Articles | Volume 12, issue 6
https://doi.org/10.5194/se-12-1389-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1389-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seismicity and seismotectonics of the Albstadt Shear Zone in the northern Alpine foreland
Sarah Mader
CORRESPONDING AUTHOR
Karlsruhe Institute of Technology, Geophysical Institute, Hertzstr. 16, 76187 Karlsruhe, Germany
Joachim R. R. Ritter
Karlsruhe Institute of Technology, Geophysical Institute, Hertzstr. 16, 76187 Karlsruhe, Germany
Klaus Reicherter
RWTH Aachen University, Institute of Neotectonics and Natural Hazards
Group, Lochnerstr. 4–20, 52056 Aachen, Germany
For further information regarding the team, please visit the link which appears at the end of the paper.
Related authors
No articles found.
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023, https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Short summary
In this work we analyze signals emitted from wind turbines. They induce sound as well as ground motion waves which propagate through the subsurface and are registered by sensitive instruments. In our data we observe when these signals are present and how strong they are. Some signals are present in ground motion and sound data, providing the opportunity to study similarities and better characterize emissions. Furthermore, we study the amplitudes with distance to improve the signal prediction.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Peter Biermanns, Benjamin Schmitz, Silke Mechernich, Christopher Weismüller, Kujtim Onuzi, Kamil Ustaszewski, and Klaus Reicherter
Solid Earth, 13, 957–974, https://doi.org/10.5194/se-13-957-2022, https://doi.org/10.5194/se-13-957-2022, 2022
Short summary
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Cited articles
Aichroth, B., Prodehl, C., and Thybo, H.: Crustal structure along the Central
Segment of the EGT from seismic-refraction studies, Tectonophysics, 207,
43–64, 1992.
Aki, K. and Richards, P. G.: Quantitative Seismology: Theory and Methods,
edited by: Freeman, W. H., San Francisco, CA, Second Edition, 1, 558 pp., 2002.
Akinci, A., Mejia, J., and Jemberie, A. L.: Attenuative dispersion of P
waves and crustal Q in Turkey and Germany, Pure Appl. Geophys., 161, 73–91, 2004.
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary
component, AlpArray Working Group, Other/Seismic Network,
https://doi.org/10.12686/alparray/z3_2015, 2015.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Pocedures, Data Sources and Analysis, NOAA Technical
Memorandum NESDIS NGDC-24, National Geophysical
Data Center, NOAA, 19 pp, 2009.
Asch, K.: IGME Million International Geological Map of Europe and Adjacent Areas – final version for the internet - BGR, Hannover, 1 map [data set], https://www.bgr.bund.de/EN/Themen/Sammlungen-Grundlagen/GG_geol_Info/Karten/Europa/IGME5000/IGME_Project/IGME_Downloads.html?nn=1556388, 2005.
Becker, A.: An attempt to define a “neotectonic period” for Central and
northern Europe, Geol. Rundsch., 82, 67–83, 1993.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and
Wassermann, J.: ObsPy: A Python Toolbox for Seismology [data set], available at: https://github.com/obspy/obspy/wiki (last access: 30 September 2020), 2010.
Bonjer, K.-P.: Seismicity pattern and style of seismic faulting at the
eastern borderfault of the southern Rhine Graben, Tectonophysics, 275,
41–69, 1997.
Bulletin-Files des Landeserdbebendienstes B-W: Ref. 98 im Landesamt für Geologie, Rohstoffe und Bergbau im Regierungspräsidium
Freiburg (https://lgrb-bw.de/erdbeben/index_html?lang=1) [data set], Az4784//18_3303, 2018.
Diehl, T., Kissling, E., and Bormann, P.: Tutorial for consistent phase
picking at local to regional distances, in: New Manual of
Seismological Observatory Practice 2 (NMOSOP-2), edited by: Bormann, P., Potsdam: Deutsches
Geoforschungszentrum GFZ, p. 1.21, 2012.
Gajewski, D. and Prodehl, C.: Crustal structure beneath the Swabian Jura, SW
Germany, from seismic refraction investigations, J. Geophys.,
56, 69–80, 1985.
Gajewski, D., Holbrook, W. S., and Prodehl, C.: A three-dimensional crustal
model of southwest Germany derived from seismic refraction data,
Tectonophysics, 142, 49–70, 1987.
Geyer, O. F. and Gwinner, M. P.: Geologie von Baden-Württemberg, 5 Edn., edited by: Geyer, M., Nitsch, E., and Simon,
T., Schweitzerbart, Stuttgart, Germany, 627 pp, 2011.
Gräber,, F.: Lokalbebentomographie mit P-Wellen in Long Valley,
Kalifornien, und die Möglichkeiten einer Anwendung im
südlichen Rheingraben, Diplomarbeit (diploma thesis), Geophysical Institute, TU
Karlsruhe, Germany and Institute of Geophysics, ETH Zürich, Switzerland, 144 pp, 1993.
Grünthal, G. and the GSHAP Region 3 Working Group: Seismic hazard
assessment for Central, North and Northwest Europe: GSHAP Region 3. Anali di
Geofisica, 42, 999–1011, 1999.
Haessler, H., Hoang-Trong, P., Schick, R., Schneider, G., and Strobach, K.:
The September 3, 1978, Swabian Jura Earthquake, Tectonophysics, 68,
1–14, 1980.
Heidbach, O., Rajabi, M., Reiter, K., and Ziegler, M., WSM Team: World
Stress Map Database Release 2016, V. 1.1, GFZ Data Services,
https://doi.org/10.5880/WSM.2016.001, 2016.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F., Giardini, D.,
Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling, E., Kopp, H., Korn,
M., Margheriti, L., Meier, T., Mucciarelli, M., Paul, A., Pesaresi, D., Piromallo,
C., Plenefisch, T., Plomerová, J., Ritter, J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann, F., Wassermann, J., Weber, M.,
Wéber, Z., Wesztergom, V., Živčić, M., AlpArray Seismic Network
Team, AlpArray OBS Cruise Crew, and AlpArray Working Group: The AlpArray Seismic
Network: a large-scale European experiment to image the Alpine orogen,
Surv. Geophys., 1–25,
https://doi.org/10.1007/s10712-018-9472-4, 2018.
Hiller, W.: Eine Erdbebenwarte im Gebiet der Schwäbischen Alb,
Z. Geophysik, 9, 230–234, 1933.
Houlié, N., Woessner, J., Giardini, D., and Rothacher, M.: Lithosphere
strain rate and stress field orientations near the Alpine arc in
Switzerland, Sci. Rep., 8, 1–14, 2018.
Hunter, J. D.: “Matplotlib: A 2D Graphics Environment”, Comput. Sci. Eng., 9, 90–95, 2007.
Husen, S., Kissling, E., Deichmann, N., Wiemer, S., Giardini, D., and Baer,
M.: Probabilistic earthquake location in complex three-dimensional velocity
models: Application to Switzerland, J. Geophys. Res.,
108, 2077, https://doi.org/10.1029/2002JB001778, 2003.
Illies, J. H.: Der Hohenzollerngraben und Intraplattenseismizität
infolge Vergitterung lamellärer Scherung mit einer Riftstruktur,
Oberrhein. Geol. Abh., 31, 47–78, 1982.
Kastrup, U., Zoback, M. L., Deichmann, N., Evans, K. F., Giardini,
D., and Michael, A. J.: Stress field variations in the Swiss Alps
and the northern Alpine foreland derived from inversion of fault
plane solutions, J. Geophys. Res., 109, B01402, https://doi.org/10.1029/2003JB002550, 2004.
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic
velocities in the Earth from traveltimes, Geophys. J. Int.,
122, 108–124, 1995.
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U.:
Initial reference models in local earthquake tomography, J. Geophys. Res.-Sol. Ea., 99, 19635–19646, 1994.
Kissling, E., Kradolfer, U., and Maurer, H.: Program VELEST
user’s guide – Short Introduction, Int. Report, Institute of Geophysics, ETH, Zürich, available at: https://seg.ethz.ch/software/velest.html, 26 pp, 1995.
Kunze, T.: Seismotektonische Bewegungen im Alpenbereich, PhD thesis,
University Stuttgart, Germany, 167 pp, 1982.
Leydecker, G.: Erdbebenkatalog für Deutschland mit Randgebieten für
die Jahre 800 bis 2008, Geologisches Jahrbuch, E 59, E. Schweizerbart'sche
Verlagsbuchhandlung, Stuttgart, 198 pp., 2011.
Lomax, A., Virieux, J., Volant, P., and Berge-Thierry, C.: Probabilistic
earthquake location in 3D and layered models: introduction to a
Metropolis-Gibbs method and comparison with linear locations, edited by: Thurber,
C. and Rabinowitz, N., Advances in seismic event location, Springer,
Dordrecht, 18, 101–134, 2000.
Lomax, A.: NonLinLoc software – Probabilistic, Non-Linear, Global-Search Earthquake Location in 3D Media
available at: http://alomax.free.fr/nlloc/index.html, last access: 30 September 2020, 2017.
Mader, S. and Ritter, J. R. R.: The StressTransfer Seismic Network – An
Experiment to Monitor Seismically Active Fault Zones in the Northern Alpine
Foreland of Southwestern Germany, Seismol. Res. Lett., 92, 1773–1787, https://doi.org/10.1785/0220200357, 2021.
Meschede, M. and Warr, L. N.: The Geology of Germany:
A Process-Oriented Approach, Regional Geology Reviews, edited by: Oberhänsli, R., de Wit, M. J., and Roure, F. M.,
Springer Nature Switzerland AG, 304 pp, 2019.
Michael, A. J.: Determination of stress from slip data: Faults and folds, J.
Geophys. Res., 89, 11517–11526, 1984.
Müller, B., Zoback, M. L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni,
N., Stephansson, O., and Ljunggren, C.: Regional patterns of tectonic stress
in Europe, J. Geophys. Res., 97, 11783–11803, 1992.
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief Model [data set], NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5C8276M, 2009.
Oncescu, M. C., Rizescu, M., and Bonjer, K. P.: SAPS – a completely automated
and networked seismological acquisition and processing system, Comp.
Geosci., 22, 89–97, 1996.
Plenefisch, T. and Bonjer, K.-P.: The stress field in the Rhine Graben area
inferred from earthquake focal mechanisms and estimation of frictional
parameters, Tectonophysics, 275, 71–97, 1997.
Podvin, P. and Lecomte, I.: Finite difference computation of traveltimes in
very contrasted velocity models: a massively parallel approach and its
associated tools, Geophys. J. Int., 105, 271–284, 1991.
Regierungspräsidium Freiburg: Landesamt für Geologie, Rohstoffe und
Bergbau (Hrsg.): LGRB-Kartenviewer – Layer GÜK300: Tektonik,
available at: https://maps.lgrb-bw.de/, last access: 28 March 2019.
Regierungspräsidium Freiburg: Landesamt für Geologie, Rohstoffe und
Bergbau: Last felt earthquakes in Baden-Württemberg,
available at: https://lgrb-bw.de/erdbeben/erdbebenmeldung, last access: 28 August 2020.
Reicherter, K., Froitzheim, N., Jarosinski, M., Badura, J., Franzke, H. J.,
Hansen, M., and Stackebrandt, W.: Alpine tectonics north of the Alps,
The geology of central Europe, 2, 1233–1285, 2008.
Reinecker, J. and Schneider, G.: Zur Neotektonik der Zollernalb: Der
Hohenzollerngraben und die Albstadt-Erdbeben, Jahresberichte und
Mitteilungen des Oberrheinischen Geologischen Vereins, 391–417, 2002.
Reinecker, J., Tingay, M., Müller, B., and Heidbach, O.: Present-day
stress orientation in the Molasse Basin, Tectonophysics, 482, 129–138,
2010.
Ring, U. and Bolhar, R.: Tilting, uplift, volcanism and disintegration of
the South German block, Tectonophysics, 795, 228611, https://doi.org/10.1016/j.tecto.2020.228611, 2020.
Rupf, I. and Nitsch, E.: Das Geologische Landesmodell von
Baden-Württemberg: Datengrundlagen, technische Umsetzung und erste
geologische Ergebnisse, Regierungspräsidium Freiburg – Abteilung 9,
Landesamt für Geologie, Rohstoffe und Bergbau, 82 pp., 2008.
Schädel, K.: Geologische Übersichtskarte 1:100.000 C7918 Albstadt
und Erläuterungen. Geologisches Landesamt Baden-Württemberg,
Freiburg i. Br., 44 pp, 1976.
Schneider, G.: Seismizität und Seismotektonik der Schwäbischen Alb,
F. Enke Verlag, Stuttgart, Germany, 79 pp., 1971.
Schneider, G.: Die Erdbeben in Baden-Württemberg: 1963–1972, Inst.
für Geophysik der Univ. Stuttgart, Germany, 47 pp., 1973.
Schneider, G.: The earthquake in the Swabian Jura of 16 Nov. 1911 and
present concepts of seismotectonics, Tectonophysics, 53, 279–288, 1979.
Schneider, G.: Das Beben vom 3. September 1978 auf der Schwäbischen Alb
als Ausdruck der seismotektonischen Beweglichkeit Suedwestdeutschlands,
Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, N.
F., 62, 143–166, 1980.
Schneider, G.: Beziehungen zwischen Erdbeben und Strukturen der
Süddeutschen Großscholle, Neues Jahrbuch für Geologie und
Palaäntologie – Abhandlungen, 189, 275–288, 1993.
Sieberg, A. and Lais, R.: Das mitteleuropäische Erdbeben vom 16.11.1911,
Bearbeitung der makroseismischen Beobachtungen, Veröffentlichungen der
Reichsanstalt für Erdbebenforschung Jena, H. 4, Jena, Germany, 106 pp., 1925.
Singer, J., Kissling, E., and Diehl, T.: VELEST, Version 4.5 provided by Kissling, E., Version 3.1, available at: https://seg.ethz.ch/software/velest.html, last access: 30 September 2020, 2017.
Snoke, J. A.: FOCMEC: Focal mechanism determinations. International Handbook
of Earthquake and Engineering Seismology, 85, 1629–1630, 2003.
Snoke, A.: FOCMEC, available at: http://ds.iris.edu/pub/programs/focmec/, last access 30 September 2020, 2017.
Stange, S.: Erdbebenüberwachung Baden-Württemberg – Das
modernisierte Starkbeben- und Detektionsmessnetz. LGRB – Nachricht,
Regierungspräsidium Freiburg, Nr. 2018/07, 2 pp., 2018.
Stange, S. and Brüstle, W.: The Albstadt/Swabian Jura seismic source
zone reviewed through the study of the earthquake of March 22, 2003,
Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins,
391–414, 2005.
Tarantola, A. and Valette, B.: Inverse problems = quest for information,
J. Geophys., 50, 159–170, 1982.
Tozer, B., Sandwell, D. T., Smith, W. H., Olson, C., Beale, J. R., and
Wessel, P.: Global bathymetry and topography at 15 arc sec: SRTM15+, Earth
Space Sci., 6, 1847–1864, 2019.
Turnovsky, J.: Herdmechanismen und Herdparameter der Erdbebenserie
1978 auf der Schwäbischen Alb, PhD thesis, University Stuttgart, Germany, 109 pp., 1981.
Tyagunov, S., Grünthal, G., Wahlström, R., Stempniewski, L., and Zschau, J.: Seismic risk mapping for Germany, Nat. Hazards Earth Syst. Sci., 6, 573–586, https://doi.org/10.5194/nhess-6-573-2006, 2006.
Valley, B. and Evans, K. F.: Stress state at Soultz to 5 km depth from wellbore
failure and hydraulic observations, Proceedings, Thirty-Second Workshop on
Geothermal Reservoir Engineering, Stanford University, Stanford, California, 10 pp.,
2007.
Vavryčuk, V.: Iterative joint inversion for stress and fault
orientations from focal mechanisms, Geophys. J. Int., 199,
69–77, https://doi.org/10.1093/gji/ggu224, 2014.
Vavryčuk, V.: STRESSINVERSE, available at: https://www.ig.cas.cz/en/stress-inverse/, last access 24 February 2021, 2020.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H.
F., and Tian, D: The Generic Mapping Tools version 6., Geochem. Geophys. Geosys., 20, 5556–5564,
https://doi.org/10.1029/2019GC008515, 2019.
Wetzel, H.-U. and Franzke, H. J.: Lassen sich über die Fernerkundung
erweiterte Kenntnisse zur seismogenen Zone Bodensee-Stuttgart (9∘-Ost) gewinnen?, Publikationen der Deutschen Gesellschaft für
Photogrammetrie und Fernerkundung, 12, 339–347, 2003.
Short summary
The Albstadt Shear Zone, SW Germany, is an active rupture zone with sometimes damaging earthquakes but no visible surface structure. To identify its segmentations, geometry, faulting pattern and extension, we analyze the continuous earthquake activity in 2011–2018. We find a segmented N–S-oriented fault zone with mainly horizontal and minor vertical movement along mostly NNE- and some NNW-oriented rupture planes. The main horizontal stress is oriented NW and due to Alpine-related loading.
The Albstadt Shear Zone, SW Germany, is an active rupture zone with sometimes damaging...