Articles | Volume 12, issue 6
https://doi.org/10.5194/se-12-1421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-1421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, France
Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel
Anthony Sladen
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, France
Diego Mercerat
CEREMA, équipe MouvGS, Sophia Antipolis, Valbonne, France
Jean-Paul Ampuero
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, France
Diane Rivet
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, France
Serge Sambolian
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, France
Related authors
No articles found.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Cedric Twardzik, Mathilde Vergnolle, Anthony Sladen, and Louisa L. H. Tsang
Solid Earth, 12, 2523–2537, https://doi.org/10.5194/se-12-2523-2021, https://doi.org/10.5194/se-12-2523-2021, 2021
Short summary
Short summary
After an earthquake, the fault continues to slip for days to months. Yet, little is know about the very early part of this phase (i.e., minutes to hours). We have looked at what happens just after an earthquake in Chile from 2015. We find that the fault responds in two ways: south of the rupture zone it slips seismically in the form of aftershocks, while north of the rupture zone it slips slowly. Early inference of such bimodal behavior could prove to be useful for forecasting aftershocks.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North Iceland
Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence
A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers
Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms
Towards real-time seismic monitoring of a geothermal plant using Distributed Acoustic Sensing
Upper-lithospheric structure of northeastern Venezuela from joint inversion of surface-wave dispersion and receiver functions
A study on the effect of input data length on a deep-learning-based magnitude classifier
Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde
Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland
The damaging character of shallow 20th century earthquakes in the Hainaut coal area (Belgium)
The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania
Accelerating Bayesian microseismic event location with deep learning
Regional centroid moment tensor inversion of small to moderate earthquakes in the Alps using the dense AlpArray seismic network: challenges and seismotectonic insights
Unprecedented quiescence in resource development area allows detection of long-lived latent seismicity
Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown
Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico
Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network
Seismic evidence of the COVID-19 lockdown measures: a case study from eastern Sicily (Italy)
Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA
Effects of finite source rupture on landslide triggering: the 2016 Mw 7.1 Kumamoto earthquake
Fabian Kutschera, Alice-Agnes Gabriel, Sara Aniko Wirp, Bo Li, Thomas Ulrich, Claudia Abril, and Benedikt Halldórsson
Solid Earth, 15, 251–280, https://doi.org/10.5194/se-15-251-2024, https://doi.org/10.5194/se-15-251-2024, 2024
Short summary
Short summary
We present a suite of realistic 3D dynamic rupture earthquake–tsunami scenarios for the Húsavík–Flatey Fault Zone in North Iceland and compare one-way linked and fully coupled modeling workflows on two fault system geometries. We find that our dynamic rupture simulation on a less segmented strike-slip fault system causes local tsunami wave heights (crest to trough) of up to ~ 0.9 m due to the large shallow fault slip (~ 8 m), rake rotation (± 20°), and coseismic vertical displacements (± 1 m).
Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, and Nishtha Srivastava
Solid Earth, 15, 197–213, https://doi.org/10.5194/se-15-197-2024, https://doi.org/10.5194/se-15-197-2024, 2024
Short summary
Short summary
Seismic phase picking and magnitude estimation are crucial components of real-time earthquake monitoring and early warning. Here, we test the potential of deep learning in real-time earthquake monitoring. We introduce DynaPicker, which leverages dynamic convolutional neural networks for event detection and arrival-time picking, and use the deep-learning model CREIME for magnitude estimation. This workflow is tested on the continuous recording of the Turkey earthquake aftershock sequences.
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023, https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glaciers that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allows an analysis of the ice while considering deformations.
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023, https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Short summary
Investigation of the global Earth's structure benefits from the analysis of ocean bottom seismometer (OBS) data that allow an improved seismic illumination of dark spots of crustal and mantle structures in the oceanic regions of the Earth. However, recordings from the ocean bottom are often highly contaminated by noise. We developed an OBS noise reduction algorithm, which removes much of the oceanic noise while preserving the earthquake signal and does not introduce waveform distortion.
Jerome Azzola, Katja Thiemann, and Emmanuel Gaucher
EGUsphere, https://doi.org/10.5194/egusphere-2022-1417, https://doi.org/10.5194/egusphere-2022-1417, 2022
Preprint archived
Short summary
Short summary
Distributed Acoustic Sensing is applied to the micro-seismic monitoring of a geothermal plant. In this domain, the feasibility of managing the large flow of generated data and their suitability to monitor locally induced seismicity was yet to be assessed. The proposed monitoring system efficiently managed the acquisition, processing and saving of the data over a 6-month period. This testing period proved that the monitoring concept advantageously complements more classical monitoring networks.
Roberto Cabieces, Mariano S. Arnaiz-Rodríguez, Antonio Villaseñor, Elizabeth Berg, Andrés Olivar-Castaño, Sergi Ventosa, and Ana M. G. Ferreira
Solid Earth, 13, 1781–1801, https://doi.org/10.5194/se-13-1781-2022, https://doi.org/10.5194/se-13-1781-2022, 2022
Short summary
Short summary
This paper presents a new 3D shear-wave velocity model of the lithosphere of northeastern Venezuela, including new Moho and Vp / Vs maps. Data were retrieved from land and broadband ocean bottom seismometers from the BOLIVAR experiment.
Megha Chakraborty, Wei Li, Johannes Faber, Georg Rümpker, Horst Stoecker, and Nishtha Srivastava
Solid Earth, 13, 1721–1729, https://doi.org/10.5194/se-13-1721-2022, https://doi.org/10.5194/se-13-1721-2022, 2022
Short summary
Short summary
Earthquake magnitude is a crucial parameter in defining its damage potential, and hence its speedy determination is essential to issue an early warning in regions close to the epicentre. This study summarises our findings in an attempt to apply deep-learning-based classifiers to earthquake waveforms, particularly with respect to finding an optimum length of input data. We conclude that the input length has no significant effect on the model accuracy, which varies between 90 %–94 %.
Carola Leva, Georg Rümpker, and Ingo Wölbern
Solid Earth, 13, 1243–1258, https://doi.org/10.5194/se-13-1243-2022, https://doi.org/10.5194/se-13-1243-2022, 2022
Short summary
Short summary
The seismicity of Fogo and Brava, Cape Verde, is dominated by volcano-tectonic earthquakes in the area of Brava and volcanic seismic signals, such as hybrid events, on Fogo. We locate these events using a multi-array analysis, which allows the localization of seismic events occurring outside the network and of volcanic signals lacking clear phases. We observe exceptionally high apparent velocities for the hybrid events located on Fogo. These velocities are likely caused by a complex ray path.
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022, https://doi.org/10.5194/se-13-705-2022, 2022
Short summary
Short summary
In passive seismic measurement, all noise sources from the environment, such as traffic, vibrations caused by distant excavation, and explosive work from underground mines, are utilized. In the Kylylahti experiment, receivers recorded ambient noise sources for 30 d. These recordings were subjected to data analysis and processing using novel methodology developed in our study and used for imaging the subsurface geology of the Kylylahti mine area.
Thierry Camelbeeck, Koen Van Noten, Thomas Lecocq, and Marc Hendrickx
Solid Earth, 13, 469–495, https://doi.org/10.5194/se-13-469-2022, https://doi.org/10.5194/se-13-469-2022, 2022
Short summary
Short summary
Over the 20th century, shallow damaging seismicity occurred in and near the Hainaut coal mining area in Belgium. We provide an overview of earthquake parameters and impacts, combining felt and damage testimonies and instrumental measurements. Shallower earthquakes have a depth and timing compatible with mining activity. The most damaging events occurred deeper than the mines but could still have been triggered by mining-caused crustal changes. Our modelling can be applied to other regions.
Bogdan Grecu, Felix Borleanu, Alexandru Tiganescu, Natalia Poiata, Raluca Dinescu, and Dragos Tataru
Solid Earth, 12, 2351–2368, https://doi.org/10.5194/se-12-2351-2021, https://doi.org/10.5194/se-12-2351-2021, 2021
Short summary
Short summary
The lockdown imposed in Romania to prevent the spread of COVID-19 has significantly impacted human activity across the country. By analyzing the ground vibrations recorded at seismic stations, we were able to monitor the changes in human activity before and during the lockdown.
The reduced human activity during the lockdown has also provided a good opportunity for stations sited in noisy urban areas to record earthquake signals that would not have been recorded under normal conditions.
Alessio Spurio Mancini, Davide Piras, Ana Margarida Godinho Ferreira, Michael Paul Hobson, and Benjamin Joachimi
Solid Earth, 12, 1683–1705, https://doi.org/10.5194/se-12-1683-2021, https://doi.org/10.5194/se-12-1683-2021, 2021
Short summary
Short summary
The localization of an earthquake is affected by many uncertainties. To correctly propagate these uncertainties into an estimate of the earthquake coordinates and their associated errors, many simulations of seismic waves are needed. This operation is computationally very intensive, hindering the feasibility of this approach. In this paper, we present a series of deep-learning methods to produce accurate seismic traces in a fraction of the time needed with standard methods.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Rebecca O. Salvage and David W. Eaton
Solid Earth, 12, 765–783, https://doi.org/10.5194/se-12-765-2021, https://doi.org/10.5194/se-12-765-2021, 2021
Short summary
Short summary
Small earthquakes in Alberta and north-east British Columbia have been previously ascribed to industrial activities. The COVID-19 pandemic forced almost all these activities to stop for ~ 4 months. However, unexpectedly, earthquakes still occurred during this time. Some of these earthquakes may be natural and some the result of earthquakes > M6 occurring around the world. However, ~ 65 % of the earthquakes detected may be the remnants of previous fluid injection in the area (
latent seismicity).
Jordi Diaz, Mario Ruiz, and José-Antonio Jara
Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, https://doi.org/10.5194/se-12-725-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic lockdown, the city of Barcelona was covered by a network of 19 seismometers. The results confirm that the quieting of human activity during lockdown has resulted in a reduction of seismic vibrations. The different lockdown phases in Barcelona are recognized consistently at most of the seismic stations. Our contribution demonstrates that seismic noise can be used as a free and reliable tool to monitor human activity in urban environments.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Alexandr Smirnov, Marine De Carlo, Alexis Le Pichon, Nikolai M. Shapiro, and Sergey Kulichkov
Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, https://doi.org/10.5194/se-12-503-2021, 2021
Short summary
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Andrea Cannata, Flavio Cannavò, Giuseppe Di Grazia, Marco Aliotta, Carmelo Cassisi, Raphael S. M. De Plaen, Stefano Gresta, Thomas Lecocq, Placido Montalto, and Mariangela Sciotto
Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, https://doi.org/10.5194/se-12-299-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic, most countries put in place social interventions, aimed at restricting human mobility, which caused a decrease in the seismic noise, generated by human activities and called anthropogenic seismic noise. In densely populated eastern Sicily, we observed a decrease in the seismic noise amplitude reaching 50 %. We found similarities between the temporal patterns of seismic noise and human mobility, as quantified by mobile-phone-derived data and ship traffic data.
Tieyuan Zhu, Junzhu Shen, and Eileen R. Martin
Solid Earth, 12, 219–235, https://doi.org/10.5194/se-12-219-2021, https://doi.org/10.5194/se-12-219-2021, 2021
Short summary
Short summary
We describe the Fiber Optic foR Environmental SEnsEing (FORESEE) project in Pennsylvania, USA, the first continuous-monitoring distributed acoustic sensing (DAS) fiber array in the eastern USA. With the success of collecting 1 year of continuous DAS recordings using nearly 5 km of telecommunication fiber underneath the university campus, we conclude that DAS along with telecommunication fiber will potentially serve the purpose of continuous near-surface seismic monitoring in populated areas.
Sebastian von Specht, Ugur Ozturk, Georg Veh, Fabrice Cotton, and Oliver Korup
Solid Earth, 10, 463–486, https://doi.org/10.5194/se-10-463-2019, https://doi.org/10.5194/se-10-463-2019, 2019
Short summary
Short summary
We show the landslide response to the 2016 Kumamoto earthquake (Mw 7.1) in central Kyushu (Japan). Landslides are concentrated to the northeast of the rupture, coinciding with the propagation direction of the earthquake. This azimuthal variation in the landslide concentration is linked to the seismic rupture process itself and not to classical landslide susceptibility factors. We propose a new ground-motion model that links the seismic radiation pattern with the landslide distribution.
Cited articles
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., and Li, X.: Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection, Sci. Rep., 9, 1328, https://doi.org/10.1038/s41598-018-36675-8, 2019.
Aki, K. and Richards, P. G.: Quantitative seismology, 2nd ed., University Science Books, Sausalito, Calif, 700 pp., 2002.
Anderson, J. G. and Hough, S. E.: A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies, B. Seismol. Soc. Am., 74, 1969–1993, 1984.
Brune, J. N.: Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997–5009, https://doi.org/10.1029/JB075i026p04997, 1970.
Costa, L., Martins, H. F., Martin-Lopez, S., Fernandez-Ruiz, M. R., and Gonzalez-Herraez, M.: Fully Distributed Optical Fiber Strain Sensor With Hz Sensitivity, J. Lightwave Technol., 37, 4487–4495, https://doi.org/10.1109/JLT.2019.2904560, 2019.
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., and Freifeld, B. M.: Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama: Field testing of MBM, Geophys. Prospect., 64, 1318–1334, https://doi.org/10.1111/1365-2478.12324, 2016.
Deichmann, N.: Local Magnitude, a Moment Revisited, B. Seismol. Soc. Am., 96, 1267–1277, https://doi.org/10.1785/0120050115, 2006.
Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems, P. Roy. Soc. Lond. A Mat., 241, 376–396, https://doi.org/10.1098/rspa.1957.0133, 1957.
Fang, G., Li, Y. E., Zhao, Y., and Martin, E. R.: Urban Near-Surface Seismic Monitoring Using Distributed Acoustic Sensing, Geophys. Res. Lett., 47, e2019GL086115, https://doi.org/10.1029/2019GL086115, 2020.
Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities: THE GMSH PAPER, Int. J. Numer. Meth. Eng., 79, 1309–1331, https://doi.org/10.1002/nme.2579, 2009.
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., and Krawczyk, C. M.: Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features, Nat. Commun., 9, 2509, https://doi.org/10.1038/s41467-018-04860-y, 2018.
Komatitsch, D., Vilotte, J.-P., Cristini, P., Labarta, J., Le Goff, N., Le Loher, P., Liu, Q., Martin, R., Matzen, R., Morency, C., Peter, D., Tape, C., Tromp, J., and Xie, Z.: SPECFEM2D v7.0.0 [software], Computational Infrastructure for Geodynamics, https://geodynamics.org/cig/software/specfem2d/ (last access: 1 May 2020), 2012.
Kuvshinov, B. N.: Interaction of helically wound fibre-optic cables with plane seismic waves: Interaction of fibre-optic cables, Geophys. Prospect., 64, 671–688, https://doi.org/10.1111/1365-2478.12303, 2016.
Lamare, P.: The MEUST deep sea infrastructure in the Toulon site, edited by: Capone, A., De Bonis, G., Di Palma, I., and Perrina, C., EPJ Web of Conferences, 116, 09001, https://doi.org/10.1051/epjconf/201611609001, 2016.
Lellouch, A., Lindsey, N. J., Ellsworth, W. L. and Biondi, B. L.: Comparison between Distributed Acoustic Sensing and Geophones: Downhole Microseismic Monitoring of the FORGE Geothermal Experiment, Seismol. Res. Lett., 91, 3256–3268, https://doi.org/10.1785/0220200149, 2020.
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., and Ajo-Franklin, J. B.: Fiber-Optic Network Observations of Earthquake Wavefields: Fiber-Optic Earthquake Observations, Geophys. Res. Lett., 44, 11792–11799, https://doi.org/10.1002/2017GL075722, 2017.
Lindsey, N. J., Dawe, T. C., and Ajo-Franklin, J. B.: Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing, Science, 366, 1103–1107, https://doi.org/10.1126/science.aay5881, 2019.
Lindsey, N. J., Rademacher, H., and Ajo-Franklin, J. B.: On the Broadband Instrument Response of Fiber-Optic DAS Arrays, J. Geophys. Res.-Sol. Ea., 125, e2019JB018145, https://doi.org/10.1029/2019JB018145, 2020.
Lior, I. and Ziv, A.: The Relation between Ground Acceleration and Earthquake Source Parameters: Theory and Observations, B. Seismol. Soc. Am., 107, 1012–1018, https://doi.org/10.1785/0120160251, 2017.
Lior, I. and Ziv, A.: The Relation Between Ground Motion, Earthquake Source Parameters, and Attenuation: Implications for Source Parameter Inversion and Ground Motion Prediction Equations, J. Geophys. Res.-Sol. Ea., 123, 5886–5901, https://doi.org/10.1029/2018JB015504, 2018.
Lior, I. and Ziv, A.: Generic Source Parameter Determination and Ground‐Motion Prediction for Earthquake Early Warning, Bulletin of the Seismological Society of America, 110, 345–356, https://doi.org/10.1785/0120190140, 2020.
Lior, I., Sladen, A., Rivet, D., Ampuero, J., Hello, Y., Becerril, C., Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., and Markou, C.: On the Detection Capabilities of Underwater Distributed Acoustic Sensing, J. Geophys. Res.-Sol. Ea., 126, e2020JB020925, https://doi.org/10.1029/2020JB020925, 2021.
Luco, J. E.: On strong ground motion estimates based on models of the radiated spectrum, B. Seismol. Soc. Am., 75, 641–649, 1985.
Madariaga, R.: Dynamics of an expanding circular fault, B. Seismol. Soc. Am., 66, 639–666, 1976.
Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z., and Detomo, R.: Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling: Distributed acoustic sensing (DAS) for reservoir monitoring with VSP, Geophys. Prospect., 62, 679–692, https://doi.org/10.1111/1365-2478.12116, 2014.
McNamara, D. E. and Buland, R. P.: Ambient Noise Levels in the Continental United States, B. Seismol. Soc. Am., 94, 1517–1527, https://doi.org/10.1785/012003001, 2004.
Neidell, N. S. and Taner, M. T.: Semblance and other Coherency Measures for Multichannel Data, Geophysics, 36, 482–497, https://doi.org/10.1190/1.1440186, 1971.
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., and Fichtner, A.: Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves, Bulletin of the Seismological Society of America, 111, 1–10, https://doi.org/10.1785/0120200185, 2020.
Papp, B., Donno, D., Martin, J. E., and Hartog, A. H.: A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments: Geophysical response of fibre optic sensors, Geophys. Prospect., 65, 1186–1204, https://doi.org/10.1111/1365-2478.12471, 2017.
Pastor-Graells, J., Martins, H. F., Garcia-Ruiz, A., Martin-Lopez, S., and Gonzalez-Herraez, M.: Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses, Opt. Express, 24, 13121, https://doi.org/10.1364/OE.24.013121, 2016.
R. Fernández-Ruiz, M., Costa, L., and F. Martins, H.: Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR Technology, Sensors, 19, 4368, https://doi.org/10.3390/s19204368, 2019.
Sato, T. and Hirasawa, T.: Body wave spectra from propagating shear cracks, J. Phys. Earth, 21, 415–431, https://doi.org/10.4294/jpe1952.21.415, 1973.
Shi, T. and Huo, S.: Complex Semblance and Its Application, J. Earth Sci., 30, 849–852, https://doi.org/10.1007/s12583-018-0829-x, 2019.
Singh, S., Capdeville, Y., and Igel, H.: Correcting wavefield gradients for the effects of local small-scale heterogeneities, Geophys. J. Int., 220, 996–1011, https://doi.org/10.1093/gji/ggz479, 2019.
Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., and Lamare, P.: Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables, Nat. Commun., 10, 1–8, https://doi.org/10.1038/s41467-019-13793-z, 2019.
Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., and Yamada, T.: Marine Sediment Characterized by Ocean‐Bottom Fiber-Optic Seismology, 47, https://doi.org/10.1029/2020GL088360, 2020.
Taner, M. T., Koehler, F., and Sheriff, R. E.: Complex seismic trace analysis, Geophysics, 44, 1041–1063, https://doi.org/10.1190/1.1440994, 1979.
Tatham, R. H., Keeney, J. W., and Noponen, L.: Application of the tau-p transform (slant-stack) in processing seismic reflection data, Explor. Geophys., 14, 163–172, https://doi.org/10.1071/EG983163, 1983.
van den Ende, M. P. A. and Ampuero, J.-P.: Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays, Solid Earth, 12, 915–934, https://doi.org/10.5194/se-12-915-2021, 2021.
Ventosa, S., Simon, C., and Schimmel, M.: Window length selection for optimum slowness resolution of the local-slant-stack transform, Geophysics, 77, V31–V40, https://doi.org/10.1190/geo2010-0326.1, 2012.
Walter, F., Graff, D., Lindner, F., Paitz, P., Kopfli, M., Chmiel, M., and Fichtner, A.: Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain, Nat. Commun., 11, 2436, https://doi.org/10.1038/s41467-020-15824-6, 2020.
Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., and Mellors, R. J.: Ground motion response to an ML4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays, Geophys. J. Int., 213, 2020–2036, https://doi.org/10.1093/gji/ggy102, 2018.
Webb, S. C.: Broadband seismology and noise under the ocean, Rev. Geophys., 36, 105–142, https://doi.org/10.1029/97RG02287, 1998.
Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., and Martins, H. F.: Distributed sensing of microseisms and teleseisms with submarine dark fibers, Nat. Commun., 10, 5778, https://doi.org/10.1038/s41467-019-13262-7, 2019.
Yu, C., Zhan, Z., Lindsey, N. J., Ajo-Franklin, J. B., and Robertson, M.: The Potential of DAS in Teleseismic Studies: Insights From the Goldstone Experiment, Geophys. Res. Lett., 46, 1320–1328, https://doi.org/10.1029/2018GL081195, 2019.
Zhan, Z.: Distributed Acoustic Sensing Turns Fiber-Optic Cables into Sensitive Seismic Antennas, Seismol. Res. Lett., 91, 1–15, https://doi.org/10.1785/0220190112, 2020.
Short summary
The increasing use of distributed acoustic sensing (DAS) inhibits the transformation of optical fibers into dense arrays of seismo-acoustic sensors. Here, DAS strain records are converted to ground motions using the waves' apparent velocity. An algorithm for velocity determination is presented, accounting for velocity variations between different seismic waves. The conversion allows for robust determination of fundamental source parameters, earthquake magnitude and stress drop.
The increasing use of distributed acoustic sensing (DAS) inhibits the transformation of optical...
Special issue