Articles | Volume 11, issue 3
https://doi.org/10.5194/se-11-947-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-947-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The hydraulic efficiency of single fractures: correcting the cubic law parameterization for self-affine surface roughness and fracture closure
Maximilian O. Kottwitz
CORRESPONDING AUTHOR
Johannes Gutenberg University, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
Anton A. Popov
Johannes Gutenberg University, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
Tobias S. Baumann
Johannes Gutenberg University, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
Boris J. P. Kaus
Johannes Gutenberg University, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
Related authors
Maximilian O. Kottwitz, Anton A. Popov, Steffen Abe, and Boris J. P. Kaus
Solid Earth, 12, 2235–2254, https://doi.org/10.5194/se-12-2235-2021, https://doi.org/10.5194/se-12-2235-2021, 2021
Short summary
Short summary
Upscaling fluid flow in fractured reservoirs is an important practice in subsurface resource utilization. In this study, we first conduct numerical simulations of direct fluid flow at locations where fractures intersect to analyze the arising hydraulic complexities. Next, we develop a model that integrates these effects into larger-scale continuum models of fracture networks to investigate their impact on the upscaling. For intensively fractured systems, these effects become important.
Philipp Eichheimer, Marcel Thielmann, Wakana Fujita, Gregor J. Golabek, Michihiko Nakamura, Satoshi Okumura, Takayuki Nakatani, and Maximilian O. Kottwitz
Solid Earth, 11, 1079–1095, https://doi.org/10.5194/se-11-1079-2020, https://doi.org/10.5194/se-11-1079-2020, 2020
Short summary
Short summary
To describe permeability, a key parameter controlling fluid flows in the Earth’s subsurface, an accurate determination of permeability on the pore scale is necessary. For this reason, we sinter artificial glass bead samples with various
porosities, determining the microstructure and permeability using both
experimental and numerical approaches. Based on this we provide
parameterizations of permeability, which can be used as input parameters for
large-scale numerical models.
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Short summary
Prediction of rock permeability is of crucial importance for several research areas in geoscience. In this study, we enhance the finite difference code LaMEM to compute fluid flow on the pore scale using Newtonian and non-Newtonian rheologies. The accuracy of the code is demonstrated using several analytical solutions as well as experimental data. Our results show good agreement with analytical solutions and recent numerical studies.
Nicolas Riel, Boris J. P. Kaus, Albert de Montserrat, Evangelos Moulas, Eleanor C. R. Green, and Hugo Dominguez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-197, https://doi.org/10.5194/gmd-2024-197, 2024
Preprint under review for GMD
Short summary
Short summary
Our research focuses on improving the way we predict mineral assemblage. Current methods, while accurate, are slowed by complex calculations. We developed a new approach that simplifies these calculations and speeds them up significantly using a technique called the BFGS algorithm. This breakthrough reduces computation time by more than five times, potentially unlocking new horizons in modeling reactive magmatic systems.
Maximilian O. Kottwitz, Anton A. Popov, Steffen Abe, and Boris J. P. Kaus
Solid Earth, 12, 2235–2254, https://doi.org/10.5194/se-12-2235-2021, https://doi.org/10.5194/se-12-2235-2021, 2021
Short summary
Short summary
Upscaling fluid flow in fractured reservoirs is an important practice in subsurface resource utilization. In this study, we first conduct numerical simulations of direct fluid flow at locations where fractures intersect to analyze the arising hydraulic complexities. Next, we develop a model that integrates these effects into larger-scale continuum models of fracture networks to investigate their impact on the upscaling. For intensively fractured systems, these effects become important.
Philipp Eichheimer, Marcel Thielmann, Wakana Fujita, Gregor J. Golabek, Michihiko Nakamura, Satoshi Okumura, Takayuki Nakatani, and Maximilian O. Kottwitz
Solid Earth, 11, 1079–1095, https://doi.org/10.5194/se-11-1079-2020, https://doi.org/10.5194/se-11-1079-2020, 2020
Short summary
Short summary
To describe permeability, a key parameter controlling fluid flows in the Earth’s subsurface, an accurate determination of permeability on the pore scale is necessary. For this reason, we sinter artificial glass bead samples with various
porosities, determining the microstructure and permeability using both
experimental and numerical approaches. Based on this we provide
parameterizations of permeability, which can be used as input parameters for
large-scale numerical models.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Short summary
Prediction of rock permeability is of crucial importance for several research areas in geoscience. In this study, we enhance the finite difference code LaMEM to compute fluid flow on the pore scale using Newtonian and non-Newtonian rheologies. The accuracy of the code is demonstrated using several analytical solutions as well as experimental data. Our results show good agreement with analytical solutions and recent numerical studies.
Anthony Osei Tutu, Bernhard Steinberger, Stephan V. Sobolev, Irina Rogozhina, and Anton A. Popov
Solid Earth, 9, 649–668, https://doi.org/10.5194/se-9-649-2018, https://doi.org/10.5194/se-9-649-2018, 2018
Short summary
Short summary
The Earth's surface is characterized by numerous geological processes, formed throughout the Earth's history to present day. The interior (mantle), on which plates rest, undergoes convection motion, generating stresses in the lithosphere plate and also causing the plate motion. This study shows that shallow density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting topography, giving the importance depth sampling.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Mineral and rock physics
Using internal standards in time-resolved X-ray micro-computed tomography to quantify grain-scale developments in solid-state mineral reactions
Investigating rough single-fracture permeabilities with persistent homology
Development of multi-field rock resistivity test system for THMC
Raman spectroscopy in thrust-stacked carbonates: an investigation of spectral parameters with implications for temperature calculations in strained samples
Failure mode transition in Opalinus Clay: a hydro-mechanical and microstructural perspective
Thermal equation of state of the main minerals of eclogite: Constraining the density evolution of eclogite during the delamination process in Tibet
Creep of CarbFix basalt: influence of rock–fluid interaction
Micromechanisms leading to shear failure of Opalinus Clay in a triaxial test: a high-resolution BIB–SEM study
Elastic anisotropies of rocks in a subduction and exhumation setting
Mechanical and hydraulic properties of the excavation damaged zone (EDZ) in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland
The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock
Effect of normal stress on the frictional behavior of brucite: application to slow earthquakes at the subduction plate interface in the mantle wedge
Measuring hydraulic fracture apertures: a comparison of methods
Extracting microphysical fault friction parameters from laboratory and field injection experiments
The physics of fault friction: insights from experiments on simulated gouges at low shearing velocities
Frictional slip weakening and shear-enhanced crystallinity in simulated coal fault gouges at slow slip rates
Magnetic properties of pseudotachylytes from western Jämtland, central Swedish Caledonides
The variation and visualisation of elastic anisotropy in rock-forming minerals
Deformation mechanisms in mafic amphibolites and granulites: record from the Semail metamorphic sole during subduction infancy
Uniaxial compression of calcite single crystals at room temperature: insights into twinning activation and development
Roberto Emanuele Rizzo, Damien Freitas, James Gilgannon, Sohan Seth, Ian B. Butler, Gina Elizabeth McGill, and Florian Fusseis
Solid Earth, 15, 493–512, https://doi.org/10.5194/se-15-493-2024, https://doi.org/10.5194/se-15-493-2024, 2024
Short summary
Short summary
Here we introduce a new approach for analysing time-resolved 3D X-ray images tracking mineral changes in rocks. Using deep learning, we accurately identify and quantify the evolution of mineral components during reactions. The method demonstrates high precision in quantifying a metamorphic reaction, enabling accurate calculation of mineral growth rates and porosity changes. This showcases artificial intelligence's potential to enhance our understanding of Earth science processes.
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024, https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Short summary
In this study, the permeability of a natural fracture in sandstone is estimated based only on its geometry. For this purpose, the topological method of persistent homology is applied to three geometric data sets with different resolutions for the first time. The results of all data sets compare well with conventional experimental and numerical methods. Since the analysis takes less time to the same amount of time, it seems to be a good alternative to conventional methods.
Jianwei Ren, Lei Song, Qirui Wang, Haipeng Li, Junqi Fan, Jianhua Yue, and Honglei Shen
Solid Earth, 14, 261–270, https://doi.org/10.5194/se-14-261-2023, https://doi.org/10.5194/se-14-261-2023, 2023
Short summary
Short summary
A THMC multi-field rock resistivity test system is developed, which has the functions of rock triaxial and resistivity testing under the conditions of high and low temperature, high pressure, and high salinity water seepage. A sealing method to prevent the formation of a water film on the side of the specimen is proposed based on the characteristics of the device. The device is suitable for studying the relationship between rock mechanical properties and resistivity in complex environments.
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022, https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary
Short summary
Raman spectroscopy of carbon-bearing rocks is often used to calculate peak temperatures and therefore burial history. However, strain is known to affect Raman spectral parameters. We investigate a series of deformed rocks that have been subjected to varying degrees of strain and find that there is a consistent change in some parameters in the most strained rocks, while other parameters are not affected by strain. We apply temperature calculations and find that strain affects them differently.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Zhilin Ye, Dawei Fan, Bo Li, Qizhe Tang, Jingui Xu, Dongzhou Zhang, and Wenge Zhou
Solid Earth, 13, 745–759, https://doi.org/10.5194/se-13-745-2022, https://doi.org/10.5194/se-13-745-2022, 2022
Short summary
Short summary
Eclogite is a major factor in the initiation of delamination during orogenic collision. According to the equations of state of main minerals of eclogite under high temperature and high pressure, the densities of eclogite along two types of delamination in Tibet are provided. The effects of eclogite on the delamination process are discussed in detail. A high abundance of garnet, a high Fe content, and a high degree of eclogitization are more conducive to instigating the delamination.
Tiange Xing, Hamed O. Ghaffari, Ulrich Mok, and Matej Pec
Solid Earth, 13, 137–160, https://doi.org/10.5194/se-13-137-2022, https://doi.org/10.5194/se-13-137-2022, 2022
Short summary
Short summary
Geological carbon sequestration using basalts provides a solution to mitigate the high CO2 concentration in the atmosphere. Due to the long timespan of the GCS, it is important to understand the long-term deformation of the reservoir rock. Here, we studied the creep of basalt with fluid presence. Our results show presence of fluid weakens the rock and promotes creep, while the composition only has a secondary effect and demonstrate that the governing creep mechanism is subcritical microcracking.
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Michael J. Schmidtke, Ruth Keppler, Jacek Kossak-Glowczewski, Nikolaus Froitzheim, and Michael Stipp
Solid Earth, 12, 1801–1828, https://doi.org/10.5194/se-12-1801-2021, https://doi.org/10.5194/se-12-1801-2021, 2021
Short summary
Short summary
Properties of deformed rocks are frequently anisotropic. One of these properties is the travel time of a seismic wave. In this study we measured the seismic anisotropy of different rocks, collected in the Alps. Our results show distinct differences between rocks of oceanic origin and those of continental origin.
Sina Hale, Xavier Ries, David Jaeggi, and Philipp Blum
Solid Earth, 12, 1581–1600, https://doi.org/10.5194/se-12-1581-2021, https://doi.org/10.5194/se-12-1581-2021, 2021
Short summary
Short summary
The construction of tunnels leads to substantial alterations of the surrounding rock, which can be critical concerning safety aspects. We use different mobile methods to assess the hydromechanical properties of an excavation damaged zone (EDZ) in a claystone. We show that long-term exposure and dehydration preserve a notable fracture permeability and significantly increase strength and stiffness. The methods are suitable for on-site monitoring without any further disturbance of the rock.
Jessica A. McBeck, Wenlu Zhu, and François Renard
Solid Earth, 12, 375–387, https://doi.org/10.5194/se-12-375-2021, https://doi.org/10.5194/se-12-375-2021, 2021
Short summary
Short summary
The competing modes of fault network development, including nucleation, propagation, and coalescence, influence the localization and connectivity of fracture networks and are thus critical influences on permeability. We distinguish between these modes of fracture development using in situ X-ray tomography triaxial compression experiments on crystalline rocks. The results underscore the importance of confining stress (burial depth) and fluids on fault network development.
Hanaya Okuda, Ikuo Katayama, Hiroshi Sakuma, and Kenji Kawai
Solid Earth, 12, 171–186, https://doi.org/10.5194/se-12-171-2021, https://doi.org/10.5194/se-12-171-2021, 2021
Short summary
Short summary
Serpentinite, generated by the hydration of ultramafic rocks, is thought to be related to slow earthquakes at the subduction plate interface in the mantle wedge. We conducted friction experiments on brucite, one of the components of serpentinite, and found that wet brucite exhibits low and unstable friction under low effective normal stress conditions. This result suggests that wet brucite may be key for slow earthquakes at the subduction plate interface in a hydrated mantle wedge.
Chaojie Cheng, Sina Hale, Harald Milsch, and Philipp Blum
Solid Earth, 11, 2411–2423, https://doi.org/10.5194/se-11-2411-2020, https://doi.org/10.5194/se-11-2411-2020, 2020
Short summary
Short summary
Fluids (like water or gases) within the Earth's crust often flow and interact with rock through fractures. The efficiency with which these fluids may flow through this void space is controlled by the width of the fracture(s). In this study, three different physical methods to measure fracture width were applied and compared and their predictive accuracy was evaluated. As a result, the mobile methods tested may well be applied in the field if a number of limitations and requirements are observed.
Martijn P. A. van den Ende, Marco M. Scuderi, Frédéric Cappa, and Jean-Paul Ampuero
Solid Earth, 11, 2245–2256, https://doi.org/10.5194/se-11-2245-2020, https://doi.org/10.5194/se-11-2245-2020, 2020
Short summary
Short summary
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes when existing geological faults inside the reservoir are (re-)activated. To assess the hazard associated with this, previous studies have conducted experiments in which fluids have been injected into centimetre- and decimetre-scale faults. In this work, we analyse and model these experiments. To this end, we propose a new approach through which we extract the model parameters that govern slip on faults.
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Short summary
The strength of fault rock plays a central role in determining the distribution of crustal seismicity. We review laboratory work on the physics of fault friction at low shearing velocities carried out at Utrecht University in the past 2 decades. Key mechanical data and post-mortem microstructures can be explained using a generalized, physically based model for the shear of gouge-filled faults. When implemented into numerical fault-slip codes, this offers new ways to simulate the seismic cycle.
Caiyuan Fan, Jinfeng Liu, Luuk B. Hunfeld, and Christopher J. Spiers
Solid Earth, 11, 1399–1422, https://doi.org/10.5194/se-11-1399-2020, https://doi.org/10.5194/se-11-1399-2020, 2020
Short summary
Short summary
Coal is an important source rock for natural gas recovery, and its frictional properties play a role in induced seismicity. We performed experiments to investigate the frictional properties of bituminous coal, and our results show that the frictional strength of coal became significantly weakened with slip displacement, from a peak value of 0.5 to a steady-state value of 0.3. This may be caused by the development of shear bands with internal shear-enhanced molecular structure.
Bjarne S. G. Almqvist, Hagen Bender, Amanda Bergman, and Uwe Ring
Solid Earth, 11, 807–828, https://doi.org/10.5194/se-11-807-2020, https://doi.org/10.5194/se-11-807-2020, 2020
Short summary
Short summary
Rocks in fault zones can melt during earthquakes. The geometry and magnetic properties of such earthquake-melted rocks from Jämtland, central Sweden, show that they formed during Caledonian mountain building in the Palaeozoic. The small sample size (~0.2 cm3) used in this study is unconventional in studies of magnetic anisotropy and introduces challenges for interpretations. Nevertheless, the magnetic properties help shed light on the earthquake event and subsequent alteration of the rock.
David Healy, Nicholas Erik Timms, and Mark Alan Pearce
Solid Earth, 11, 259–286, https://doi.org/10.5194/se-11-259-2020, https://doi.org/10.5194/se-11-259-2020, 2020
Short summary
Short summary
Rock-forming minerals behave elastically, a property that controls their ability to support stress and strain, controls the transmission of seismic waves, and influences subsequent permanent deformation. Minerals are intrinsically anisotropic in their elastic properties; that is, they have directional variations that are related to the crystal lattice. We explore this directionality and present new ways of visualising it. We hope this will enable further advances in understanding deformation.
Mathieu Soret, Philippe Agard, Benoît Ildefonse, Benoît Dubacq, Cécile Prigent, and Claudio Rosenberg
Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019, https://doi.org/10.5194/se-10-1733-2019, 2019
Short summary
Short summary
This study sheds light on the mineral-scale mechanisms controlling the progressive deformation of sheared amphibolites from the Oman metamorphic sole during subduction initiation and unravels how strain is localized and accommodated in hydrated mafic rocks at high temperature conditions. Our results indicate how metamorphic reactions and pore-fluid pressures driven by changes in pressure–temperature conditions and/or water activity control the rheology of mafic rocks.
Camille Parlangeau, Alexandre Dimanov, Olivier Lacombe, Simon Hallais, and Jean-Marc Daniel
Solid Earth, 10, 307–316, https://doi.org/10.5194/se-10-307-2019, https://doi.org/10.5194/se-10-307-2019, 2019
Short summary
Short summary
Calcite twinning is a common deformation mechanism that mainly occurs at low temperatures. Twinning activation appears at a critical strength value, which is poorly documented and still debated. Temperature is known to influence twin thickness and shape; however, few studies have been conducted on calcite deformation at low temperatures. The goal of this work is to determine if thickness is mainly due to high temperatures and to establish the validity of a threshold twinning activation value.
Cited articles
Azizmohammadi, S. and Matthäi, S. K.: Is the permeability of naturally
fractured rocks scale dependent?, Water Resour. Res., 53, 8041–8063, 2017. a
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., Curfman McInnes, L., Tran Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc Users Manual:
Revision 3.10, Tech. rep., Argonne National Lab. (ANL), Argonne, IL, USA, 2018. a
Bieniawski, Z. T.: Engineering rock mass classifications: a complete manual for
engineers and geologists in mining, civil, and petroleum engineering, John
Wiley & Sons, New York, 1989. a
Boffa, J. M., Allain, C., and Hulin, J. P.: Experimental analysis of fracture
rugosity in granular and compact rocks, Eur. Phys. J.-Appl.
Phys., 2, 281–289, 1998. a
Bogdanov, I. I., Mourzenko, V. V., Thovert, J.-F., and Adler, P. M.: Effective
permeability of fractured porous media in steady state flow, Water Resour.
Res., 39, 1023, https://doi.org/10.1029/2001WR000756, 2003. a
Bouchaud, E.: Scaling properties of cracks, Journal of Physics: Condensed
Matter, 9, 4319–4344, 1997. a
Brush, D. J. and Thomson, N. R.: Fluid flow in synthetic rough-walled
fractures: Navier-Stokes, Stokes, and local cubic law simulations, Water
Resour. Res., 39, 1085, https://doi.org/10.1029/2002WR001346, 2003. a
Candela, T., Renard, F., Bouchon, M., Brouste, A., Marsan, D., Schmittbuhl, J., and Voisin, C.: Characterization of fault roughness at various scales: Implications of three-dimensional high resolution topography measurements, Pure Appl. Geophys., 166, 1817–1851, 2009. a
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., and Brodsky,
E. E.: Roughness of fault surfaces over nine decades of length scales,
J. Geophys. Res.-Sol. Ea., 117, B08409, https://doi.org/10.1029/2011JB009041, 2012. a
de Dreuzy, J.-R., Méheust, Y., and Pichot, G.: Influence of fracture scale
heterogeneity on the flow properties of three-dimensional discrete fracture
networks (DFN), J. Geophys. Res.-Sol. Ea., 117, B11207, https://doi.org/10.1029/2012JB009461, 2012. a, b, c
D'Errico, J.: Surface Fitting using gridfit, MATLAB Central File Exchange, available at:
https://de.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit (last access: 27 May 2020),
2006. a
Durham, W. B., Bourcier, W. L., and Burton, E. A.: Direct observation of
reactive flow in a single fracture, Water Resour. Res., 37, 1–12, 2001. a
Eichheimer, P., Thielmann, M., Popov, A., Golabek, G. J., Fujita, W., Kottwitz, M. O., and Kaus, B. J. P.: Pore-scale permeability prediction for Newtonian and non-Newtonian fluids, Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, 2019. a, b
Foroughi, S., Jamshidi, S., and Pishvaie, M. R.: New Correlative Models to
Improve Prediction of Fracture Permeability and Inertial Resistance
Coefficient, Transport Porous Med., 121, 557–584, 2018. a
Jin, Y., Dong, J., Zhang, X., Li, X., and Wu, Y.: Scale and size effects on
fluid flow through self-affine rough fractures, Int. J. Heat
Mass Tran., 105, 443–451, 2017. a
Kanafi, M. M.: Surface generator: artificial randomly rough surfaces, MATLAB
Central File Exchange, available at:
https://de.mathworks.com/matlabcentral/fileexchange/60817-surface-generator-artificial-randomly-rough-surfaces (last access: 27 May 2020),
2016. a
Kaus, B.: LaMEM – Lithosphere and Mantle Evolution Model, available at: https://bitbucket.org/bkaus/lamem/src/master/, last access: 27 April 2018. a
Kaus, B., Popov, A. A., Baumann, T., Pusok, A., Bauville, A., Fernandez, N.,
and Collignon, M.: Forward and inverse modelling of lithospheric deformation
on geological timescales, in: Proceedings of NIC Symposium, Forschungszentrum Jülich GmbH, Jülich, available at:
http://hdl.handle.net/2128/9842 (last access: 27 May 2020), 2016. a
Klimczak, C., Schultz, R. A., Parashar, R., and Reeves, D. M.: Cubic law with
aperture-length correlation: implications for network scale fluid flow,
Hydrogeol. J., 18, 851–862, 2010. a
Kling, T., Schwarz, J.-O., Wendler, F., Enzmann, F., and Blum, P.: Fracture
flow due to hydrothermally induced quartz growth, Adv. Water
Resour., 107, 93–107, 2017. a
Kluge, C., Milsch, H., and Blöcher, G.: Permeability of displaced
fractures, Enrgy. Proced., 125, 88–97, 2017. a
Leung, C., Hoch, A., and Zimmerman, R.: Comparison of discrete fracture network
and equivalent continuum simulations of fluid flow through two-dimensional
fracture networks for the DECOVALEX–2011 project, Mineral. Mag.,
76, 3179–3190, 2012. a
Mandelbrot, B. B.: The fractal geometry of nature,
Vol. 173, WH freeman, New York, 1983. a
Méheust, Y. and Schmittbuhl, J.: Geometrical heterogeneities and permeability anisotropy of rough fractures,
J. Geophys. Res.-Sol. Ea., 106, 2089–2102, 2001. a
Mourzenko, V. V., Thovert, J.-F., and Adler, P. M.: Permeability of a single
fracture; validity of the Reynolds equation, J. Phys. II, 5,
465–482, 1995. a
Mourzenko, V. V., Thovert, J.-F., and Adler, P. M.: Geometry of simulated
fractures, Phys. Rev. E, 53, 5606, https://doi.org/10.1103/PhysRevE.53.5606, 1996. a
Oron, A. P. and Berkowitz, B.: Flow in rock fractures: The local cubic law
assumption reexamined, Water Resour. Res., 34, 2811–2825, 1998. a
Osorno, M., Uribe, D., Ruiz, O. E., and Steeb, H.: Finite difference
calculations of permeability in large domains in a wide porosity range,
Arch. Appl. Mech., 85, 1043–1054, 2015. a
Persson, B., Albohr, O., Tartaglino, U., Volokitin, A., and Tosatti, E.: On the
nature of surface roughness with application to contact mechanics, sealing,
rubber friction and adhesion, Journal of Physics: Condensed Matter, 17,
R1–R62, 2004. a
Plouraboué, F., Kurowski, P., Hulin, J.-P., Roux, S., and Schmittbuhl, J.:
Aperture of rough cracks, Phys. Rev. E, 51, 1675–1685, 1995. a
Pluymakers, A., Kobchenko, M., and Renard, F.: How microfracture roughness can
be used to distinguish between exhumed cracks and in-situ flow paths in
shales, J. Struct. Geol., 94, 87–97, 2017. a
Ponson, L., Auradou, H., Pessel, M., Lazarus, V., and Hulin, J.-P.: Failure
mechanisms and surface roughness statistics of fractured Fontainebleau
sandstone, Phys. Rev. E, 76, 036108, https://doi.org/10.1103/PhysRevE.76.036108, 2007. a
Power, W. L. and Tullis, T. E.: Euclidean and fractal models for the
description of rock surface roughness, J. Geophys. Res.-Sol.
Ea., 96, 415–424, 1991. a
Pyrak-Nolte, L. J. and Nolte, D. D.: Approaching a universal scaling
relationship between fracture stiffness and fluid flow, Nat.
Commun., 7, 10663, https://doi.org/10.1038/ncomms10663, 2016. a, b
Renard, F., Voisin, C., Marsan, D., and Schmittbuhl, J.: High resolution 3D
laser scanner measurements of a strike-slip fault quantify its morphological
anisotropy at all scales, Geophys. Res. Lett., 33, L04305, https://doi.org/10.1029/2005GL025038, 2006. a
Renshaw, C. E.: On the relationship between mechanical and hydraulic apertures in rough‐walled fractures.
J. Geophys. Res.-Sol. Ea., 100, 24629–24636, 1995. a
Snow, D. T.: Anisotropie permeability of fractured media, Water Resour.
Res., 5, 1273–1289, 1969. a
Torbert, S.: Applied computer science, Springer, Cham, 2016. a
Zimmerman, R. W. and Main, I.: Hydromechanical behavior of fractured rocks,
International Geophysics Series, 89, 363–422, 2004. a
Short summary
In this study, we conducted 3-D numerical simulations of fluid flow in synthetically generated fractures that statistically reflect geometries of naturally occurring fractures. We introduced a non-dimensional characterization scheme to relate fracture permeabilities estimated from the numerical simulations to their geometries in a unique manner. By that, we refined the scaling law for fracture permeability, which can be easily integrated into discrete-fracture-network (DFN) modeling approaches.
In this study, we conducted 3-D numerical simulations of fluid flow in synthetically generated...
Special issue