Articles | Volume 5, issue 2
https://doi.org/10.5194/se-5-915-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-5-915-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Picroilmenites in Yakutian kimberlites: variations and genetic models
I. V. Ashchepkov
Sobolev's Institute of Geology and Mineralogy, SD RAS, Novosibirsk, Russia
N. V. Alymova
Vinogradov's Institute of Geochemistry SD RAS, Irkutsk, Russia
A. M. Logvinova
Sobolev's Institute of Geology and Mineralogy, SD RAS, Novosibirsk, Russia
N. V. Vladykin
Vinogradov's Institute of Geochemistry SD RAS, Irkutsk, Russia
S. S. Kuligin
Sobolev's Institute of Geology and Mineralogy, SD RAS, Novosibirsk, Russia
S. I. Mityukhin
ALROSA Open Joint Stock Company, Mirny, Russia
H. Downes
Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, UK
Yu. B. Stegnitsky
ALROSA Open Joint Stock Company, Mirny, Russia
S. A. Prokopiev
ALROSA Open Joint Stock Company, Mirny, Russia
R. F. Salikhov
ALROSA Open Joint Stock Company, Mirny, Russia
V. S. Palessky
Sobolev's Institute of Geology and Mineralogy, SD RAS, Novosibirsk, Russia
O. S. Khmel'nikova
Sobolev's Institute of Geology and Mineralogy, SD RAS, Novosibirsk, Russia
Related subject area
Petrology
Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate
Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany
Matrix gas flow through “impermeable” rocks – shales and tight sandstone
Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones
First report of ultra-high pressure metamorphism in the Paleozoic Dunhuang orogenic belt (NW China): Constrains from P-T paths of garnet clinopyroxenite and SIMS U-Pb dating of titanite
Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry
Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems
Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting
Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks
Chemical heterogeneities in the mantle: progress towards a general quantitative description
Deeply subducted continental fragments – Part 1: Fracturing, dissolution–precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)
Deeply subducted continental fragments – Part 2: Insight from petrochronology in the central Sesia Zone (western Italian Alps)
Interpretation of zircon coronae textures from metapelitic granulites of the Ivrea–Verbano Zone, northern Italy: two-stage decomposition of Fe–Ti oxides
Arrested development – a comparative analysis of multilayer corona textures in high-grade metamorphic rocks
Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples
Calculating structural and geometrical parameters by laboratory measurements and X-ray microtomography: a comparative study applied to a limestone sample before and after a dissolution experiment
Qualitative and quantitative changes in detrital reservoir rocks caused by CO2–brine–rock interactions during first injection phases (Utrillas sandstones, northern Spain)
Magma mixing enhanced by bubble segregation
The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa
Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, northeast Iran
An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient: application to komatiites
Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption
Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran)
Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, and Yasuhiro Kato
Solid Earth, 15, 167–196, https://doi.org/10.5194/se-15-167-2024, https://doi.org/10.5194/se-15-167-2024, 2024
Short summary
Short summary
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial; however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry, geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at the LAB.
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Ernest Rutter, Julian Mecklenburgh, and Yusuf Bashir
Solid Earth, 13, 725–743, https://doi.org/10.5194/se-13-725-2022, https://doi.org/10.5194/se-13-725-2022, 2022
Short summary
Short summary
Underground energy and waste storage require repurposing of existing oil and gas wells for gas storage, compressed air, hydrogen, methane, and CO2 disposal, requiring an impermeable cap rock (e.g. shales) over the porous reservoir. We measured shale permeability over a range of burial pressures and gas pore pressures. Permeability decreases markedly as effective pressure on the rocks is increased. Knowing these relationships is essential to the safe design of engineered gas reservoirs.
Peleg Haruzi, Regina Katsman, Matthias Halisch, Nicolas Waldmann, and Baruch Spiro
Solid Earth, 12, 665–689, https://doi.org/10.5194/se-12-665-2021, https://doi.org/10.5194/se-12-665-2021, 2021
Short summary
Short summary
In this paper, we evaluate a multi-methodological approach for the comprehensive characterization of reservoir sandstones. The approach enables identification of links between rock permeability and textural and topological rock descriptors quantified at microscale. It is applied to study samples from three sandstone layers of Lower Cretaceous age in northern Israel, which differ in features observed at the outcrop, hand specimen and micro-CT scales, and leads to their accurate characterization.
Zhen M. G. Li, Hao Y. C. Wang, Qian W. L. Zhang, Meng-Yan Shi, Jun-Sheng Lu, Jia-Hui Liu, and Chun-Ming Wu
Solid Earth Discuss., https://doi.org/10.5194/se-2020-95, https://doi.org/10.5194/se-2020-95, 2020
Preprint withdrawn
Short summary
Short summary
This manuscript provides the first evidence of ultra-high metamorphism in the Paleozoic Dunhuang orogenic belt (NW China). Though no coesite or diamond was found in the samples or in this orogen, the geothermobarometric computation results and petrographic textures all suggest that the garnet clinopyroxenite experienced ultra-high pressure metamorphism, and SIMS U-Pb dating of titanite indicates that the post peak, subsequent tectonic exhumation of the UHP rocks occurred in the Devonian.
Johannes Stefanski and Sandro Jahn
Solid Earth, 11, 767–789, https://doi.org/10.5194/se-11-767-2020, https://doi.org/10.5194/se-11-767-2020, 2020
Short summary
Short summary
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their molecular structure. In this study, first-principle molecular dynamics simulations are used to investigate the complex formation of yttrium with chloride and fluoride under subduction-zone conditions. The simulations predict that yttrium–fluoride complexes are more stable than their yttrium–chloride counterparts but likely less abundant due to the very low fluoride ion concentration in natural systems.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Xin Zhong, Evangelos Moulas, and Lucie Tajčmanová
Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, https://doi.org/10.5194/se-11-223-2020, 2020
Short summary
Short summary
In this study, we present a 1-D visco-elasto-plastic model in a spherical coordinate system to study the residual pressure preserved in mineral inclusions. This allows one to study how much residual pressure can be preserved after viscous relaxation. An example of quartz inclusion in garnet host is studied and it is found that above 600–700 °C, substantial viscous relaxation will occur. If one uses the relaxed residual quartz pressure for barometry, erroneous results will be obtained.
Federico Lucci, Gerardo Carrasco-Núñez, Federico Rossetti, Thomas Theye, John Charles White, Stefano Urbani, Hossein Azizi, Yoshihiro Asahara, and Guido Giordano
Solid Earth, 11, 125–159, https://doi.org/10.5194/se-11-125-2020, https://doi.org/10.5194/se-11-125-2020, 2020
Short summary
Short summary
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat source(s) feeding geothermal fields. Mineral-melt thermobarometry and fractional crystallization (FC) models were applied to Quaternary volcanic products of the Los Humeros Caldera (Mexico). Results point to a magmatic system controlled by FC processes and made of magma transport and storage layers within the crust, with significant implications on structure and longevity of the geothermal reservoir.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Ariadni A. Georgatou and Massimo Chiaradia
Solid Earth, 11, 1–21, https://doi.org/10.5194/se-11-1-2020, https://doi.org/10.5194/se-11-1-2020, 2020
Short summary
Short summary
We study the petrographical and geochemical occurrence of magmatic sulfide minerals in volcanic rocks for areas characterised by different geodynamic settings, some of which are associated with porphyry (Cu and/or Au) and Au epithermal mineralisation. The aim is to investigate the role of magmatic sulfide saturation processes in depth for ore generation in the surface.
Massimiliano Tirone
Solid Earth, 10, 1409–1428, https://doi.org/10.5194/se-10-1409-2019, https://doi.org/10.5194/se-10-1409-2019, 2019
Short summary
Short summary
The prevalent assumption in solid Earth science is that if we have different lithologies in the mantle they are separately in chemical equilibrium and together in chemical disequilibrium; this is the condition that at the moment defines a chemically heterogeneous mantle. The main contribution of this study is to show that this may not be the case. We can have (partial) chemical equilibration between the two and still observe a chemically heterogeneous mantle.
Francesco Giuntoli, Pierre Lanari, and Martin Engi
Solid Earth, 9, 167–189, https://doi.org/10.5194/se-9-167-2018, https://doi.org/10.5194/se-9-167-2018, 2018
Short summary
Short summary
Continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses under high-pressure conditions.
Francesco Giuntoli, Pierre Lanari, Marco Burn, Barbara Eva Kunz, and Martin Engi
Solid Earth, 9, 191–222, https://doi.org/10.5194/se-9-191-2018, https://doi.org/10.5194/se-9-191-2018, 2018
Short summary
Short summary
Subducted continental terranes commonly comprise an assembly of subunits that reflect the different tectono-metamorphic histories they experienced in the subduction zone. Our challenge is to unravel how, when, and in which part of the subduction zone these subunits were juxtaposed. Our study documents when and in what conditions re-equilibration took place. Results constrain the main stages of mineral growth and deformation, associated with fluid influx that occurred in the subduction channel.
Elizaveta Kovaleva, Håkon O. Austrheim, and Urs S. Klötzli
Solid Earth, 8, 789–804, https://doi.org/10.5194/se-8-789-2017, https://doi.org/10.5194/se-8-789-2017, 2017
Short summary
Short summary
This is a study of unusual coronae textures formed by zircon in granulitic metapelites, Ivrea–Verbano Zone (northern Italy). Zircon coronas occur in two generations: (1) thick (5–20 µm) crescent-shaped aggregates and (2) thin (≤ 1 µm) thread-shaped and tangled coronae. Both are found in the same petrological context, so that the difference between two generations is very conspicuous. Formation of zircon coronae is attributed to the two-stage decomposition of Fe–Ti oxides, a rich source of Zr.
Paula Ogilvie and Roger L. Gibson
Solid Earth, 8, 93–135, https://doi.org/10.5194/se-8-93-2017, https://doi.org/10.5194/se-8-93-2017, 2017
Short summary
Short summary
Coronas are vital clues to the presence of arrested reaction in metamorphic rocks. We review formation mechanisms of coronas and approaches utilized to model their evolution in P–T–X space. Forward modelling employing calculated chemical potential gradients allows a far more nuanced understanding of the intricacies that govern metamorphic reaction. These models have critical implications for the limitations and opportunities coronas afford in interpreting the evolution of metamorphic terranes.
Faisal Khan, Frieder Enzmann, and Michael Kersten
Solid Earth, 7, 481–492, https://doi.org/10.5194/se-7-481-2016, https://doi.org/10.5194/se-7-481-2016, 2016
Short summary
Short summary
X-ray microtomography image processing involves artefact reduction and image segmentation. The beam-hardening artefact is removed, applying a new algorithm, which minimizes the offsets of the attenuation data points. For the segmentation, we propose using a non-linear classifier algorithm. Statistical analysis was performed to quantify the improvement in multi-phase classification of rock cores using and without using our advanced beam-hardening correction algorithm.
Linda Luquot, Vanessa Hebert, and Olivier Rodriguez
Solid Earth, 7, 441–456, https://doi.org/10.5194/se-7-441-2016, https://doi.org/10.5194/se-7-441-2016, 2016
Short summary
Short summary
To evaluate oil and gas production, accurate characterization (usually based on laboratory experiments) of reservoir rock properties needs to be performed. X-ray scanning samples enable obtaining 3-D images of the rock inner structure from which those properties can be obtained using images processing. This article shows that these two approaches are complementary and yield consistent results. Moreover, image-based calculations allow to save a huge amount of time compared to lab-based measures.
E. Berrezueta, B. Ordóñez-Casado, and L. Quintana
Solid Earth, 7, 37–53, https://doi.org/10.5194/se-7-37-2016, https://doi.org/10.5194/se-7-37-2016, 2016
Short summary
Short summary
The aim of this article is to describe and interpret qualitative and quantitative changes at the rock matrix scale of Cretaceous sandstones (northern Spain) exposed to supercritical CO2 and brine. Experimental CO2-rich brine injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). SEM and optical microscopy, aided by optical image processing and chemical analyses were used to study the rock samples.
S. Wiesmaier, D. Morgavi, C. J. Renggli, D. Perugini, C. P. De Campos, K.-U. Hess, W. Ertel-Ingrisch, Y. Lavallée, and D. B. Dingwell
Solid Earth, 6, 1007–1023, https://doi.org/10.5194/se-6-1007-2015, https://doi.org/10.5194/se-6-1007-2015, 2015
Short summary
Short summary
We reproduced in an experiment the mixing of two different magmas by bubbles. Bubbles form filaments when dragging portions of one magma into another and thus mingle both magmas. Bubble mixing must be an accelerating process in nature, because formed filaments are channels of low resistance for subsequently rising bubbles. In natural gas-rich magmas, this may be an important mechanism for magma mixing. Natural samples from Axial Seamount show evidence for bubble mixing.
M. Ledevin, N. Arndt, A. Davaille, R. Ledevin, and A. Simionovici
Solid Earth, 6, 253–269, https://doi.org/10.5194/se-6-253-2015, https://doi.org/10.5194/se-6-253-2015, 2015
Short summary
Short summary
We investigate the composition, physical and rheological properties of fluids at the origin of Palaeoarchean chert dikes in South Africa. The dikes formed by repetitive hydraulic fracturing as overpressured oceanic fluids were released at low temperatures as a siliceous slurry. The gelation capacity of silica conferred the chert precursor a viscoelastic, probably thixotrope behaviour. It is an additional step to understand fluid circulations towards the ocean floor, the habitat of early life.
K. Jamshidi, H. Ghasemi, V. R. Troll, M. Sadeghian, and B. Dahren
Solid Earth, 6, 49–72, https://doi.org/10.5194/se-6-49-2015, https://doi.org/10.5194/se-6-49-2015, 2015
S. Bouquain, N. T. Arndt, F. Faure, and G. Libourel
Solid Earth, 5, 641–650, https://doi.org/10.5194/se-5-641-2014, https://doi.org/10.5194/se-5-641-2014, 2014
V. R. Troll, A. Klügel, M.-A. Longpré, S. Burchardt, F. M. Deegan, J. C. Carracedo, S. Wiesmaier, U. Kueppers, B. Dahren, L. S. Blythe, T. H. Hansteen, C. Freda, D. A. Budd, E. M. Jolis, E. Jonsson, F. C. Meade, C. Harris, S. E. Berg, L. Mancini, M. Polacci, and K. Pedroza
Solid Earth, 3, 97–110, https://doi.org/10.5194/se-3-97-2012, https://doi.org/10.5194/se-3-97-2012, 2012
M. Nasrabady, F. Rossetti, T. Theye, and G. Vignaroli
Solid Earth, 2, 219–243, https://doi.org/10.5194/se-2-219-2011, https://doi.org/10.5194/se-2-219-2011, 2011
Cited articles
Afanas'ev, V. P., Nikolenko, E. I., Tychkov, N. S., Titov, A. T., Tolstov, A. V., Kornilova, V. P., and Sobolev, N. V.: Mechanical abrasion of kimberlite indicator minerals: experimental investigations, Russ. Geol. Geophys., 49/2, 91–98, 2008..
Afanasiev, V. P., Ashchepkov, I. V., Verzhak, V. V., O'Brien, H., and Palessky, S. V.: PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia, J. Asian Earth Sci., 70–71, 45–63, 2013.
Agashev, A. M., Ionov, D. A., Pokhilenko, N. P., Golovin, A. V., Cherepanova, Yu., and Sharygin, I. S.: Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya, Lithos, 160–161, 201–215, 2013.
Alymova, N. A.: Peculiarities of ilmenites and ilmenite-bearing association form kimberlites of Yakutian province, Ph.D. dissertation thesis, Irkutsk, Institute of Geochmistry SB RAS, 175, 2006.
Alymova, N. A., Kostrovitsky, S. I., Ivanov, A. S., and Serov, V. P.: Picroilmenites from kimberlites of Daldyn field, Yakutia, Doklady Earth Sci., 395a, 444–447, 2004.
Alymova, N. V., Kostrovitsky, S. I., Yakovlev, D. A., Matsyuk, S. S., Suvorova, L. F., and Solov'eva, L. V.: Ilmenite-bearing mantle parageneses from kimberlite pipes, 9th International Kimberlite Conference Long Abstract, 9IKC-A-00015, 2008.
Amshinsky, A. N. and Pokhilenko, N. P.: Peculiarities of the picroilmenite compositions from Zarnitsa kimberlite pipe (Yakutia), Russ. Geol. Geophys., 24/11, 116–119, 1983.
Arndt, N. T., Guitreau, M., Boullier, A. M., Le Roex, A. P., Tommasi, A., Cordier, P., and Sobolev, A.: Olivine, and the origin of kimberlite, J. Petrol., 51, 573–602, 2010.
Ashchepkov, I. V., Vladykin, N. V., Nikolaeva, I. V., Palessky, S. V., Logvinova, A. M., Saprykin, A. I., Khmel'nikova, O. S., and Anoshin, G. N.: Mineralogy and Geochemistry of Mantle Inclusions and Mantle Column Structure of the Yubileinaya Kimberlite Pipe, Alakit Field, Yakutia, Doklady Earth Sci., 395, 517–523, 2004.
Ashchepkov, I. V., Pokhilenko, N. P., Vladykin, N. V., Logvinova, A. M., Kostrovitsky, S. I., Afanasiev, V. P., Pokhilenko, L. N., Kuligin, S. S., Malygina, L. V., Alymova, N. V., Khmelnikova, O. S., Palessky, S. V., Nikolaeva, I. V., Karpenko, M. A., and Stegnitsky, Y. B.: Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study, Tectonophysics, 485, 17–41, 2010.
Ashchepkov, I. V., André, L., Downes, H., and Belyatsky, B. A.: Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): Polybaric fractionation of rising melts in the mantle?, J. Asian Earth Sci., 42, 14–37, 2011.
Ashchepkov, I. V., Rotman, A. Y., Somov, S. V., Afanasiev, V. P., Downes, H., Logvinova, A. M., Nossyko, S. Shimupi, J., Palessky, S. V., Khmelnikova, O. S., and Vladykin, N. V.: Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola, Tectonophysics, 530–531, 128–151, 2012.
Ashchepkov, I. V., Vladykin, N. V., Ntaflos, T., Downes, H., Mitchel, R., Smelov, A. P. Rotman, A. Ya., Stegnitsky, Yu., Smarov, G. P, Makovchuk, I. V., Nigmatulina, E. N., and Khmelnikova, O. S.: Regularities of the mantle lithosphere structure and formation beneath Siberian craton in comparison with other cratons, Gondwana Res., 23, 4–24, 2013a.
Ashchepkov, I. V., Ntaflos, T., Kuligin, S. S., Malygina, L. V., Mityukhin, S. I., Vladykin, N. V., Palessky, S. V., Khmelnikova, O. S.: Deep seated xenoliths in Udachnaya pipe from the brown breccia, edited by: Pearson, D. G., Grütter, H. S., Harris, J. W., Kjarsgaard, B. A., O'Brien, H., Chalapathi Rao, N. V., and Sparks, S., Proceedings of 10th International Kimberlite Conference, Volume One, Special Issue of the Journal of the Geological Society of India, https://doi.org/10.1007/978-81-322-1170-9_5, 2013b.
Ashchepkov, I. V., Downes, H., Mitchell, R., Vladykin, N. V., Coopersmith, H. and Palessky, S. V.: Wyoming Craton Mantle Lithosphere: Reconstructions Based on Xenocrysts from Sloan and Kelsey Lake Kimberlites, edited by: Pearson, D. G., Grütter, H. S., Harris, J. W., Kjarsgaard, B. A., O'Brien, H., Chalapathi Rao, N. V., and Sparks, S., Proceedings of 10th International Kimberlite Conference, Volume One, Special Issue of the Journal of the Geological Society of India, https://doi.org/10.1007/978-81-322-1170-9, 2013c.
Ashchepkov, I. V., Vladykin, N. N., Ntaflos, T., Kostrovitsky, S. I., Prokopiev, S. A.. Downes, H., Smelov, A. P., Agashev, A. M., Logvinova, A. M., Kuligin, S. S., Tychkov, N. S., Salikhov, R. F., Stegnitsky, Yu. B., Alymova, N. V., Vavilov, M. A., Minin, V. A., Babushkina, S. A., Ovchinnikov, Yu. I., Karpenko, M. A., Tolstov, A. V., and Shmarov, G. P.: Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts, Tectonophysics, https://doi.org/10.1016/j.tecto.2014.07.017, 2014.
Aulbach, S., Pearson, N. J., O'Reilly, S. Y., and Doyle, B. J.: Origins of Xenolithic Eclogites and Pyroxenites from the Central Slave Craton, Canada, J. Petrol., 48, 1843–1873, 2007.
Babushkina, S. A. and Marshintsev, V. K.: Composition of spinel, ilmenite, garnet and diopside inclusions in phlogopite macrocrysts from the Mir kimberlite, Russ. Geol. Geophys., 38/2, 440–450, 1997.
Bataleva, Y. V., Palyanov, Y. N., Sokol, A. G., Borzdov, Y. M., and Palyanova, G. A.: Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation, Lithos, 128–131, 113–125, 2012.
Beard, B. L., Fraracci, K. N., Taylor, L. A., Snyder, G. A., Clayton, R. N., Mayeda, T. K., and Sobolev, N. V.: Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia, Contrib. Mineral. Petrol., 125, 293–310, 1996.
Bedard, J. H.: A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle, Geochim. Cosmochim. Ac., 70, 1188–1214, 2006.
Bell, K. and Simonetti, A.: Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai, J. Petrol., 37, 1321–1339, 1996.
Bizimis, M., Salters, V. J. M., and Dawson B. J.: The brevity of carbonatite sources in the mantle: evidence from Hf isotopes, Contrib. Mineral. Petrol., 145, 281–300, 2003.
Boyd, F. R.: A pyroxene geotherm, Geochim. Cosmochim. Ac., 37, 2533–2546, 1973
Boyd, F. R. and Nixon, P. H.: Origin of the ilmenite-silicate nodules in kimberlites from Lesotho and South Africa, in: edited by: Nixon, P. H., Lesotho Kimberlites, Lesotho National Development Corporation, Maseru, Lesotho, 254–268, 1973.
Boyd, F. R., Pokhilenko, N. P., Pearson, D. G., Mertzman, S. A., Sobolev, N. V., and Finger, L. W.: Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths, Contrib. Mineral. Petrol., 128, 228–246, 1997.
Brey, G. P. and Kohler, T.: Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 31, 1353–1378, 1990.
Canil, D. and Fedortchouk, Y.: Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere, J. Geophys. Res., 105, 26003–26016, 2000.
Clarke, D. B. and Mackay, R. M.: An Ilmenite-Garnet-Clinopyroxene nodule from Matsoku: Evidence of Oxide-Rich liquid Immiscibility in Kimberlites?, Canad. Mineral., 28, 229–239, 1990.
Dawson, J. B.: Metasomatized harzburgites in kimberlite and alkaline magmas: enriched restites and "flushed" lherzolites. In Mantle Metasomatism, edited by: Menzies, M. A. and Hawkesworth, C. J., Academic Press, London, 125–144, 1987.
Dawson, J. B. and Reid, A. M.: Apyroxene-ilmenite intergrowth from the Monastery Mine, South Africa, Contrib. Mineral. Petrol., 26, 296–301, 1970.
Dawson, J. B. and Smith J.: The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite, Geochim. Cosmochim. Ac., 41, 309–323, 1977.
Dawson, J. B., Hill, P. G., and Kinny, P. D.: Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite, Contrib. Mineral. Petrol., 140, 720–733, 2001.
De Hoog, J. C. M, Gall, G., and Cornell, D. H.: Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 270, 196–215, 2010.
De Stefano, A., Kopylova, M. G., Cartigny, P., and Afanasiev, V.: Diamonds and eclogites of the Jericho kimberlite (Northern Canada), Contrib. Mineral. Petrol., 158, 295–315, 2009.
Doucet, L. S., Ionov, D. A., and Golovin, A. V.: The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia, Contrib. Mineral. Petrol., 165, 1225–1242, 2013.
Eggler, D. H. and Mccallum, M. E.: A geotherm from megacrysts in the Sloan kimberlite pipes, Colorado, Carnegie Institute Washington, Yearbook, 75, 538–541, 1976.
Girnis, A. V., Bulatov, V. K., and Brey, G. P.: Formation of primary kimberlite melts – Constraints from experiments at 6–12 GPa and variable CO2/H2O, Lithos, 127, 401–413, 2011.
Giuliani, A., Kamenetsky, V. S., Kendrick, M. A., Phillips, D., Wyatt, B. A. and Maas, R.: Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite, Chem. Geol., 353, 4–18, 2013.
Golubkova, A. B., Nosova, A. A., and Larionova, Yu. O.: Mg-ilmenite megacrysts from the Arkhangelsk kimberlites, Russia: Genesis and interaction with kimberlite melt and postkimberlite fluid, Geochem. Int., 51, 353–381, 2013.
González-Jiménez, J. M., Griffin, W. L., Proenza, J. A., Gervilla, F., O'Reilly, S. Y., Akbulut, M., Pearson, N. J., and Arai, S.: Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites, Lithos, 189, 140–158, 2014.
Green, D. H. and, Sobolev, N. V.: Coexisting Garnets and Ilmenites Synthesized at High Pressures from Pyrolite and Olivine Basanite and Their Significance for Kimberlitic Assemblages, Contrib. Mineral. Petrol., 50, 217–229, 1975.
Grégoire, M., Bell, D. R., and Le Roux, A. P.: Trace element geochemistry of glimmerite and MARID mantle xenoliths: their classification and relationship to phlogopite-bearing peridotites and to kimberlites revisited, Contrib. Mineral. Petrol., 142, 603–625, 2002.
Grégoire, M., Bell, D. R. and Le Roex, A. P.: Garnet lherzolites from the Kaapvaal craton (South Africa): Trace element evidence for a metasomatic history, J. Petrol., 44, 629–657, 2003.
Griffin, W. L., Cousens, D. R., Ryan, C. G., Sie, S. H., and Suter, G. F.: Ni in chrome pyrope garnets: a new geothermometers, Contrib. Mineral. Petrol., 103, 199–202, 1989.
Griffin, W. L., Moore, R. O., Ryan, C. G., Gurney, J. J., and Win, T. T.: Geochemistry of magnesian ilmenite megacrysts from southern African kimberlites, Russ. Geol. Geophys., 38, 421–443, 1997.
Griffin, W. L., O 'Reilly, S. Y., Abe, N., Aulbach, S., Davies, R. M., Pearson, N. J., Doyle, B.J. and Kivi, K.: The origin and evolution of Archean lithospheric mantle, Precambrian Res., 127, 19–41, 2003.
Griffin, W. L., O'Reilly, S. Y., Doyle, B. J., Pearson, N. J., Coopersmith, H., Kivi, K., Malkovets, V., and Pokhilenko, N.: Lithosphere mapping beneath the North American plate, Lithos, 77, 873–922, 2004.
Gudmundsson, G. and Wood, B. J.: Experimental tests of garnet peridotite oxygen barometry, Contrib. Mineral. Petrol., 119, 56–67, 1995.
Gurney, J. J., Fesq, H. W., and Kable, E. J. D.: Clinopyroxene-ilmenite intergrowths from kimberlite: are-appraisal, in: Lesotho Kimberlites, Nixon, P. H., Lesotho National Development Corporation, Maseru, Lesotho, 238-253, 1973.
Gurney, J. J., Jakob, W. R. O. and Dawson, J. B.: Megacrysts from the Monastery kimberlite pipe, South Africa, in: Proceedings of the Second International Kimberlite Conference, edited by: Boyd, F. R. and Meyer, H. O. A., American Geophysical Union, The Mantle Sample: Inclusions in Kimberlites and Other Volcanics, 2, 227–243, 1979.
Gurney, J. J., Moore, R. O., and Bell, D. R.: Mineral associations and compositional evolution of Monastery kirnberlite megacrysts, in: 7th International Kimberlite Conference, Extended Abstracts, 290–292, 1998.
Haggerty, S. E.: The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa: Implications for metasomatism in the upper mantle, Geochim. Cosmochim. Ac., 47, 1833–1854, 1983.
Haggerty, S. E.: Upper mantle opaque stratigraphy and the genesis of metasomites and alkali-rich melts. Kimberlites and Related Rocks, Proc. 4th Int. Kimberlite Conf., Vol.2. Special Publication, GSA, 14, 687–699, 1989.
Haggerty, S. E.: Upper mantle mineralogy, J. Geodynam., 20, 331–364, 1995.
Haggerty, S. E. and Tompkins, L. A.: Redox state of the earth's upper mantle from kimberlitic ilmenites, Nature, 303, 295–300, 1983.
Haggerty, S. E. and Tompkins, L. A.: Subsolidus reactions in kimberlitic ilmenite: exsolution, reduction and the redox state of the mantle, in: Kimberlites I: Kimberlites and Related Rocks, edited by: Kornprobst, J., Proc. 3rd Int. Kimb. Conf., Elsevier, Amsterdam, 335–357, 1984.
Haggerty, S. E., Hardie, R. B., and McMahon, B. M.: The mineral chemistry of ilmenite nodule associations from the Monastery diatreme, in: The Mantle Sample: Inclusions in kimberlites and other volcanic, edited by: Boyd, F. R., and Meyer, H. O. A., American Geophysical Union, Washington, DC, 249–256, 1979.
Hamilton, M. A., Pearson, D. G., Stern, R. A., and Boyd, F. R.: Constraints on MARID petrogenesis: SHRIMP II U–Pb zircon evidence for pre-eruptive metasomatism at Kampfersdam. Extended Abstracts of the 7th International Kimberlite Conference, Cape Town, University of Cape Town Press, 296–298, 1998.
Harte, B.: Metasomatic events recorded in mantle xenoliths: an overview, in: Mantle Xenoliths, edited by: Nixon, P. H., Wiley, Chichester, 625–640, 1987.
Harte, B. and Gurney, J. J.: Ore mineral and phlogopite mineralization within ultramafic nodules from the Matsoku kimberlite pipe, Lesotho. Carnegie Institute Washington, Yearbook 74, 528–536, 1975.
Heaman, L., Creaser, R. A., Cookenboo, H., and Chacko, T.: Multi-stage modification of the Northern Slave mantle lithosphere: evidence from zircon- and diamond-bearing eclogite xenoliths entrained in Jericho kimberlite, Canada, J. Petrol., 47, 821–858, 2006.
Hunter, R. H. and Taylor, L. A. Magma-mixing in the low velocity zone: kimberlitic megacrysts, Am. Mineral., 69, 16–29, 1984.
Hurai, V., Simon, K., Wiechert, U., Hoefs J., Konec P., Huraiova, M., Pironon, J., and Lipka, J.: Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning, Contrib. Mineral. Petrol., 133, 12–29, 1998.
Ionov, D. A., Doucet, L. S., and Ashchepkov, I. V.: Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite, J. Petrol., 51, 2177–2210, 2010.
Irvine, T. N.: Metastable liquid immiscibility and MgO-FeO-SiO2 fractionation patterns in the system Mg2SiO6-FeSiO3-CaAl2Si2O6-KAlSi3O8-SiO2, Carnegie Institute Washington Yearbook, 75, 597–611, 1976.
Kadik, A. A., Sobolev, N. V., Zharkova, E. V., and Pokhilenko, N. P.: Redox-state conditions of the creation of diamond bearing peridotites from Udachnaya kimberlite pipe, Geochem. Int., 8, 1120–1135, 1989.
Kalfoun, F., Ionov, D. and Merlet, C.: HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites, Earth Planet. Sc. Lett., 199, 49–65, 2002.
Kamenetsky, V. S., Kamenetsky M. B., Sobolev A. V., Golovin A. V., Demouchy S., Faure K., Sharygin V. V., and Kuzmin, D. V.: Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): types, compositions and origins, J. Petrol., 49, 823–839, 2008.
Kaminsky, F. V., Zakharchenko O. D., Davies R., Griffin W. L., Khachatryan-Bilnova G. K., and Shiryaev A. A.: Superdeep diamonds from the Juina area, Mato Grosso State, Brazil, Contrib. Mineral. Petrol., 140, 734–753, 2001.
Karki, B. B. I, Duan, W., Da Silva, C. R. S., and Wentzcovitch, R. M.: Ab initio structure of MgSiO3 ilmenite at high pressure, Am. Mineral., 85, 317–320, 2000.
Kennedy, C. S. and Kennedy, G. C.: The equilibrium boundary between graphite and diamond, J. Geophys. Res., 8, 12467–2470, 1976.
Klemme, S., Gunther, D., Hametner, K., Prowatke, S., and Zack, T.: The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the Moon, Chem. Geol., 234, 251–263, 2006.
Konzett, J., Armstrong, R. A., and Gunther, D.: Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths, Contrib. Mineral. Petrol., 139, 704–719, 2000.
Kopylova, M. G., Nowell, G. M., Pearson, D. G., and Markovic, G.: Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite, Lithos, 112, 284–295, 2009.
Kostrovitsky, S. I., Alymova, N. V., Ivanov, A. S., and Serov, V. P.: Structure of the Daldyn Field (Yakutian Province) Based on the Study of Picroilmenite Composition, Extended Abstracts of the 8th International Kimberlite Conference, FLA_0207, 2003.
Kostrovitsky, S. I., Malkovets, V. G., Verichev, E. M., Garanin, V. K., and Suvorova, L. V.: Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia), Lithos, 77, 511–523, 2004.
Kostrovitsky, S. I., Morikiyo, T., Serov, I. V., Yakovlev, D. A., and Amirzhanov, A. A.: Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform, Russ. Geol. Geophys., 48, 272–290, 2007.
Kramers, J. D., Roddick, J. C. M., and Dawson, J. B.: Trace element and isotope studies on veined, metasomatic and "MARID" xenoliths from Bultfontein, South Africa, Earth Planet. Sc. Lett., 65, 90–106, 1983.
Kuligin, S. S.: Complex of pyroxenite xenoliths in kimberlites from different regions of Siberian platform, Ph.D. thesis, United Institute of Geology Geophysics, Mineralogy, Novosibirsk, 250, 1996.
Kurszlaukis, S., Mahotkin, I., Rotman, A. Y., Kolesnikov, G. V., and Makovchuk, I. V.: Syn- and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia, and implications for the emplacement of South African-style kimberlite pipes, Lithos, 112, 579–591, 2008.
Lapin, A. V., Tolstov, A. V., and Vasilenko, V. B.: Petrogeochemical characteristics of the kimberlites from the Middle Markha region with application to the problem of the geochemical heterogeneity of kimberlites, Geochem. Int., 45, 1197–1209, 2007.
Lavrent'ev, Yu. G. and Usova, L. V.: New version of KARAT program for quantitative X-ray spectral microanalysis, Zhurnal Analiticheskoi Khimii, 5, 462–468, 1994.
Lavrentyev, Y. G., Usova, L. V., Kuznetsova, A. I. and Letov, S. V.: X-ray spectral quant metric microanalysis of the most important minerals of kimberlites, Russ. Geol. Geophys., 48, 75–81, 1987.
Le Roex, A. P., Bell, D. R., and Davis, P.: Petrogenesis of group I kimberlites from Kimberley, South Africa: Evidence from bulk-rock geochemistry, J. Petrol., 44, 2261–2286, 2003.
Liu, L.: High-pressure phase transformations and compressions of ilmenite and rutile: I. Experimental results, Phys. Earth Planet. Int., 10, 167–176, 1975.
Logvinova, A. M. and Ashchepkov, I. V.: Diamond inclusions and eclogites thermobarometry, Siberia, Goldschmidt Conference Abstracts, Geochim. Cosmochim. Ac., Special Supplement, 72, 16S, A567, 2008.
Logvinova, A. M., Taylor, L. A., Floss, C., and Sobolev, N. V.: Geochemistry of multiple diamond inclusions of harzhurgitic garnets as examined in situ, Int. Geol. Rev., 47, 1223–1233, 2005.
Logvinova, A. M., Wirth, R., Fedorova, E. N., and Sobolev, N. V.: Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation, Eur. J. Mineral., 20, 317–331, 2008.
Malygina, E. V.: Xenoliths of granular mantle peridotites in Udachnaya pipe. Ph.D. thesis, United Institute of Geology Geophysics, Mineralogy, Novosibirsk, 270 pp., 2000.
McCallister, R. H., Meyer, H. O. A., and Brookins, D. G.: "Pyroxene"-Ilmenite xenoliths from the Stockdale pipe, Kansas: Chemistry, crystallography, and origin, Phys. Chem. Earth, 9, 287–293, 1975.
McCammon, C. A. and Kopylova, M. G.: A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle, Contrib. Mineral. Petrol., 148, 55–68, 2004.
McCammon, C. A., Chinn, I. L., Gurney, J. J., and McCallum, M. E.: Ferric iron content of mineral inclusions in diamond from George Creek, Colorado, determined using Mössbauer spectroscopy, Contrib. Mineral. Petrol., 133, 30–37, 1998.
McDonough, W. F. and Sun, S. S.: The Composition of the Earth, Chem. Geol., 120, 223–253, 1995.
McGregor, I. D.: The system MgO-SiO2-Al2O3: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions, Am. Mineral., 59, 110–119, 1974.
Meyer, H. O. A. and Svisero, D. P.: Mineral inclusions in Brazilian diamonds, Phys. Chem. Earth, 9, 785–795, 1975.
Mitchell, R. H.: Magnesian ilmenite and its role in kimberlite petrogenesis, J. Geol., 81, 301–311, 1973.
Mitchell, R. H.: Geochemistry of magnesian ilmenites from kimberlites in South Africa and Lesotho, Lithos, 10, 29–37, 1977.
Mitchell, R. H.: Kimberlites: Mineralogy, Geochemistry and Petrology, Plenum Press, New York, 442 pp., 1986.
Moore, A. and Belousova, E.: Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas, Contrib. Mineral. Petrol., 49, 462–481, 2005.
Moore, A. E. and Lock, N. P.: The origin of mantle-derived megacrysts and sheared peridotites – evidence from kimberlites in the northern Lesotho – Orange Free State (South Africa) and Botswana pipe clusters, S. Afr. J. Geol., 104, 23–38, 2001.
Moore, A.: Type II diamonds: Flamboyant megacrysts, S. Afr. J. Geol., 112, 23–38, 2009.
Morfi, L, Harte, B, Hill, P., and Gurney, J.: Polymict peridotites: a link between deformed peridotites and megacrysts from kimberlites, Ofioliti, 24, p. 134, 1999.
Neal, C. R. and Davidson, J. P.: An unmetasomatized source for the Malaitan Alnoite (Solomon Islands); petrogenesis involving zone refining, megacryst fractionation, and assimilation of oceanic lithosphere, Geochim. Cosmochim. Ac., 53, 1975–1990, 1989.
Nikolenko, E. I. and Afanasiev, V. P.: Peculiarities of the composition of zoned picroilmenites from the Massadou field (Guinea) and Dachnaya pipe (Yakutia) kimberlites, Dokl. Earth Sci., 434, 1386–1389, 2010.
Nimis, P. and Taylor, W.: Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer, Contrib. Mineral. Petrol., 139, 541–554, 2000.
Nixon, P. H. (Ed.): Kimberlitic xenoliths and their cratonic setting. In: Mantle Xenoliths, John Wiley and Sons Ltd., 215–239, 1987.
Nixon, P. H.: A review of mantle xenoliths and their role in diamond exploration, J. Geodynam., 20, 305–329, 1995.
Nixon, P. H. and Boyd, F. R.: Garnet bearing lherzolite and discrete nodule suites from the Malaite alnoite, Solomon Islands, SW Pacific, and their bearing on oceanic mantle composition and geotherm, in: The mantle sample: Inclusions in kimberlites and other volcanics, Am. Geophys. Un., 400–423, 1979.
Nowell, G. M., Pearson, D. G., Bell, D. R., Carlson, R. W., Smith, C. B., Kempton, P. D., and Noble, S. R.: Hf Isotope Systematics of Kimberlites and their Megacrysts: New Constraints on their Source Regions, J. Petrol., 45, 1583–1612, 2004.
Noyes, A. K.: Feasibility Study of U-Pb Ilmenite Geochronology, Monastery Kimberlite, South Africa, Thesis for degree of Master of Science, University of Alberta Edmonton, Alberta Spring, 88 pp., 2000.
O'Reilly, S. Y., Zhang, M., Griffin, W. L., Begg, G., and Hronsky, J.: Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem?, Lithos, 1122, 1043–1054, 2009.
Ovchinnikov, Yu. I.: Xenoliths from Obnazhennaya kimberlite pipe and alkali basalts from Minusa depression, Ph.D. disertation thesis, United Institute of Geology Geophysics, Mineralogy, Novosibirsk, 225 pp., 1990.
Pasteris, J. D.: The significance of groundmass ilmenite and megacryst ilmenite in kimberlites, Contrib. Mineral. Petrol., 75, 315–325, 1980.
Patchen, A. D., Taylor, L. A., and Pokhilenko, N. P.: Ferrous freudenbergite in ilmenite megacrysts: A unique paragenesis from the Dalnaya kimberlite, Yakutia, Am. Mineral., 82, 991–1000, 1997.
Paton, C., Hergt, J. M., Woodhead, J. D. Phillips, D., and Shee S. R.: Identifying the asthenospheric component of kimberlite magmas from the Dharwar Craton, India, Lithos, 112, 296–310, 2010.
Pearson, D. G., Canil, D., and Shirey, S. B.: Mantle samples included in volcanic rocks: xenoliths and diamonds, in: Treatise on Geochemistry, 2: The Mantle and Core, edited by: Turekian, K. K. and Holland, H. D., Amsterdam, Elsevier, 171–275, 2003.
Peslier, A. H., Woodland, A., Bell, D. R., Lazarov, M., and Lapen T. J.: Metasomatic control of water contents in the Kaapvaal cratonic mantle, Geochim. Cosmochim. Ac., 97, 213–246, 2012.
Pokhilenko, L. N.: Volatile composition and oxidation state of mantle xenoliths from Siberian kimberlites, Ph.D. thesis, United Institute of Geology Geophysics, Mineralogy, Novosibirsk, 225 pp., 2006.
Pokhilenko, N. P.: Polymict breccia xenoliths: Evidence for the complex character of kimberlite formation, Lithos, 109, 934–941, 2009.
Pokhilenko, N. P., Sobolev, N. V., Sobolev, V. S., and Lavrentiev, Y. G.: Xenoliths of diamond bearing ilmenite-pyrope lherzolites from the kimberlite pipe Udachnaya (Yakutia), Doklady AN SSSR, 231, 438–442, 1976.
Pokhilenko, N. P., Pearson, D. G., Boyd, F. R., and Sobolev, N. V.: Megacrystalline dunites: sources of Siberian diamonds, Carnegie Institute Washington, Yearbook, 90, 11–18, 1991.
Pokhilenko, N. P., Sobolev, N. V., Kuligin, S. S., and Shimizu, N.: Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle, Proceedings of the VII International Kimberlite Conference, The P. H. Nixon volume, 690–707, 1999.
Ponomarenko, A. I.: First find of a diamond bearing garnet-ilmenite peridotite in the Mir kimberlite pipe, Doklady AN SSSR, 235, I53–I56, 1971.
Pyle, J. M. and Haggerty, S. E.: Eclogites and the metasomatism of eclogites from the Jagersfontein Kimberlite: Punctuated transport and implications for alkali magmatism, Geochim. Cosmochim. Ac., 62, 1207–1231, 1998.
Rege, S., Griffin, W. L., Kurat, G., Jackson, S. E., Pearson, N. J., and O'Reilly S. Y.: Trace-element geochemistry of diamondite: Crystallisation of diamond from kimberlite–carbonatite melts, Lithos, 106, 39–54, 1998.
Reimers, L. F.: Deep seated mineral associations of the kimberlites pipe Sytycanskaya (materials of the study of mantle rock and crystalline inclusions in diamonds), Institute of Geology and Geophysics, Novosibirsk, 258 pp., 1994.
Reimers, L. F., Pokhilenko, N. P., Yefimova, E. S., and Sobolev, N. V.: Ultramafic mantle assemblages from Sytykanskaya kimberlite pipe (Yakutia), Seventh International Kimberlite Conference, Cape Town, April 1998, Extended Abstracts, Cape Town, 730–732, 1998.
Reynard, B. G., Fiquet, G., Itie, J.-P., and Rubie, D.C.: High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite, Am. Mineral., 81, 45–50, 1996.
Righter, K., Leeman, W. P., and Hervig, R. L.: Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition, Chem. Geol., 227, 1–25, 2006.
Ringwood, A. E. and Lovering, J. F.: Significance of pyroxene ilmenite intergrowths among Kimberlite xenoliths, Earth Planet. Sc. Lett., 7, 371–375, 1970.
Robles-Cruz, S. E., Watangua, M., Isidoro, L., Melgarejo, J. C., Galí, S., and Olimpio, A.: Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond, Lithos, 112, 966–975, 2009.
Roden, M. F., Patiño-Douce, A. E., Jagoutz, E., and Laz'ko, E. E.: High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia, Lithos, 90, 77–91, 2006.
Rodionov, A. S., Amshinsky, A. N., and Pokhilenko, N. P.: Ilmenite-Pyrope wehrlite – a new type of kimberlite xenoliths paragenesis, Russ. Geol. Geophys., 19, 53–57, 1988.
Rodionov, A. S., Sobolev, N. V., Pokhilenko, N. P., Suddaby, P., and Amshinsky, A. N.: Ilmenite-bearing peridotites and megacrysts from Dalnaya kimberlite pipe, Yakutia, Fifth International Kimberlite Conference, Extended abstracts, USA, 339–341, 1991.
Rowlinson, P. J. and Dawson, B. J.: A quench pyroxene- ilmenite xenolith in kimberlite: implications for the pyroxene- ilmenite intergrowth, in: Proceedings of the Second International Kimberlite Conference, edited by: Boyd, F. R. and Meyer, H. O. A., American Geophysical Union, The Mantle Sample: Inclusions in Kimberlites and Other Volcanics, 2, 292–299, 1979.
Russell, J. K., Porritt, L. A., Lavallée, Y., and Dingwell, D. W.: Kimberlite ascent by assimilation-fuelled buoyancy, Nature, 481, 352–356, 2012.
Safonov, O. G., Perchuk, L. L., and Litvin, Y. A.: Melting relations in the chloride–carbonate–silicate systems at high-pressure and the model for formation of alkalic diamond–forming liquids in the upper mantle, Earth Planet. Sc. Lett., 253, 112-128, 2007.
Schulze, D. J., Valley, J. R., Bell, D. R., and Spicuzza, M. J.: Oxygen isotope variations in Cr-poor megacrysts from kimberlite, Geochim. Cosmochim. Ac., 65, 4375–4384, 2001.
Schulze, D. L., Anderson, P. F. N., Hearn Jr., B. C., and Hetman, C. M.: Origin and significance of ilmenite megacrysts and macrocrysts from kimberlite, Int. Geol. Rev., 37, 780–812, 1995.
Simon, N. S. C., Irvine, G. J., Davies, G. R., Pearson, D. G., and Carlson, R. W.: The origin of garnet and clinopyroxene in "depleted" Kaapvaal peridotites, Lithos, 71, 289–322, 2003.
Smith, J. V. and Dawson, J. B.: Chemistry of Ti-poor spinels, ilmenites and rutiles from peridotite and eclogite xenoliths, Phys. Chem. Earth, 309, 9–32, 1975.
Snyder, G. A., Taylor, L. A., Crozaz, G., Halliday, A. N., Beard, B. L., and Sobolev, V. N.: The Origins of Yakunan Eclogite Xenoliths, J. Petrol., 38, 85–113, 1997.
Sobolev, A. V., Sobolev, S. V., Kuzmin, D. V., Malitch, K. N., and Petrunin, A. G.: Siberian meimechites: origin and relation to flood basalts and kimberlites, Russ. Geol. Geophys., 50, 999–1033, 2009.
Sobolev, N. V.: Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Mantle, Am. Geophys. Un., Washington, DC, 279 pp., 1974.
Sobolev, N. V.: Significance of picroilmenite for the localization of kimberlite fields, Russ. Geol. Geophys., 24, 149–151, 1980.
Sobolev, N. V. and Yefimova, E. S.: Composition and petrogenesis of Ti-oxides associated with diamonds, Int. Geol. Rev., 42, 758–767, 2000.
Sobolev, N. V., Kharkiv, A. D., Lavrent'ev, Y. G., and Pospelova, L. N.: Zonal garnet with inclusion of Cr-spinel and ilmenite from Mir kimberlite pipe, Russ. Geol. Geophys., 6, 124–128, 1975.
Sobolev, N. V., Pokhilenko, N. V., and Efimova, E. S.: Xenoliths of diamond bearing peridotites in kimberlites and problem of the diamond origin, Russ. Geol. Geophys., 25, 63–80, 1984.
Sobolev, N. V., Kaminsky, F. V., Griffin, W. L., Yefimova, E. S., Win, T. T., Ryan, C. G., and Botkunov, A. I.: Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia, Lithos, 39, 135–157, 1997.
Sobolev, N. V., Logvinova, A. M., Zedgenizov, D. A., Yefimova, E. S., Taylor, L. A., Promprated P., Koptil, V. I., and Zinchuk, N. N.: Mineral Inclusions in Diamonds from Komsomolskaya and Krasnopresnenskaya Pipes, Yakutia: Evidence for Deep Lithospheric Heterogeneities in Siberian Craton, 8th International Kimberlite conference, Victoria, BC, Extended Abstracts, FLA_0141, 2003.
Sobolev, N. V., Logvinova, A. M., Zedgenizov, D. A., Pokhilenko, N. P., Kuzmin, D. V., and Sobolev, A. V.: Olivine inclusions in Siberian diamonds: high-precision approach to minor elements, Eur. J. Mineral, 20, 305–315, 2008.
Sobolev, N. V., Logvinova, A. M., and Efimova, E. S.: Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation, Russ. Geol. Geophys., 50, 1234–1248, 2009.
Solov'eva, L. V., Lavrent'ev, Yu. G., Egorov, K. N., Kostrovitskii, S. I., Korolyuk, V. N., and Suvorova, L. F.: The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts, Russ. Geol. Geophys., 49, 207–224, 2008.
Solovieva, L. V., Egorov, K. N., Markova, M. E., Kharkiv, A. D., Popolitov, K. E., and Barankevich, V. G.: Mantle metasomatism and melting in deep-seated xenoliths from the Udachnaya pipe, their possible relationship with diamond and kimberlite formation, Russ. Geol. Geophys., 38, 172–193, 1997.
Spetsius, Z. V.: Petrology of highly aluminous xenoliths from kimberlites of Yakutia, Lithos, 77, 525–538, 2004.
Spetsius, Z. V., Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., and Pearson, N. J.: Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds, Earth Planet. Sc. Lett., 199, 111–126, 2002.
Stachel, T. and Harris, J. W.: The origin of cratonic diamonds – Constraints from mineral inclusions, Ore Geol. Rev., 34, 5–32, 2008.
Stachel, T., Harris, J. W., and Brey, G. P.: Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania, Contrib. Mineral. Petrol., 132, 34–47, 2004.
Stagno, V. and Frost, D. J.: Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate – bearing melts coexist with graphite or diamond in peridotite assemblages, Earth Planet. Sc. Lett., 300, 72–84, 2010.
Tappe, S., Foley, S. F., Stracke, A., Romer, R. L., Kjarsgaard, B. A., Heaman, L. M., and Joyce, N.: Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives, Earth Planet. Sc. Lett., 256, 433–445, 2007.
Tappe, S., Steenfelt, A., Heamana, L. M., and Simonetti, A.: The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite–kimberlite relationships, Lithos, 112, 385–399, 2009.
Tappe, S., Pearson, D. G., Nowell, G., Nielsen, T., Milstead, P., and Muehlenbachs, K.: A fresh isotopic look at Greenland kimberlites: Cratonic mantle lithosphere imprint on deep source signal, Earth Planet. Sc. Lett., 305, 235–248, 2011.
Taylor, L. A. and Anand, M.: Diamonds: time capsules from the Siberian Mantle, Chemie der Erde, 64, 1–74, 2004.
Taylor, L. A., Gregory, A., Keller, S. R., Remley, D. A., Anand, M., Wiesli, R. Valley, J., and Sobolev, N. V.: Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia, Contrib. Mineral. Petrol., 145, 424–443, 2003.
Taylor, W. L., Kamperman, M. and Hamilton, R.: New thermometer and oxygen fugacity sensor calibration for ilmenite amd Cr-spinel- bearing peridotite assemblage, in: 7th International Kimberlite Conference, edited by: Gurney, J. J., Gurney, J. L., Pascoe, M. D., Richardson, S. H., Red Roof Design, Capetown, 896, 1998.
Wagner, C., Deloule, E., and Mokhtari, A.: Richterite-bearing peridotites and MARID-type inclusions in lavas from North Eastern Morocco: mineralogy and D/H isotopic studies, Contrib. Mineral. Petrol., 124, 406–421, 1996.
Wirth, R., Kaminsky, F., Matsyuk, S. and Schreiber, A.: Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil, Earth Planet. Sc. Lett., 286, 292–303, 2009.
Wyatt, B. A. and Lawless, P. J.: Ilmenite in polymict xenoliths from the Bultfontein and De Beers Mines, South Africa, in: Kimberlites II: Their Mantle and Crust/Mantle Relationships, edited by: Kornprobst, J., Proc. 3rd Int. Kimb. Conf. Elsevier, Amsterdam, 43–56, 1984.
Wyatt, B. A., Baumgartner, M., Anckar, E., and Grutter, H.: Compositional classification of "kimberlitic" and "non-kimberlitic" ilmenite, Lithos, 77, 819–840, 2004.
Zack, T. and Brumm, R.:. Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenite, in: 7th International Kimberlite Conference, edited by: Gurney, J. J., Gurney, J. L., Pascoe, M. D., and Richardson, S. H., Red Roof Design, Capetown, 986–988, 1998.
Zhang, H. F., Menzies, M. A., Mattey, D. P., Hinton R. W., and Gurney J. J.: Petrology, mineralogy and geochemistry of oxide minerals in polymict xenoliths from the Bultfontein kimberlites, South Africa: implication for low bulk-rock oxygen isotopic ratios, Contrib. Mineral. Petrol., 141, 367–379, 2001.
Zhao, D., Essene, E. J., and Zhang, Z.: An oxygen barometer for rutile–ilmenite assemblages: oxidation state of metasomatic agents in the mantle, Earth Planet. Sc. Lett., 166, 127–137, 1999.