.: Foreland basin subsidence driven by
topographic growth versus plate subduction, Geol. Soc. Am. Bull., 124,
368–379, https://doi.org/10.1130/B30383.1, 2012.
Ślączka, A.: Bukowiec Ridge: a cordillera in front of the Dukla Basin (Outer Carpathians), Mineralia Slovaca, 37, 255–256, 2005.
Sobel, E. R. and Seward, D.: Influence of etching conditions on apatite
fission-track etch pit diameter, Chem. Geol., 271, 59–69,
https://doi.org/10.1016/j.chemgeo.2009.12.012, 2010.
Sperner, B., Ratschbacher, L., and Nemčok, M.: Interplay between
subduction retreat and lateral extrusion: Tectonics of the Western
Carpathians, Tectonics, 21, 1051, https://doi.org/10.1029/2001TC901028, 2002.
Stockmal, G. S., Beaumont, C., and Boutilier, R.: Geodynamic models of
convergent margin tectonics: Transition from rifted margin to overthrust
belt and consequences for foreland-basin development, Am. Assoc. Petrol.
Geol. Bull., 70, 181–190,
https://doi.org/10.1306/94885656-1704-11d7-8645000102c1865d, 1986.
Tărăpoancă, M., Bertotti, G., Matenco, L., Dinu, C., and
Cloetingh, S. A. P. L.: Architecture of the Focşani Depression: A 13 km deep basin in the Carpathians bend zone (Romania), Tectonics, 22,
1074, https://doi.org/10.1029/2002TC001486, 2003.
Tărăpoancă, M., Garcia-Castellanos, D., Bertotti, G., Matenco,
L., Cloetingh, S. A. P. L., and Dinu, C.: Role of the 3-D distributions of load
and lithospheric strength in orogenic arcs: polystage subsidence in the
Carpathians foredeep, Earth Planet. Sc. Lett., 221, 163–180, 2004.
Tari, G., Horváth, F., and Rumpler, J.: Styles of extension in the Pannonian Basin, Tectonophysics, 208, 203–219, 1992.
Ter Voorde, M., de Bruijne, C. H., Cloetingh, S. A. P. L., and Andriessen,
P. A. M.: Thermal consequences of thrust faulting: simultaneous versus
successive fault activation and exhumation, Earth Planet. Sc. Lett., 223,
395–413, https://doi.org/10.1016/j.epsl.2004.04.026, 2004.
Thomson, S. N., Brandon, M. T., Reiners, P. W., Zattin, M., Isaacson, P. J.,
and Balestrieri, M. L.: Thermochronologic evidence for orogen-parallel
variability in wedge kinematics during extending convergent orogenesis of
the northern Apennines, Italy, Geol. Soc. Am. Bull., 122, 1160–1179,
https://doi.org/10.1130/b26573.1, 2010.
Tiliță, M., Lenkey, L., Mațenco, L., Horváth, F., Surányi, G.,
and Cloetingh, S.: Heat flow modelling in the Transylvanian basin:
Implications for the evolution of the intra-Carpathians area, Global
Planet. Change, 171, 148–166,
https://doi.org/10.1016/j.gloplacha.2018.07.007, 2018.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global bathymetry and topography at 15 arc sec: SRTM15+, Distributed by OpenTopography [data set], https://doi.org/10.5069/G92R3PT9 (last access: 8 June 2022), 2019.
Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini,
E., Le Pourhiet, L., Tibari, B., and Lahfid, A.: Thermal imprint of
rift-related processes in orogens as recorded in the Pyrenees, Earth Planet. Sc. Lett., 408, 296–306,
https://doi.org/10.1016/j.epsl.2014.10.014, 2014.
van der Beek, P., Robert, X., Mugnier, J.-L., Bernet, M., Huyghe, P., and
Labrin, E.: Late Miocene – Recent exhumation of the central Himalaya and
recycling in the foreland basin assessed by apatite fission-track
thermochronology of Siwalik sediments, Nepal, Basin Res., 18, 413–434,
https://doi.org/10.1111/j.1365-2117.2006.00305.x, 2006.
Vashchenko, V. O., Turchynova, S. M., and Turchynov, I. I.: State geological map of Ukraine M-35-XXV (Ivano-Frankivsk) scale 1:200 000, Scientific-Editorial Council of the Department of Geology and Subsurface Use of the Ministry of Ecology and Natural Resources of Ukraine on June 8, 2006.
Vermeesch, P.: RadialPlotter: A Java application for fission track, luminescence and other radial plots, Radiat. Meas., 44, 409–410, 2009.
Willett, S., Beaumont, C., and Fullsack, P.: Mechanical model for the tectonics of doubly vergent compressional orogens, Geology, 21, 371–374, 1993.
Willett, S. D. and Brandon, M. T.: On steady states in mountain belts,
Geology, 30, 175–178, https://doi.org/10.1130/0091-7613(2002)030<0175:ossimb>2.0.co;2, 2002.
Winkler, W. and Slaczka, A.: Sediment dispersal and provenance in the
Silesian, Dukla and Magura flysch nappes (Outer Carpathians, Poland), Geol.
Rundsch., 81, 371–382, https://doi.org/10.1007/BF01828604, 1992.
Wortel, M. J. R., and Spakman, W.: Subduction and slab detachment in the
Mediterranean-Carpathian region, Science, 290, 1910–1917,
https://doi.org/10.1126/science.290.5498.1910, 2000.
Zhou, R., Schoenbohm, L. M., Sobel, E. R., Davis, D. W., and Glodny J.: New
constraints on orogenic models of the southern Central Andean Plateau:
Cenozoic basin evolution and bedrock exhumation, Geol. Soc.
Am. Bull., 129, 152–170, 2017.
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and...