Articles | Volume 12, issue 10
https://doi.org/10.5194/se-12-2277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Hamed Fazlikhani
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Wolfgang Bauer
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Harald Stollhofen
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Helga de Wall
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Gerald Gabriel
Leibniz-Institut für Angewandte Geophysik, Stilleweg 2, 30655
Hanover, Germany
Institut für Geologie, Leibniz Universität Hannover,
Callinstraße 30, 30167 Hanover, Germany
Related authors
No articles found.
Sarah Beraus, Thomas Burschil, Hermann Buness, Daniel Köhn, Thomas Bohlen, and Gerald Gabriel
Sci. Dril., 33, 237–248, https://doi.org/10.5194/sd-33-237-2024, https://doi.org/10.5194/sd-33-237-2024, 2024
Short summary
Short summary
We conducted seismic crosshole experiments with a sparker source in order to obtain a high-resolution subsurface velocity model in the glacially overdeepened Tannwald Basin (ICDP site 5068_1). The data show complex wave fields that contain a lot of information but also present challenges. Nevertheless, isotropic first-arrival travel-time tomography provides the first high-resolution subsurface models that correlate well with the sonic logs and the core recovered from one of the three boreholes.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Simon Freitag, Michael Drews, Wolfgang Bauer, Florian Duschl, David Misch, and Harald Stollhofen
Solid Earth, 13, 1003–1026, https://doi.org/10.5194/se-13-1003-2022, https://doi.org/10.5194/se-13-1003-2022, 2022
Short summary
Short summary
The carbonates of the Malm are the main reservoir rocks for hydrothermal heat and power generation in southern Germany. To better understand these buried rocks, the carbonates exposed in northern Bavaria are often investigated. As the petrophysical properties of carbonates strongly depend on their subsidence history and maximum burial depth, we will investigate this issue by analyzing mudstones, which indirectly store this type of information and are found just below the Malm carbonates.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Martin Kobe, Gerald Gabriel, Adelheid Weise, and Detlef Vogel
Solid Earth, 10, 599–619, https://doi.org/10.5194/se-10-599-2019, https://doi.org/10.5194/se-10-599-2019, 2019
Short summary
Short summary
Subrosion, i.e. the underground leaching of soluble rocks, causes disastrous sinkhole events worldwide. We investigate the accompanying mass transfer using quarter-yearly time-lapse gravity campaigns over 4 years in the town of Bad Frankenhausen, Germany. After correcting for seasonal soil water content, we find evidence of underground mass loss and attempt to quantify its amount. This is the first study of its kind to prove the feasibility of this approach in an urban area.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
The influence of vertical lithological contrasts on strike-slip fault behavior: Insights from analogue models
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Along-strike variation of volcanic addition controlling post breakup sedimentary infill: Pelotas margin, Austral South Atlantic
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Effects of basal drag on subduction dynamics from 2D numerical models
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
The enigmatic curvature of Central Iberia and its puzzling kinematics
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Gonzalo Yanez, Jose Piquer, and Orlando Rivera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1338, https://doi.org/10.5194/egusphere-2024-1338, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organized in segments where large events are repeated every 100–300 years, depends on large scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coast line morphology).
Sandra González-Muñoz, Guido Schreurs, Timothy Schmid, and Fidel Martín-González
EGUsphere, https://doi.org/10.5194/egusphere-2024-852, https://doi.org/10.5194/egusphere-2024-852, 2024
Short summary
Short summary
This work investigates the influence of vertical rheological contrasts on the nucleation and behavior of strike-slip faults, using analogue modelling. The introduction of rheological contrasts was achieved using quartz sand and microbeads grains. The study shows how the strike, type and evolution of the faults strongly depend on the characteristic of the lithology and its contact orientation. The results are comparable with the fault systems observed in the NW of the Iberian Peninsula.
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Marlise Colling Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
EGUsphere, https://doi.org/10.5194/egusphere-2023-2584, https://doi.org/10.5194/egusphere-2023-2584, 2023
Short summary
Short summary
The Atlantic Ocean results from the break-up of the palaeocontinent Gondwana. Since then, the Brazilian and African margins record a thick volcanic layers and received a large contribution of sediments recording this process. We show the influence of early volcanics on the sediments deposited later by analysing the Pelotas Margin, south of Brazil. The volume of volcanic layers is not homogeneous along this sector, promoting variation in the space available to accommodate later sediments.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Torsten Hundebøl Hansen, Ole Rønø Clausen, and Katrine Juul Andresen
Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, https://doi.org/10.5194/se-12-1719-2021, 2021
Short summary
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Short summary
Many of the world's hydrocarbon resources are found in rifted sedimentary basins. Some rifts experience multiple phases of extension and inversion. This results in complicated oil and gas generation, migration, and entrapment histories. We present examples of basins in the Western Desert of Egypt and the western Black Sea that were inverted multiple times, sometimes separated by additional phases of extension. We then discuss how these complex deformation histories impact exploration campaigns.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020, https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary
Short summary
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and winding orogeny that today transects Europe, northwestern Africa, and eastern North America. This orogen is characterized by an
Sshape corrugated geometry in Iberia. This paper presents the advances and milestones in our understanding of the geometry and kinematics of the Central Iberian curve from the last decade with particular attention paid to structural and paleomagnetic studies.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Cited articles
Asch, K.: IGME 5000: 1:5 Million International Geological Map of Europe and
Adjacent Areas, Bundesanstalt für Geowissenschaften und Rohstoffe,
Hannover, 2005.
Barrier, E., Chamot-Rooke, N., and Giordano, G.: Geodynamic map of the
Mediterranean, 2004.
Bauberger, W. and Cramer, P. (Eds.): Erl. Geol. Kt. Bayern 1:25.000, Bl.
6838 Regenstauf, München, 220 pp., 1961.
Beer, W. W.: Die strukturelle Entwicklung der Metamorphite des Bayerischen
Waldes, PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät,
Georg-August-Universität Göttingen, Göttingen, 186 pp., 1981.
Behr, H.-J., Große, S., Heinrichs, T., and Wolf, U.: A Reinterpretation
of the Gravity Field in the Surroundings of the KTB Drill Site –
Implications for Granite Plutonism and Terrane Tectonics in the Variscan,
in: The German continental deep drilling program (KTB): Site selection
studies in the Oberpfalz and Schwarzwald, edited by: Emmermann, R. and Wohlenberg, J.,
Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong,
501–525, 1989.
Blümel, P.: Die Analyse von Kristallisation und Deformation einer metamorphen Zonenfolge im Moldanubikum von Lam-Bodenmais, E-Bayern, N. Jb. Miner.
Abh., 118, 74–96, 1972.
Blümel, P. and Schreyer, W.: Phase Relations in Pelitic and Psammitic
Gneisses of the Sillimanite-Potash Feldspar and Cordierite-Potash Feldspar
Zones in the Moldanubicum of the Lam-Bodenmais Area, Bavaria, J. Petrol., 18,
431–459, https://doi.org/10.1093/petrology/18.3.431, 1977.
Blümel, P. and Schreyer, W.: Progressive regional low-pressure
metamorphism in Moldanubian metapelites of the northern Bavarian Forest,
Germany, Krystallinikum, 12, 7–30, 1976.
Brandmayr, M., Dallmeyer, R. D., Handler, R., and Wallbrecher, E.: Conjugate
shear zones in the Southern Bohemian Massif (Austria): implications for
Variscan and Alpine tectonothermal activity, Tectonophysics, 248, 97–116,
https://doi.org/10.1016/0040-1951(95)00003-6, 1995.
Brown, M.: The definition of metatexis, diatexis and migmatite, Proc. Geol.
Ass., 84, 371–382, https://doi.org/10.1016/S0016-7878(73)80021-5, 1973.
Burbank, D. W. and Anderson, R. S.: Tectonic geomorphology, 2nd ed., J.
Wiley & Sons, Chichester, West Sussex, Hoboken, N.J, 454 pp., 2012.
Butler, R. W. H., Harris, N. B. W., and Whittington, A. G.: Interactions
between deformation, magmatism and hydrothermal activity during active
crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas,
Mineral. Mag., 61, 37–52, https://doi.org/10.1180/minmag.1997.061.404.05,
1997.
Büttner, S. H.: Late Variscan stress-field rotation initiating escape
tectonics in the south-western Bohemian Massif: a far field response to
late-orogenic extension, J. Geosci., 52, 29–43,
https://doi.org/10.3190/jgeosci.004, 2007.
Büttner, S. H.: The geometric evolution of structures in granite during
continuous deformation from magmatic to solid-state conditions: an example
from the central European Variscan Belt, American Mineral., 84, 1781–1792,
https://doi.org/10.2138/am-1999-11-1207, 1999.
Carlé, W.: Bau und Entwicklung der Südwestdeutschen Großscholle,
Beihefte zum Geologischen Jahrbuch, 16, Schweizerbart Science Publishers,
Stuttgart, 272 pp., 1955.
Chen, F. and Siebel, W.: Zircon and titanite geochronology of the
Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: Pulses
of the late Variscan magmatic activity, Eur. J. Mineral., 16, 777–788,
https://doi.org/10.1127/0935-1221/2004/0016-0777, 2004.
Chen, F., Siebel, W., and Satir, M.: Geochemical and isotopic composition
and inherited zircon ages as evidence for lower crustal origin of two
Variscan S-type granites in the NW Bohemian Massif, Int. J. Earth Sci.
(Geol. Rundsch.), 92, 173–184, https://doi.org/10.1007/s00531-003-0310-6,
2003.
Chen, G.-N. and Grapes, R.: Granite Genesis: In-Situ Melting and Crustal
Evolution, Springer Science + Business Media B.V, Dordrecht, 278 pp., 2007.
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.1243862, 2021.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in
science communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020.
Cymerman, Z., Piasecki, M. A. J., and Seston, R.: Terranes and terrane
boundaries in the Sudetes, northeast Bohemian Massif, Geol. Mag., 134,
717–725, https://doi.org/10.1017/S0016756897007255, 1997.
Daurer, A.: Das Moldanubikum im Bereich der Donaustörung zwischen
Jochenstein und Schlögen (Oberösterreich), Mitt. Ges. Geol.
Bergbaustud. Österr., 23, 1–54, 1976.
Davis, J. C.: Statistics and data analysis in geology, 3rd ed., Wiley, New
York, 638 pp., 2002.
de Wall, H., Schaarschmidt, A., Kämmlein, M., Gabriel, G., Bestmann, M.,
and Scharfenberg, L.: Subsurface granites in the Franconian Basin as the
source of enhanced geothermal gradients: a key study from gravity and
thermal modeling of the Bayreuth Granite, Int. J. Earth Sci. (Geol.
Rundsch.), 108, 1913–1936, https://doi.org/10.1007/s00531-019-01740-8,
2019.
Dietl, C., Gößmann, M., and de Wall, H.: Kombinierte aktive und
passive Plutonplatznahme in einer verdickten Kruste - Erste Ergebnisse von
gesteinsmagnetischen und petrologischen Untersuchungen am Fürstensteiner
lntrusivkomplex (Bayerischer Wald), Z. dt. geol. Ges., 155, 311–328, 2005.
Drury, S. A.: Image interpretation in geology, 2. ed., Chapman & Hall,
London, 283 pp., 1987.
Earth Resources Observation And Science Center: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global [data set], https://doi.org/10.5066/F7PR7TFT, 2017.
Echtler, H. P. and Chauvet, A.: Carboniferous convergence and subsequent
crustal extension in the southern Schwarzwald (SW Germany), Geodin. Acta, 5,
37–49, https://doi.org/10.1080/09853111.1992.11105218, 1992.
Fatka, O. and Mergl, M.: The “microcontinent” Perunica: status and story 15
years after conception, Geol. Soc. Spec. Publ., 325, 65–101,
https://doi.org/10.1144/SP325.4, 2009.
Finger, F. and René, M.: A Comment on “Two Distinctive Granite Suites in the
SW Bohemian Massif and their Record of Emplacement: Constraints from
Geochemistry and Zircon 207Pb/206Pb Chronology” by Siebel et al.,
Journal of Petrology 49, 1853-1872, J. Petrol, 50, 591–593,
https://doi.org/10.1093/petrology/egp013, 2009.
Finger, F. and Clemens, J. D.: Migmatization and “secondary” granitic
magmas: effects of emplacement and crystallization of “primary” granitoids
in Southern Bohemia, Austria, Contrib. Mineral. and Petrol., 120, 311–326,
https://doi.org/10.1007/BF00306510, 1995.
Finger, F., Dunkley, D. J., and René, M.: Remnants of Early
Carboniferous I-type granodiorite plutons in the Bavarian Forest and their
bearing on the tectonic interpretation of the south-western sector of the
Bohemian Massif (Bavarian Zone), J. Geosci., 55, 321–332,
https://doi.org/10.3190/jgeosci.080, 2010.
Finger, F., Gerdes, A., Janoušek, V., René, M., and Riegler, G.:
Resolving the Variscan evolution of the Moldanubian sector of the Bohemian
Massif: the significance of the Bavarian and the Moravo-Moldanubian
tectonometamorphic phases, J. Geosci., 52, 9–28,
https://doi.org/10.3190/jgeosci.005, 2007.
Franke, W.: The mid-European segment of the Variscides: tectonostratigraphic
units, terrane boundaries and plate tectonic evolution, Geol. Soc. Spec.
Publ., 179, 35–61, https://doi.org/10.1144/GSL.SP.2000.179.01.05, 2000.
Franke, W.: Tectonostratigraphic units in the Variscan belt of central
Europe, in: Terranes in the Circum-Atlantic Paleozoic Orogens, edited by:
Dallmeyer, R. D., Geological Society of America, Boulder, Colo., 67–90,
https://doi.org/10.1130/SPE230-p67, 1989.
Freudenberger, W.: Tektonik, in: Erläuterungen zur Geologischen Karte
von Bayern 1:500 000, 4th ed., edited by: Bayerisches Geologisches
Landesamt, München, 259–265, 1996.
Freudenberger, W. and Schwerd, K.: Tektonische Karte von Bayern 1:1000000,
in: Erläuterungen zur Geologischen Karte von Bayern 1:500 000, 4th ed.,
edited by: Bayerisches Geologisches Landesamt, München, 1996.
Führer, F. X.: Die Anomalien der Schwere am Südwest-Rand des
Bayerischen Waldes und ihre Interpretation, Int. J. Earth Sci. (Geol.
Rundsch.), 67, 1078–1096, https://doi.org/10.1007/BF01983255, 1978.
Fürst, M., Krupp, R., and Müller, R.: Die photogeologische
Linearanalyse und ihre Anwendung bei der Uranprospektion in der Oberpfalz,
Erlanger geol. Abh., 3–33, 1978.
Galadí-Enríquez, E., Dörr, W., Zulauf, G.,
Galindo-Zaldívar, J., Heidelbach, F., and Rohrmüller, J.: Variscan
deformation phases in the southwestern Bohemian Massif: new constraints from
sheared granitoids, Z. dt. Ges. Geowiss., 161, 1–23,
https://doi.org/10.1127/1860-1804/2010/0161-0001, 2010.
Galadí-Enríquez, E., Kroemer, E., Loth, G., Pürner, T., Raum,
G., Teipel, U., and Rohrmüller, J.: Erdgeschichte des Oberpfälzer
Waldes: Geologischer Bau, Gesteine, Sehenswürdigkeiten,
Erläuterungen zur Geologischen Karte des Oberpfälzer Waldes,
Augsburg, 110 pp., 2009a.
Galadí-Enríquez, E., Kroemer, E., Loth, G., Pürner, T., Raum,
G., Teipel, U., and Rohrmüller, J.: Geologische Karte des
Oberpfälzer Waldes 1:150000, Bayerisches Landesamt für Umwelt,
Augsburg, 2009b.
Gebauer, D.: Erdgeschichtliche Entwicklung und geologischer Überblick,
in: Erl. Geol. Kt. Bayern 1:25.000, Bl. 7446 Passau, edited by: Bauberger,
W. and Unger, H. J., München, 13–22, 1984.
Gerdes, A., Finger, F., and Parrish, R. R.: Southwestward progression of a
late-orogenic heat front in the Moldanubian Zone of the Bohemian Massif and
formation of the Austro-Bavarian anatexite belt, Geophys. Res. Abstr., 8, SRef-ID: 1607-7962/gra/EGU06-A-10698,
2006.
Goldsworthy, M. and Jackson, J.: Active normal fault evolution in Greece
revealed by geomorphology and drainage patterns, J. Geol. Soc., 157,
967–981, https://doi.org/10.1144/jgs.157.5.967, 2000.
Grauert, B., Hänny, R., and Soptrajanova, G.: Geochronology of a
Polymetamorphic and Anatectic Gneiss Region: The Moldanubicum of the Area
Lam-Deggendorf, Eastern Bavaria, Germany, Contrib. Mineral. Petrol., 45,
37–63, https://doi.org/10.1007/BF00371136, 1974.
Guy, A., Edel, J.-B., Schulmann, K., Tomek, Č., and Lexa, O.: A
geophysical model of the Variscan orogenic root (Bohemian Massif):
Implications for modern collisional orogens, Lithos, 124, 144–157,
https://doi.org/10.1016/j.lithos.2010.08.008, 2011.
Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J., Watkins, H.,
Timms, N. E., Gomez-Rivas, E., and Smith, M.: FracPaQ: A
MATLAB™ toolbox for the quantification of fracture patterns, J.
Struct. Geol., 95, 1–16, https://doi.org/10.1016/j.jsg.2016.12.003, 2017.
Hejl, E., Coyle, D., Nand Lal, Van den Haute, P., and Wagner, G. A.:
Fission-track dating of the western border of the Bohemian Massif:
thermochronology and tectonic implications, Int. J. Earth Sci. (Geol.
Rundsch.), 86, 210–219, https://doi.org/10.1007/s005310050133, 1997.
Horn, P., Köhler, H., and Müller-Sohnius, D.:
Rb-Sr-Isotopengeochemie hydrothermaler Quarze des Bayerischen Pfahles und
eines Flusspat-Schwerspatganges von Nabburg-Wölsendorf/Bundesrepublik
Deutschland, Chem. Geol. Isot. Geosci. Sect., 58, 259–272,
https://doi.org/10.1016/0168-9622(86)90015-1, 1986.
Jordan, G., Meijninger, B. M. L., van Hinsbergen, D. J. J., Meulenkamp, J. E., and van
Dijk, P. M.: Extraction of morphotectonic features from DEMs: Development
and applications for study areas in Hungary and NW Greece, Int. J. Appl.
Earth Obs. Geoinf., 7, 163–182, https://doi.org/10.1016/j.jag.2005.03.003,
2005.
Kalt, A., Berger, A., and Blümel, P.: Metamorphic Evolution of
Cordierite-Bearing Migmatites from the Bayerische Wald (Variscan Belt,
Germany), J. Petrol, 40, 601–627, https://doi.org/10.1093/petroj/40.4.601,
1999.
Kalt, A., Corfu, F., and Wijbrans, J. R.: Time calibration of a P-T path
from a Variscan high-temperature low-pressure metamorphic complex
(Bayerische Wald, Germany), and the detection of inherited monazite,
Contrib. Mineral. and Petrol., 138, 143–163,
https://doi.org/10.1007/s004100050014, 2000.
Keller, E. A. and Pinter, N.: Active tectonics: Earthquakes, uplift, and
landscape, 2nd ed., Prentice Hall earth science series, Prentice Hall, Upper
Saddle River NJ, XIII, 362 S, 2002.
Klein, T., Kiehm, S., Siebel, W., Shang, C. K., Rohrmüller, J.,
Dörr, W., and Zulauf, G.: Age and emplacement of late-Variscan granites
of the western Bohemian Massif with main focus on the Hauzenberg granitoids
(European Variscides, Germany), Lithos, 102, 478–507,
https://doi.org/10.1016/j.lithos.2007.07.025, 2008.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Klomínský, J., Jarchovský, T., and Rajpoot, G. S.: ATLAS of plutonic
rocks and orthogneisses in the Bohemian Massif: MOLDANUBICUM, Czech
Geological Survey, Prague, 199 pp., 2010.
Kossmat, F.: Gliederung des varistischen Gebirgebaus, Abhandlungen des
Sächsischen Geologischen Landesamts, 1, 1–39, 1927.
Krohe, A.: Variscan tectonics of central Europe: Postaccretionary intraplate
deformation of weak continental lithosphere, Tectonics, 15, 1364–1388,
https://doi.org/10.1029/96TC01110, 1996.
Kroner, U. and Romer, R. L.: Two plates – Many subduction zones: The
Variscan orogeny reconsidered, Gondwana Research, 24, 298–329,
https://doi.org/10.1016/j.gr.2013.03.001, 2013.
Kroner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Hann, H. P.,
Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T. C.,
Zedler, H., Zeh, A., and Zulauf, G.: Variscan Tectonics, in: The geology of
Central Europe: Volume 1: Precambrian and Palaeozoic, edited by: McCann, T.,
The Geological Society London, London, 599–664, 2008.
Lehrberger, G., Saurle, A., and Hartmann, U.: Anwendung des SAR-DGM bei der
tektonischen Interpretation des Moldanubikums am Westrand der Böhmischen
Masse, in: Geologica Bavarica Nr. 107: Zur Geologie der Nordostbayerischen
Grundgebirgsregion, edited by: Bayerisches Geologisches Landesamt,
München, 269–280, 2003.
Leibniz-Institut für Angewandte Geophysik: Schwerekarte der
Bundesrepublik Deutschland 1:1 000 000, Bouguer Anomalien, LIAG, Hannover,
2010.
Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K., and
Tonk, C.: West African provenance for Saxo-Thuringia (Bohemian Massif): Did
Armorica ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and
the Nd-isotopic record, Int. J. Earth Sci. (Geol. Rundsch.), 93, 683–705,
https://doi.org/10.1007/s00531-004-0413-8, 2004.
Lowrie, W.: Fundamentals of Geophysics, 2. ed., 4th printing, Cambridge
Univ. Press, Cambridge, 381 pp., 2007.
Matte, P.: Tectonics and plate tectonics model for the Variscan belt of
Europe, Tectonophysics, 126, 329–374,
https://doi.org/10.1016/0040-1951(86)90237-4, 1986.
Mattern, F.: Late Carboniferous to early Triassic shear sense reversals at
strike-slip faults in eastern Bavaria, Zbl. Geol. Paläontol. Teil I,
1993, 1471–1490, 1995.
Meyer, R. K. F.: Tektonik des Deckgebirges, in: Erl. Geol. Kt. Bayern
1:25.000, Bl. 6639 Wackersdorf, edited by: Meyer, R. K. F. and Mielke, H.,
118–121, 1993.
Meyer, R. K. F.: Die Entwicklung der Pfahl-Störungszone und des
Bodenwöhrer Halbgrabens auf Blatt Wackersdorf, Erlanger geol. Abh., 117,
1–24, 1989.
Mielke, H.: Geologische Entwicklung des Kristallins, in: Erl. Geol. Kt.
Bayern 1:25.000, Bl. 6639 Wackersdorf, edited by: Meyer, R. K. F. and
Mielke, H., 10–12, 1993.
Müller, M.: Neue Vorstellungen zur Entwicklung des Nordostbayerischen
Permokarbon-Trogs aufgrund reflexionsseismischer Messungen in der Mittleren
Oberpfalz, Geol. Bl. NO-Bayern, 44, 195–224, 1994.
Neubauer, F. and Handler, R.: Variscan orogeny in the Eastern Alps and
Bohemian Massif: How do these units correlate?, Mitt. Österr. Geol.
Ges., 92, 35–59, 2000.
Pérez-Peña, J. V., Al-Awabdeh, M., Azañón, J. M., Galve, J.
P., Booth-Rea, G., and Notti, D.: SwathProfiler and NProfiler: Two new
ArcGIS Add-ins for the automatic extraction of swath and normalized river
profiles, Comput. Geosci., 104, 135–150,
https://doi.org/10.1016/j.cageo.2016.08.008, 2017.
Peterek, A., Rauche, H., Schröder, B., Franzke, H.-J., Bankwitz, P., and
Bankwitz, E.: The late- and post-Variscan tectonic evolution of the Western
Border fault zone of the Bohemian Massif (WBZ), Int. J. Earth Sci. (Geol.
Rundsch.), 86, 191–202, https://doi.org/10.1007/s005310050131, 1997.
Peterek, A., Schröder, B., and Menzel, D.: Zur postvariszischen
Krustenentwicklung des Naabgebirges und seines Rahmens, Z. geol. Wiss., 24,
293–304, 1996.
Priehäusser, G.: Felsfreistellungen, Blockmeere, Blockströme und
Blockstreuungen im Bayer. Wald, Geol. Bl. NO-Bayern, 11, 123–132, 1961.
Propach, G., Kling, M., Linhardt, E., and Rohrmüller, J.: Remnants of an
island arc within the Moldanubian zone of the Bavarian Forest, in: Geologica
Bavarica Nr. 110: Geochronologische, geochemische, petrographische und
mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische
Betrachtungen zu Sr-Isotopenstandards, edited by: Bayerisches Landesamt
für Umwelt, Augsburg, 343–377, 2008.
Propach, G., Baumann, A., Schulz-Schmalschläger, M., and Grauert, B.:
Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in
the Moldanubian zone of eastern Bavaria, Germany, N. Jb. Geol. Paläont.
Mh., 2000, 345–377, https://doi.org/10.1127/njgpm/2000/2000/345, 2000.
Prost, G. L.: Remote Sensing for Geologists: A Guide to Image
Interpretation, Gordon and Breach Science Publichers, Amsterdam, 326 pp.,
1994.
Read, H. H.: Metamorphism and migmatisation in the Ythan Valley,
Aberdeenshire, Transactions of the Edinburgh Geological Society, 15,
265–279, https://doi.org/10.1144/transed.15.1.265, 1952.
Rohrmüller, J., Artmann, C., and Teipel, U.: Das kristalline
Grundgebirge des Moldanubikums von der Donau bis zur Pfahlzone (Exkursion L
am 21. April 2017): The crystalline basement of the Moldanubian from the
Danube to the Bavarian Pfahl Zone, Jber. Mitt. oberrhein. geol. Ver., 99,
345–370, https://doi.org/10.1127/jmogv/99/0011, 2017.
Rohrmüller, J., Mielke, H., and Gebauer, D.: Gesteinsfolge des
Grundgebirges nördlich der Donau und im Molasseuntergrund, in:
Erläuterungen zur Geologischen Karte von Bayern 1:500 000, 4th ed.,
edited by: Bayerisches Geologisches Landesamt, München, 16–54, 1996.
Rosenberg, C. L.: Shear zones and magma ascent: A model based on a review of
the Tertiary magmatism in the Alps, Tectonics, 23,
https://doi.org/10.1029/2003TC001526, 2004.
Schaarschmidt, A., Haase, K. M., de Wall, H., Bestmann, M., Krumm, S., and
Regelous, M.: Upper crustal fluids in a large fault system: microstructural,
trace element and oxygen isotope study on multi-phase vein quartz at the
Bavarian Pfahl, SE Germany, Int. J. Earth Sci. (Geol. Rundsch.), 108,
521–543, https://doi.org/10.1007/s00531-018-1666-y, 2019.
Scheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., and Łapińska-Viola, R.: Manual extraction of bedrock lineaments from
high-resolution LiDAR data: methodological bias and human perception, GFF,
137, 362–372, https://doi.org/10.1080/11035897.2015.1085434, 2015.
Schreyer, W. and Blümel, P.: Progressive metamorphism in the
Moldanubicum of the Northern Bavarian Forest, Fortschritte der Mineralogie,
52, 151–165, 1974.
Schreyer, W., Kullerud, G., and Ramdohr, P.: Metamorphic conditions of ore
and country rock of the Bodenmais, Bavaria, sulfide deposit, N. Jb. Miner.
Abh., 101, 1–26, 1964.
Schröder, B.: Outline of the Permo-Carboniferous basins at the western
margin of the Bohemian Massif, Z. geol. Wiss., 16, 993–1001, 1988.
Schröder, B., Ahrendt, H., Peterek, A., and Wemmer, K.: Post-Variscan
sedimentary record of the SW margin of the Bohemian Massif: a review, Int.
J. Earth Sci. (Geol. Rundsch.), 86, 178–184,
https://doi.org/10.1007/s005310050129, 1997.
Schulmann, K., Catalán, J. R. M., Lardeaux, J. M., Janoušek, V., and
Oggiano, G.: The Variscan orogeny: extent, timescale and the formation of
the European crust, Geol. Soc. Spec. Publ., 405, 1–6,
https://doi.org/10.1144/SP405.15, 2014.
Sedlák, J., Gnojek, I., Scheibe, R., and Zabadal, S.: Gravity response
of igneous rocks in the northwestern part of the Bohemian Massif, J.
Geosci., 54, 325–342, https://doi.org/10.3190/jgeosci.054, 2009.
Sedlák, J., Gnojek, I., Zabadal, S., Farbisz, J., Cwojdzinski, S., and
Scheibe, R.: Geological interpretation of a gravity low in the central part
of the Lugian Unit (Czech Republic, Germany and Poland), J. Geosci., 52,
181–197, https://doi.org/10.3190/jgeosci.012, 2007.
Seemann, R.: Die geologischen Verhältnisse längs der Amberg-Sulzbacher und Auerbach-Pegnitzer Störung: Beitrag zur Entstehung der Amberger Erzlager, Abh. naturhist. Ges.
Nürnberg, 22, 93–149, 1925.
Siebel, W., Shang, C. K., Thern, E., Danišík, M., and
Rohrmüller, J.: Zircon response to high-grade metamorphism as revealed
by U–Pb and cathodoluminescence studies, Int. J. Earth Sci. (Geol.
Rundsch.), 101, 2105–2123, https://doi.org/10.1007/s00531-012-0772-5, 2012.
Siebel, W., Hann, H. P., Danišík, M., Shang, C. K., Berthold, C.,
Rohrmüller, J., Wemmer, K., and Evans, N. J.: Age constraints on
faulting and fault reactivation: a multi-chronological approach, Int. J.
Earth Sci. (Geol. Rundsch.), 99, 1187–1197,
https://doi.org/10.1007/s00531-009-0474-9, 2010.
Siebel, W., Shang, C. K., Reitter, E., Rohrmüller, J., and Breiter, K.: Two
Distinctive Granite Suites in the Southwestern Bohemian Massif: Reply to F.
Finger and M. René, J. Petrol, 50, 595–599,
https://doi.org/10.1093/petrology/egp012, 2009.
Siebel, W., Shang, C. K., Reitter, E., Rohrmüller, J., and Breiter, K.:
Two Distinctive Granite Suites in the SW Bohemian Massif and their Record of
Emplacement: Constraints from Geochemistry and Zircon 207Pb/206Pb
Chronology, J. Petrol, 49, 1853–1872,
https://doi.org/10.1093/petrology/egn049, 2008.
Siebel, W., Thiel, M., and Chen, F.: Zircon geochronology and compositional
record of late- to post-kinematic granitoids associated with the Bavarian
Pfahl zone (Bavarian Forest), Mineral. Petrol., 86, 45–62,
https://doi.org/10.1007/s00710-005-0091-7, 2006a.
Siebel, W., Hann, H. P., Shang, C. K., Rohrmüller, J., and Chen, F.:
Coeval late-Variscan emplacement of granitic rocks: an example from the
Regensburg Forest, NE Bavaria, N. Jb. Miner. Abh., 183, 13–26,
https://doi.org/10.1127/0077-7757/2006/0058, 2006b.
Siebel, W., Blaha, U., Chen, F., and Rohrmüller, J.: Geochronology and
geochemistry of a dyke-host rock association and implications for the
formation of the Bavarian Pfahl shear zone, Bohemian Massif, Int. J. Earth
Sci. (Geol. Rundsch.), 94, 8–23, https://doi.org/10.1007/s00531-004-0445-0,
2005.
Siebel, W., Chen, F., and Satir, M.: Late-Variscan magmatism revisited: new
implications from Pb-evaporation zircon ages on the emplacement of
redwitzites and granites in NE Bavaria, Int. J. Earth Sci. (Geol. Rundsch.),
92, 36–53, https://doi.org/10.1007/s00531-002-0305-8, 2003.
Siebel, W., Trzebski, R., Stettner, G., Hecht, L., Casten, U., Höhndorf,
A., and Müller, P.: Granitoid magmatism of the NW Bohemian Massif
revealed: gravity data, composition, age relations and phase concept, Int.
J. Earth Sci. (Geol. Rundsch.), 86, 45–63,
https://doi.org/10.1007/PL00014665, 1997.
Skiba, P.: Homogene Schwerekarte der Bundesrepublik Deutschland
(Bouguer-Anomalien). Technischer Bericht zur Fortführung der Datenbasis,
deren Auswertung und Visualisierung, LIAG-Bericht, Hannover, 88 pp., 2011.
Smithson, S. B.: Densities of metamorphic rocks, Geophysics, 36, 690–694,
https://doi.org/10.1190/1.1440205, 1971.
Stephan, T., Kroner, U., Hahn, T., Hallas, P., and Heuse, T.: Fold/cleavage
relationships as indicator for late Variscan sinistral transpression at the
Rheno-Hercynian–Saxo-Thuringian boundary zone, Central European Variscides,
Tectonophysics, 681, 250–262, https://doi.org/10.1016/j.tecto.2016.03.005,
2016.
Stettner, G.: Zur geologisch-tektonischen Entwicklung des Oberpfälzer
Grundgebirges, Der Aufschluß, 26, 11–38, 1975.
Stewart, I. S. and Hancock, P. L.: What is a fault scarp?, Episodes, 13,
256–263, 1990.
Teipel, U., Galadí-Enríquez, E., Glaser, S., Kroemer, E., and
Rohrmüller, J.: Geologische Karte des Bayerischen Waldes 1:150000,
Bayerisches Landesamt für Umwelt, Augsburg, 21 pp., 2008.
Telbisz, T., Kovács, G., Székely, B., and Szabó, J.: Topographic
swath profile analysis: a generalization and sensitivity evaluation of a
digital terrain analysis tool, Z. Geomorphol., 57, 485–513,
https://doi.org/10.1127/0372-8854/2013/0110, 2013.
Toloczyki, M., Trurnit, P., Voges, A., Wittekindt, H., and Zitzmann, A.:
Geologische Karte der Bundesrepublik Deutschland 1:1.000.000 (GK1000),
Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 2006.
Troll, G.: Die blastokataklastischen Kristallingesteine der Stallwanger
Furche, Bayerischer Wald, in: Geologica Bavarica Nr. 58: Führer zu
geologisch-petrographischen Exkursionen im Bayerischen Wald, edited by:
Bayerisches Geologisches Landesamt, München, 22–33, 1967.
Trzebski, R., Behr, H. J., and Conrad, W.: Subsurface distribution and
tectonic setting of the late-Variscan granites in the northwestern Bohemian
Massif, Int. J. Earth Sci. (Geol. Rundsch.), 86, 64–78,
https://doi.org/10.1007/PL00014666, 1997.
Unger, H. J. and Risch, H.: Die Thermalwasserbohrung Straubing Th 1 und ihr
geologischer Rahmen, Geol. Jb., A, 3–51, 1991.
Vamvaka, A., Siebel, W., Chen, F., and Rohrmüller, J.: Apatite
fission-track dating and low-temperature history of the Bavarian Forest
(southern Bohemian Massif), Int. J. Earth Sci. (Geol. Rundsch.), 103,
103–119, https://doi.org/10.1007/s00531-013-0945-x, 2014.
Vercoutere, C.: The Thermotectonic History of the Brabant Massif (Belgium)
and the Naab Basement (Germany): an Apatite Fission Track Analysis, PhD
thesis, Faculteit Wetenschappen, Universiteit Gent, Gent, 191 pp., 1994.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., and Simon, A.: Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift, Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, 2021.
Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A.,
Schröder, B., Stöckhert, B., Wemmer, K., Zulauf, G., Ahrendt, H.,
Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Nand Lal, Van den Haute, P.,
Vercoutere, C., and Welzel, B.: Post-Variscan thermal and tectonic evolution
of the KTB site and its surroundings, J. Geophys. Res., 102, 18221–18232,
https://doi.org/10.1029/96JB02565, 1997.
Wagner, G. A., Michalski, I., and Zaun, P.: Apatite Fission Track Dating of
the Central European Basement. Postvariscan Thermo-Tectonic Evolution, in:
The German continental deep drilling program (KTB): Site selection studies
in the Oberpfalz and Schwarzwald, edited by: Emmermann, R. and Wohlenberg, J., Springer,
Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, 481–500,
1989.
Wallbrecher, E., Dallmeyer, R. D., Brandmayr, M., Handler, R.,
Maderbacher, F., and Platzer, R.: Kinematik und Alter der
Blattverschiebungszonen in der südlichen Böhmischen Masse, in:
Arbeitstagung Geol. B.-A., edited by: Gattiner, T. E. and Roetzel, R.,
Verlag d. Geologischen Bundesanstalt, 35–48, 1991.
Weinberg, R. F., Sial, A. N., and Mariano, G.: Close spatial relationship
between plutons and shear zones, Geology, 32, 377–380,
https://doi.org/10.1130/G20290.1, 2004.
Welzel, B.: Die Bedeutung von K-/Ar-Datierungen an detritischen
Muskoviten fur die Rekonstruktion tektonometamorpher Einheiten im orogenen
Liefergebiet – ein Beitrag zur Frage der variskischen Krustenentwicklung in
der Böhmischen Masse, Göttinger Arb. Geol. Paläont., 61 pp., 1991.
Wimmenauer, W. and Bryhni, I.: A systematic nomenclature for metamorphic
rocks: Migmatites and related rocks, A proposal on behalf of the IUGS
Subcommission on the Systematics of Metamorphic Rocks, Web version of
01.02.2007, 5 pp., 2007.
Winter, J. D.: An introduction to igneous and metamorphic petrology, 2. ed.,
Prentice Hall, Upper Saddle River, NJ, 702 pp., 2010.
Žák, J. and Sláma, J.: How far did the Cadomian 'terranes'
travel from Gondwana during early Palaeozoic? A critical reappraisal based
on detrital zircon geochronology, Int. Geol. Rev., 60,
319–338, https://doi.org/10.1080/00206814.2017.1334599, 2018.
Žák, J., Verner, K., Janoušek, V., Holub, F. V., Kachlík,
V., Finger, F., Hajná, J., Tomek, F., Vondrovic, L., and Trubač, J.:
A plate-kinematic model for the assembly of the Bohemian Massif constrained
by structural relationships around granitoid plutons, Geol. Soc. Spec.
Publ., 405, 169–196, https://doi.org/10.1144/SP405.9, 2014.
Zeitlhöfler, M., Wagner, B., and Spörlein, T.: Geologica Bavarica
Nr. 112: Strukturgeologie und Grundwasserführung im ostbayerischen
Grundgebirge, Augsburg, 64 pp., 2015.
Zeitlhöfler, M.: Brittle Petrofabrics in the Central Bavarian Forest (SE
Germany): Tectonic Evolution, Geomorphological Effects, and Hydrogeologic
Implications, PhD thesis, Fakultät für Geowissenschaften,
Ludwig-Maximilians-Universität München, München, 249 pp., 2007.
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tectonophysics,
137, 389–420, https://doi.org/10.1016/0040-1951(87)90330-1, 1987.
Ziegler, P. A., Cloetingh, S., and van Wees, J.-D.: Dynamics of intra-plate
compressional deformation: the Alpine foreland and other examples,
Tectonophysics, 252, 7–59, https://doi.org/10.1016/0040-1951(95)00102-6,
1995.
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
We combine gravity anomaly and topographic data with observations from thermochronology,...