Articles | Volume 12, issue 9
https://doi.org/10.5194/se-12-2087-2021
https://doi.org/10.5194/se-12-2087-2021
Research article
 | 
14 Sep 2021
Research article |  | 14 Sep 2021

Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle

Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley

Related authors

Primordial-material preservation and Earth lower mantle structure: the influence of recycled oceanic crust
Matteo Desiderio, Anna Johanna Pia Gülcher, and Maxim Dionys Ballmer
Solid Earth, 17, 55–84, https://doi.org/10.5194/se-17-55-2026,https://doi.org/10.5194/se-17-55-2026, 2026
Short summary

Cited articles

Allegre, C. J. and Turcotte, D. L.: Implications of a two-component marble-cake mantle, Nature, 323, 123–127, 1986. a, b
Andrault, D., Muñoz, M., Pesce, G., Cerantola, V., Chumakov, A., Kantor, I., Pascarelli, S., Rüffer, R., and Hennet, L.: Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event, Geochem. Perspect. Lett., 6, 5–10, https://doi.org/10.7185/geochemlet.1801, 2017. a
Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C., and Ballaran, T. B.: Deep magma ocean formation set the oxidation state of Earth's mantle, Science, 365, 903–906, https://doi.org/10.1126/science.aax8376, 2019. a
Badro, J., Siebert, J., and Nimmo, F.: An early geodynamo driven by exsolution of mantle components from Earth's core, Nature, 536, 326–328, https://doi.org/10.1038/nature18594, 2016. a
Ballmer, M. D., Schmerr, N. C., Nakagawa, T., and Ritsema, J.: Compositional mantle layering revealed by slab stagnation at 1000-km depth, Sci. Adv., 1, 1–10, https://doi.org/10.1126/sciadv.1500815, 2015. a
Download
Short summary
The lower mantle extends from 660–2890 km depth, making up > 50 % of the Earth’s volume. Its composition and structure, however, remain poorly understood. In this study, we investigate several hypotheses with computer simulations of mantle convection that include different materials: recycled, dense rocks and ancient, strong rocks. We propose a new integrated style of mantle convection including piles, blobs, and streaks that agrees with various observations of the deep Earth.
Share