Articles | Volume 12, issue 10
https://doi.org/10.5194/se-12-2277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Hamed Fazlikhani
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Wolfgang Bauer
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Harald Stollhofen
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Helga de Wall
GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Gerald Gabriel
Leibniz-Institut für Angewandte Geophysik, Stilleweg 2, 30655
Hanover, Germany
Institut für Geologie, Leibniz Universität Hannover,
Callinstraße 30, 30167 Hanover, Germany
Related authors
No articles found.
Thomas Burschil, Daniel Köhn, Matthias Körbe, Gerald Gabriel, Johannes Großmann, Gustav Firla, and Markus Fiebig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2370, https://doi.org/10.5194/egusphere-2025-2370, 2025
Short summary
Short summary
The study investigates a glacially overdeepened basin near Schäftlarn, Germany, to develop a combined workflow for high-resolution seismic reflection (HRSR) and full-waveform inversion (FWI). Seismic data from various sources and receiver types reveal detailed basin structures, including previously unknown internal reflectors. HRSR with S-waves show more details than P-waves. First FWI delivers consistent velocity models.
Sarah Beraus, Thomas Burschil, Hermann Buness, Daniel Köhn, Thomas Bohlen, and Gerald Gabriel
Sci. Dril., 33, 237–248, https://doi.org/10.5194/sd-33-237-2024, https://doi.org/10.5194/sd-33-237-2024, 2024
Short summary
Short summary
We conducted seismic crosshole experiments with a sparker source in order to obtain a high-resolution subsurface velocity model in the glacially overdeepened Tannwald Basin (ICDP site 5068_1). The data show complex wave fields that contain a lot of information but also present challenges. Nevertheless, isotropic first-arrival travel-time tomography provides the first high-resolution subsurface models that correlate well with the sonic logs and the core recovered from one of the three boreholes.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Simon Freitag, Michael Drews, Wolfgang Bauer, Florian Duschl, David Misch, and Harald Stollhofen
Solid Earth, 13, 1003–1026, https://doi.org/10.5194/se-13-1003-2022, https://doi.org/10.5194/se-13-1003-2022, 2022
Short summary
Short summary
The carbonates of the Malm are the main reservoir rocks for hydrothermal heat and power generation in southern Germany. To better understand these buried rocks, the carbonates exposed in northern Bavaria are often investigated. As the petrophysical properties of carbonates strongly depend on their subsidence history and maximum burial depth, we will investigate this issue by analyzing mudstones, which indirectly store this type of information and are found just below the Malm carbonates.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Cited articles
Asch, K.: IGME 5000: 1:5 Million International Geological Map of Europe and
Adjacent Areas, Bundesanstalt für Geowissenschaften und Rohstoffe,
Hannover, 2005.
Barrier, E., Chamot-Rooke, N., and Giordano, G.: Geodynamic map of the
Mediterranean, 2004.
Bauberger, W. and Cramer, P. (Eds.): Erl. Geol. Kt. Bayern 1:25.000, Bl.
6838 Regenstauf, München, 220 pp., 1961.
Beer, W. W.: Die strukturelle Entwicklung der Metamorphite des Bayerischen
Waldes, PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät,
Georg-August-Universität Göttingen, Göttingen, 186 pp., 1981.
Behr, H.-J., Große, S., Heinrichs, T., and Wolf, U.: A Reinterpretation
of the Gravity Field in the Surroundings of the KTB Drill Site –
Implications for Granite Plutonism and Terrane Tectonics in the Variscan,
in: The German continental deep drilling program (KTB): Site selection
studies in the Oberpfalz and Schwarzwald, edited by: Emmermann, R. and Wohlenberg, J.,
Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong,
501–525, 1989.
Blümel, P.: Die Analyse von Kristallisation und Deformation einer metamorphen Zonenfolge im Moldanubikum von Lam-Bodenmais, E-Bayern, N. Jb. Miner.
Abh., 118, 74–96, 1972.
Blümel, P. and Schreyer, W.: Phase Relations in Pelitic and Psammitic
Gneisses of the Sillimanite-Potash Feldspar and Cordierite-Potash Feldspar
Zones in the Moldanubicum of the Lam-Bodenmais Area, Bavaria, J. Petrol., 18,
431–459, https://doi.org/10.1093/petrology/18.3.431, 1977.
Blümel, P. and Schreyer, W.: Progressive regional low-pressure
metamorphism in Moldanubian metapelites of the northern Bavarian Forest,
Germany, Krystallinikum, 12, 7–30, 1976.
Brandmayr, M., Dallmeyer, R. D., Handler, R., and Wallbrecher, E.: Conjugate
shear zones in the Southern Bohemian Massif (Austria): implications for
Variscan and Alpine tectonothermal activity, Tectonophysics, 248, 97–116,
https://doi.org/10.1016/0040-1951(95)00003-6, 1995.
Brown, M.: The definition of metatexis, diatexis and migmatite, Proc. Geol.
Ass., 84, 371–382, https://doi.org/10.1016/S0016-7878(73)80021-5, 1973.
Burbank, D. W. and Anderson, R. S.: Tectonic geomorphology, 2nd ed., J.
Wiley & Sons, Chichester, West Sussex, Hoboken, N.J, 454 pp., 2012.
Butler, R. W. H., Harris, N. B. W., and Whittington, A. G.: Interactions
between deformation, magmatism and hydrothermal activity during active
crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas,
Mineral. Mag., 61, 37–52, https://doi.org/10.1180/minmag.1997.061.404.05,
1997.
Büttner, S. H.: Late Variscan stress-field rotation initiating escape
tectonics in the south-western Bohemian Massif: a far field response to
late-orogenic extension, J. Geosci., 52, 29–43,
https://doi.org/10.3190/jgeosci.004, 2007.
Büttner, S. H.: The geometric evolution of structures in granite during
continuous deformation from magmatic to solid-state conditions: an example
from the central European Variscan Belt, American Mineral., 84, 1781–1792,
https://doi.org/10.2138/am-1999-11-1207, 1999.
Carlé, W.: Bau und Entwicklung der Südwestdeutschen Großscholle,
Beihefte zum Geologischen Jahrbuch, 16, Schweizerbart Science Publishers,
Stuttgart, 272 pp., 1955.
Chen, F. and Siebel, W.: Zircon and titanite geochronology of the
Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: Pulses
of the late Variscan magmatic activity, Eur. J. Mineral., 16, 777–788,
https://doi.org/10.1127/0935-1221/2004/0016-0777, 2004.
Chen, F., Siebel, W., and Satir, M.: Geochemical and isotopic composition
and inherited zircon ages as evidence for lower crustal origin of two
Variscan S-type granites in the NW Bohemian Massif, Int. J. Earth Sci.
(Geol. Rundsch.), 92, 173–184, https://doi.org/10.1007/s00531-003-0310-6,
2003.
Chen, G.-N. and Grapes, R.: Granite Genesis: In-Situ Melting and Crustal
Evolution, Springer Science + Business Media B.V, Dordrecht, 278 pp., 2007.
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.1243862, 2021.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in
science communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020.
Cymerman, Z., Piasecki, M. A. J., and Seston, R.: Terranes and terrane
boundaries in the Sudetes, northeast Bohemian Massif, Geol. Mag., 134,
717–725, https://doi.org/10.1017/S0016756897007255, 1997.
Daurer, A.: Das Moldanubikum im Bereich der Donaustörung zwischen
Jochenstein und Schlögen (Oberösterreich), Mitt. Ges. Geol.
Bergbaustud. Österr., 23, 1–54, 1976.
Davis, J. C.: Statistics and data analysis in geology, 3rd ed., Wiley, New
York, 638 pp., 2002.
de Wall, H., Schaarschmidt, A., Kämmlein, M., Gabriel, G., Bestmann, M.,
and Scharfenberg, L.: Subsurface granites in the Franconian Basin as the
source of enhanced geothermal gradients: a key study from gravity and
thermal modeling of the Bayreuth Granite, Int. J. Earth Sci. (Geol.
Rundsch.), 108, 1913–1936, https://doi.org/10.1007/s00531-019-01740-8,
2019.
Dietl, C., Gößmann, M., and de Wall, H.: Kombinierte aktive und
passive Plutonplatznahme in einer verdickten Kruste - Erste Ergebnisse von
gesteinsmagnetischen und petrologischen Untersuchungen am Fürstensteiner
lntrusivkomplex (Bayerischer Wald), Z. dt. geol. Ges., 155, 311–328, 2005.
Drury, S. A.: Image interpretation in geology, 2. ed., Chapman & Hall,
London, 283 pp., 1987.
Earth Resources Observation And Science Center: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global [data set], https://doi.org/10.5066/F7PR7TFT, 2017.
Echtler, H. P. and Chauvet, A.: Carboniferous convergence and subsequent
crustal extension in the southern Schwarzwald (SW Germany), Geodin. Acta, 5,
37–49, https://doi.org/10.1080/09853111.1992.11105218, 1992.
Fatka, O. and Mergl, M.: The “microcontinent” Perunica: status and story 15
years after conception, Geol. Soc. Spec. Publ., 325, 65–101,
https://doi.org/10.1144/SP325.4, 2009.
Finger, F. and René, M.: A Comment on “Two Distinctive Granite Suites in the
SW Bohemian Massif and their Record of Emplacement: Constraints from
Geochemistry and Zircon 207Pb/206Pb Chronology” by Siebel et al.,
Journal of Petrology 49, 1853-1872, J. Petrol, 50, 591–593,
https://doi.org/10.1093/petrology/egp013, 2009.
Finger, F. and Clemens, J. D.: Migmatization and “secondary” granitic
magmas: effects of emplacement and crystallization of “primary” granitoids
in Southern Bohemia, Austria, Contrib. Mineral. and Petrol., 120, 311–326,
https://doi.org/10.1007/BF00306510, 1995.
Finger, F., Dunkley, D. J., and René, M.: Remnants of Early
Carboniferous I-type granodiorite plutons in the Bavarian Forest and their
bearing on the tectonic interpretation of the south-western sector of the
Bohemian Massif (Bavarian Zone), J. Geosci., 55, 321–332,
https://doi.org/10.3190/jgeosci.080, 2010.
Finger, F., Gerdes, A., Janoušek, V., René, M., and Riegler, G.:
Resolving the Variscan evolution of the Moldanubian sector of the Bohemian
Massif: the significance of the Bavarian and the Moravo-Moldanubian
tectonometamorphic phases, J. Geosci., 52, 9–28,
https://doi.org/10.3190/jgeosci.005, 2007.
Franke, W.: The mid-European segment of the Variscides: tectonostratigraphic
units, terrane boundaries and plate tectonic evolution, Geol. Soc. Spec.
Publ., 179, 35–61, https://doi.org/10.1144/GSL.SP.2000.179.01.05, 2000.
Franke, W.: Tectonostratigraphic units in the Variscan belt of central
Europe, in: Terranes in the Circum-Atlantic Paleozoic Orogens, edited by:
Dallmeyer, R. D., Geological Society of America, Boulder, Colo., 67–90,
https://doi.org/10.1130/SPE230-p67, 1989.
Freudenberger, W.: Tektonik, in: Erläuterungen zur Geologischen Karte
von Bayern 1:500 000, 4th ed., edited by: Bayerisches Geologisches
Landesamt, München, 259–265, 1996.
Freudenberger, W. and Schwerd, K.: Tektonische Karte von Bayern 1:1000000,
in: Erläuterungen zur Geologischen Karte von Bayern 1:500 000, 4th ed.,
edited by: Bayerisches Geologisches Landesamt, München, 1996.
Führer, F. X.: Die Anomalien der Schwere am Südwest-Rand des
Bayerischen Waldes und ihre Interpretation, Int. J. Earth Sci. (Geol.
Rundsch.), 67, 1078–1096, https://doi.org/10.1007/BF01983255, 1978.
Fürst, M., Krupp, R., and Müller, R.: Die photogeologische
Linearanalyse und ihre Anwendung bei der Uranprospektion in der Oberpfalz,
Erlanger geol. Abh., 3–33, 1978.
Galadí-Enríquez, E., Dörr, W., Zulauf, G.,
Galindo-Zaldívar, J., Heidelbach, F., and Rohrmüller, J.: Variscan
deformation phases in the southwestern Bohemian Massif: new constraints from
sheared granitoids, Z. dt. Ges. Geowiss., 161, 1–23,
https://doi.org/10.1127/1860-1804/2010/0161-0001, 2010.
Galadí-Enríquez, E., Kroemer, E., Loth, G., Pürner, T., Raum,
G., Teipel, U., and Rohrmüller, J.: Erdgeschichte des Oberpfälzer
Waldes: Geologischer Bau, Gesteine, Sehenswürdigkeiten,
Erläuterungen zur Geologischen Karte des Oberpfälzer Waldes,
Augsburg, 110 pp., 2009a.
Galadí-Enríquez, E., Kroemer, E., Loth, G., Pürner, T., Raum,
G., Teipel, U., and Rohrmüller, J.: Geologische Karte des
Oberpfälzer Waldes 1:150000, Bayerisches Landesamt für Umwelt,
Augsburg, 2009b.
Gebauer, D.: Erdgeschichtliche Entwicklung und geologischer Überblick,
in: Erl. Geol. Kt. Bayern 1:25.000, Bl. 7446 Passau, edited by: Bauberger,
W. and Unger, H. J., München, 13–22, 1984.
Gerdes, A., Finger, F., and Parrish, R. R.: Southwestward progression of a
late-orogenic heat front in the Moldanubian Zone of the Bohemian Massif and
formation of the Austro-Bavarian anatexite belt, Geophys. Res. Abstr., 8, SRef-ID: 1607-7962/gra/EGU06-A-10698,
2006.
Goldsworthy, M. and Jackson, J.: Active normal fault evolution in Greece
revealed by geomorphology and drainage patterns, J. Geol. Soc., 157,
967–981, https://doi.org/10.1144/jgs.157.5.967, 2000.
Grauert, B., Hänny, R., and Soptrajanova, G.: Geochronology of a
Polymetamorphic and Anatectic Gneiss Region: The Moldanubicum of the Area
Lam-Deggendorf, Eastern Bavaria, Germany, Contrib. Mineral. Petrol., 45,
37–63, https://doi.org/10.1007/BF00371136, 1974.
Guy, A., Edel, J.-B., Schulmann, K., Tomek, Č., and Lexa, O.: A
geophysical model of the Variscan orogenic root (Bohemian Massif):
Implications for modern collisional orogens, Lithos, 124, 144–157,
https://doi.org/10.1016/j.lithos.2010.08.008, 2011.
Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J., Watkins, H.,
Timms, N. E., Gomez-Rivas, E., and Smith, M.: FracPaQ: A
MATLAB™ toolbox for the quantification of fracture patterns, J.
Struct. Geol., 95, 1–16, https://doi.org/10.1016/j.jsg.2016.12.003, 2017.
Hejl, E., Coyle, D., Nand Lal, Van den Haute, P., and Wagner, G. A.:
Fission-track dating of the western border of the Bohemian Massif:
thermochronology and tectonic implications, Int. J. Earth Sci. (Geol.
Rundsch.), 86, 210–219, https://doi.org/10.1007/s005310050133, 1997.
Horn, P., Köhler, H., and Müller-Sohnius, D.:
Rb-Sr-Isotopengeochemie hydrothermaler Quarze des Bayerischen Pfahles und
eines Flusspat-Schwerspatganges von Nabburg-Wölsendorf/Bundesrepublik
Deutschland, Chem. Geol. Isot. Geosci. Sect., 58, 259–272,
https://doi.org/10.1016/0168-9622(86)90015-1, 1986.
Jordan, G., Meijninger, B. M. L., van Hinsbergen, D. J. J., Meulenkamp, J. E., and van
Dijk, P. M.: Extraction of morphotectonic features from DEMs: Development
and applications for study areas in Hungary and NW Greece, Int. J. Appl.
Earth Obs. Geoinf., 7, 163–182, https://doi.org/10.1016/j.jag.2005.03.003,
2005.
Kalt, A., Berger, A., and Blümel, P.: Metamorphic Evolution of
Cordierite-Bearing Migmatites from the Bayerische Wald (Variscan Belt,
Germany), J. Petrol, 40, 601–627, https://doi.org/10.1093/petroj/40.4.601,
1999.
Kalt, A., Corfu, F., and Wijbrans, J. R.: Time calibration of a P-T path
from a Variscan high-temperature low-pressure metamorphic complex
(Bayerische Wald, Germany), and the detection of inherited monazite,
Contrib. Mineral. and Petrol., 138, 143–163,
https://doi.org/10.1007/s004100050014, 2000.
Keller, E. A. and Pinter, N.: Active tectonics: Earthquakes, uplift, and
landscape, 2nd ed., Prentice Hall earth science series, Prentice Hall, Upper
Saddle River NJ, XIII, 362 S, 2002.
Klein, T., Kiehm, S., Siebel, W., Shang, C. K., Rohrmüller, J.,
Dörr, W., and Zulauf, G.: Age and emplacement of late-Variscan granites
of the western Bohemian Massif with main focus on the Hauzenberg granitoids
(European Variscides, Germany), Lithos, 102, 478–507,
https://doi.org/10.1016/j.lithos.2007.07.025, 2008.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Klomínský, J., Jarchovský, T., and Rajpoot, G. S.: ATLAS of plutonic
rocks and orthogneisses in the Bohemian Massif: MOLDANUBICUM, Czech
Geological Survey, Prague, 199 pp., 2010.
Kossmat, F.: Gliederung des varistischen Gebirgebaus, Abhandlungen des
Sächsischen Geologischen Landesamts, 1, 1–39, 1927.
Krohe, A.: Variscan tectonics of central Europe: Postaccretionary intraplate
deformation of weak continental lithosphere, Tectonics, 15, 1364–1388,
https://doi.org/10.1029/96TC01110, 1996.
Kroner, U. and Romer, R. L.: Two plates – Many subduction zones: The
Variscan orogeny reconsidered, Gondwana Research, 24, 298–329,
https://doi.org/10.1016/j.gr.2013.03.001, 2013.
Kroner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Hann, H. P.,
Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T. C.,
Zedler, H., Zeh, A., and Zulauf, G.: Variscan Tectonics, in: The geology of
Central Europe: Volume 1: Precambrian and Palaeozoic, edited by: McCann, T.,
The Geological Society London, London, 599–664, 2008.
Lehrberger, G., Saurle, A., and Hartmann, U.: Anwendung des SAR-DGM bei der
tektonischen Interpretation des Moldanubikums am Westrand der Böhmischen
Masse, in: Geologica Bavarica Nr. 107: Zur Geologie der Nordostbayerischen
Grundgebirgsregion, edited by: Bayerisches Geologisches Landesamt,
München, 269–280, 2003.
Leibniz-Institut für Angewandte Geophysik: Schwerekarte der
Bundesrepublik Deutschland 1:1 000 000, Bouguer Anomalien, LIAG, Hannover,
2010.
Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K., and
Tonk, C.: West African provenance for Saxo-Thuringia (Bohemian Massif): Did
Armorica ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and
the Nd-isotopic record, Int. J. Earth Sci. (Geol. Rundsch.), 93, 683–705,
https://doi.org/10.1007/s00531-004-0413-8, 2004.
Lowrie, W.: Fundamentals of Geophysics, 2. ed., 4th printing, Cambridge
Univ. Press, Cambridge, 381 pp., 2007.
Matte, P.: Tectonics and plate tectonics model for the Variscan belt of
Europe, Tectonophysics, 126, 329–374,
https://doi.org/10.1016/0040-1951(86)90237-4, 1986.
Mattern, F.: Late Carboniferous to early Triassic shear sense reversals at
strike-slip faults in eastern Bavaria, Zbl. Geol. Paläontol. Teil I,
1993, 1471–1490, 1995.
Meyer, R. K. F.: Tektonik des Deckgebirges, in: Erl. Geol. Kt. Bayern
1:25.000, Bl. 6639 Wackersdorf, edited by: Meyer, R. K. F. and Mielke, H.,
118–121, 1993.
Meyer, R. K. F.: Die Entwicklung der Pfahl-Störungszone und des
Bodenwöhrer Halbgrabens auf Blatt Wackersdorf, Erlanger geol. Abh., 117,
1–24, 1989.
Mielke, H.: Geologische Entwicklung des Kristallins, in: Erl. Geol. Kt.
Bayern 1:25.000, Bl. 6639 Wackersdorf, edited by: Meyer, R. K. F. and
Mielke, H., 10–12, 1993.
Müller, M.: Neue Vorstellungen zur Entwicklung des Nordostbayerischen
Permokarbon-Trogs aufgrund reflexionsseismischer Messungen in der Mittleren
Oberpfalz, Geol. Bl. NO-Bayern, 44, 195–224, 1994.
Neubauer, F. and Handler, R.: Variscan orogeny in the Eastern Alps and
Bohemian Massif: How do these units correlate?, Mitt. Österr. Geol.
Ges., 92, 35–59, 2000.
Pérez-Peña, J. V., Al-Awabdeh, M., Azañón, J. M., Galve, J.
P., Booth-Rea, G., and Notti, D.: SwathProfiler and NProfiler: Two new
ArcGIS Add-ins for the automatic extraction of swath and normalized river
profiles, Comput. Geosci., 104, 135–150,
https://doi.org/10.1016/j.cageo.2016.08.008, 2017.
Peterek, A., Rauche, H., Schröder, B., Franzke, H.-J., Bankwitz, P., and
Bankwitz, E.: The late- and post-Variscan tectonic evolution of the Western
Border fault zone of the Bohemian Massif (WBZ), Int. J. Earth Sci. (Geol.
Rundsch.), 86, 191–202, https://doi.org/10.1007/s005310050131, 1997.
Peterek, A., Schröder, B., and Menzel, D.: Zur postvariszischen
Krustenentwicklung des Naabgebirges und seines Rahmens, Z. geol. Wiss., 24,
293–304, 1996.
Priehäusser, G.: Felsfreistellungen, Blockmeere, Blockströme und
Blockstreuungen im Bayer. Wald, Geol. Bl. NO-Bayern, 11, 123–132, 1961.
Propach, G., Kling, M., Linhardt, E., and Rohrmüller, J.: Remnants of an
island arc within the Moldanubian zone of the Bavarian Forest, in: Geologica
Bavarica Nr. 110: Geochronologische, geochemische, petrographische und
mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische
Betrachtungen zu Sr-Isotopenstandards, edited by: Bayerisches Landesamt
für Umwelt, Augsburg, 343–377, 2008.
Propach, G., Baumann, A., Schulz-Schmalschläger, M., and Grauert, B.:
Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in
the Moldanubian zone of eastern Bavaria, Germany, N. Jb. Geol. Paläont.
Mh., 2000, 345–377, https://doi.org/10.1127/njgpm/2000/2000/345, 2000.
Prost, G. L.: Remote Sensing for Geologists: A Guide to Image
Interpretation, Gordon and Breach Science Publichers, Amsterdam, 326 pp.,
1994.
Read, H. H.: Metamorphism and migmatisation in the Ythan Valley,
Aberdeenshire, Transactions of the Edinburgh Geological Society, 15,
265–279, https://doi.org/10.1144/transed.15.1.265, 1952.
Rohrmüller, J., Artmann, C., and Teipel, U.: Das kristalline
Grundgebirge des Moldanubikums von der Donau bis zur Pfahlzone (Exkursion L
am 21. April 2017): The crystalline basement of the Moldanubian from the
Danube to the Bavarian Pfahl Zone, Jber. Mitt. oberrhein. geol. Ver., 99,
345–370, https://doi.org/10.1127/jmogv/99/0011, 2017.
Rohrmüller, J., Mielke, H., and Gebauer, D.: Gesteinsfolge des
Grundgebirges nördlich der Donau und im Molasseuntergrund, in:
Erläuterungen zur Geologischen Karte von Bayern 1:500 000, 4th ed.,
edited by: Bayerisches Geologisches Landesamt, München, 16–54, 1996.
Rosenberg, C. L.: Shear zones and magma ascent: A model based on a review of
the Tertiary magmatism in the Alps, Tectonics, 23,
https://doi.org/10.1029/2003TC001526, 2004.
Schaarschmidt, A., Haase, K. M., de Wall, H., Bestmann, M., Krumm, S., and
Regelous, M.: Upper crustal fluids in a large fault system: microstructural,
trace element and oxygen isotope study on multi-phase vein quartz at the
Bavarian Pfahl, SE Germany, Int. J. Earth Sci. (Geol. Rundsch.), 108,
521–543, https://doi.org/10.1007/s00531-018-1666-y, 2019.
Scheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., and Łapińska-Viola, R.: Manual extraction of bedrock lineaments from
high-resolution LiDAR data: methodological bias and human perception, GFF,
137, 362–372, https://doi.org/10.1080/11035897.2015.1085434, 2015.
Schreyer, W. and Blümel, P.: Progressive metamorphism in the
Moldanubicum of the Northern Bavarian Forest, Fortschritte der Mineralogie,
52, 151–165, 1974.
Schreyer, W., Kullerud, G., and Ramdohr, P.: Metamorphic conditions of ore
and country rock of the Bodenmais, Bavaria, sulfide deposit, N. Jb. Miner.
Abh., 101, 1–26, 1964.
Schröder, B.: Outline of the Permo-Carboniferous basins at the western
margin of the Bohemian Massif, Z. geol. Wiss., 16, 993–1001, 1988.
Schröder, B., Ahrendt, H., Peterek, A., and Wemmer, K.: Post-Variscan
sedimentary record of the SW margin of the Bohemian Massif: a review, Int.
J. Earth Sci. (Geol. Rundsch.), 86, 178–184,
https://doi.org/10.1007/s005310050129, 1997.
Schulmann, K., Catalán, J. R. M., Lardeaux, J. M., Janoušek, V., and
Oggiano, G.: The Variscan orogeny: extent, timescale and the formation of
the European crust, Geol. Soc. Spec. Publ., 405, 1–6,
https://doi.org/10.1144/SP405.15, 2014.
Sedlák, J., Gnojek, I., Scheibe, R., and Zabadal, S.: Gravity response
of igneous rocks in the northwestern part of the Bohemian Massif, J.
Geosci., 54, 325–342, https://doi.org/10.3190/jgeosci.054, 2009.
Sedlák, J., Gnojek, I., Zabadal, S., Farbisz, J., Cwojdzinski, S., and
Scheibe, R.: Geological interpretation of a gravity low in the central part
of the Lugian Unit (Czech Republic, Germany and Poland), J. Geosci., 52,
181–197, https://doi.org/10.3190/jgeosci.012, 2007.
Seemann, R.: Die geologischen Verhältnisse längs der Amberg-Sulzbacher und Auerbach-Pegnitzer Störung: Beitrag zur Entstehung der Amberger Erzlager, Abh. naturhist. Ges.
Nürnberg, 22, 93–149, 1925.
Siebel, W., Shang, C. K., Thern, E., Danišík, M., and
Rohrmüller, J.: Zircon response to high-grade metamorphism as revealed
by U–Pb and cathodoluminescence studies, Int. J. Earth Sci. (Geol.
Rundsch.), 101, 2105–2123, https://doi.org/10.1007/s00531-012-0772-5, 2012.
Siebel, W., Hann, H. P., Danišík, M., Shang, C. K., Berthold, C.,
Rohrmüller, J., Wemmer, K., and Evans, N. J.: Age constraints on
faulting and fault reactivation: a multi-chronological approach, Int. J.
Earth Sci. (Geol. Rundsch.), 99, 1187–1197,
https://doi.org/10.1007/s00531-009-0474-9, 2010.
Siebel, W., Shang, C. K., Reitter, E., Rohrmüller, J., and Breiter, K.: Two
Distinctive Granite Suites in the Southwestern Bohemian Massif: Reply to F.
Finger and M. René, J. Petrol, 50, 595–599,
https://doi.org/10.1093/petrology/egp012, 2009.
Siebel, W., Shang, C. K., Reitter, E., Rohrmüller, J., and Breiter, K.:
Two Distinctive Granite Suites in the SW Bohemian Massif and their Record of
Emplacement: Constraints from Geochemistry and Zircon 207Pb/206Pb
Chronology, J. Petrol, 49, 1853–1872,
https://doi.org/10.1093/petrology/egn049, 2008.
Siebel, W., Thiel, M., and Chen, F.: Zircon geochronology and compositional
record of late- to post-kinematic granitoids associated with the Bavarian
Pfahl zone (Bavarian Forest), Mineral. Petrol., 86, 45–62,
https://doi.org/10.1007/s00710-005-0091-7, 2006a.
Siebel, W., Hann, H. P., Shang, C. K., Rohrmüller, J., and Chen, F.:
Coeval late-Variscan emplacement of granitic rocks: an example from the
Regensburg Forest, NE Bavaria, N. Jb. Miner. Abh., 183, 13–26,
https://doi.org/10.1127/0077-7757/2006/0058, 2006b.
Siebel, W., Blaha, U., Chen, F., and Rohrmüller, J.: Geochronology and
geochemistry of a dyke-host rock association and implications for the
formation of the Bavarian Pfahl shear zone, Bohemian Massif, Int. J. Earth
Sci. (Geol. Rundsch.), 94, 8–23, https://doi.org/10.1007/s00531-004-0445-0,
2005.
Siebel, W., Chen, F., and Satir, M.: Late-Variscan magmatism revisited: new
implications from Pb-evaporation zircon ages on the emplacement of
redwitzites and granites in NE Bavaria, Int. J. Earth Sci. (Geol. Rundsch.),
92, 36–53, https://doi.org/10.1007/s00531-002-0305-8, 2003.
Siebel, W., Trzebski, R., Stettner, G., Hecht, L., Casten, U., Höhndorf,
A., and Müller, P.: Granitoid magmatism of the NW Bohemian Massif
revealed: gravity data, composition, age relations and phase concept, Int.
J. Earth Sci. (Geol. Rundsch.), 86, 45–63,
https://doi.org/10.1007/PL00014665, 1997.
Skiba, P.: Homogene Schwerekarte der Bundesrepublik Deutschland
(Bouguer-Anomalien). Technischer Bericht zur Fortführung der Datenbasis,
deren Auswertung und Visualisierung, LIAG-Bericht, Hannover, 88 pp., 2011.
Smithson, S. B.: Densities of metamorphic rocks, Geophysics, 36, 690–694,
https://doi.org/10.1190/1.1440205, 1971.
Stephan, T., Kroner, U., Hahn, T., Hallas, P., and Heuse, T.: Fold/cleavage
relationships as indicator for late Variscan sinistral transpression at the
Rheno-Hercynian–Saxo-Thuringian boundary zone, Central European Variscides,
Tectonophysics, 681, 250–262, https://doi.org/10.1016/j.tecto.2016.03.005,
2016.
Stettner, G.: Zur geologisch-tektonischen Entwicklung des Oberpfälzer
Grundgebirges, Der Aufschluß, 26, 11–38, 1975.
Stewart, I. S. and Hancock, P. L.: What is a fault scarp?, Episodes, 13,
256–263, 1990.
Teipel, U., Galadí-Enríquez, E., Glaser, S., Kroemer, E., and
Rohrmüller, J.: Geologische Karte des Bayerischen Waldes 1:150000,
Bayerisches Landesamt für Umwelt, Augsburg, 21 pp., 2008.
Telbisz, T., Kovács, G., Székely, B., and Szabó, J.: Topographic
swath profile analysis: a generalization and sensitivity evaluation of a
digital terrain analysis tool, Z. Geomorphol., 57, 485–513,
https://doi.org/10.1127/0372-8854/2013/0110, 2013.
Toloczyki, M., Trurnit, P., Voges, A., Wittekindt, H., and Zitzmann, A.:
Geologische Karte der Bundesrepublik Deutschland 1:1.000.000 (GK1000),
Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 2006.
Troll, G.: Die blastokataklastischen Kristallingesteine der Stallwanger
Furche, Bayerischer Wald, in: Geologica Bavarica Nr. 58: Führer zu
geologisch-petrographischen Exkursionen im Bayerischen Wald, edited by:
Bayerisches Geologisches Landesamt, München, 22–33, 1967.
Trzebski, R., Behr, H. J., and Conrad, W.: Subsurface distribution and
tectonic setting of the late-Variscan granites in the northwestern Bohemian
Massif, Int. J. Earth Sci. (Geol. Rundsch.), 86, 64–78,
https://doi.org/10.1007/PL00014666, 1997.
Unger, H. J. and Risch, H.: Die Thermalwasserbohrung Straubing Th 1 und ihr
geologischer Rahmen, Geol. Jb., A, 3–51, 1991.
Vamvaka, A., Siebel, W., Chen, F., and Rohrmüller, J.: Apatite
fission-track dating and low-temperature history of the Bavarian Forest
(southern Bohemian Massif), Int. J. Earth Sci. (Geol. Rundsch.), 103,
103–119, https://doi.org/10.1007/s00531-013-0945-x, 2014.
Vercoutere, C.: The Thermotectonic History of the Brabant Massif (Belgium)
and the Naab Basement (Germany): an Apatite Fission Track Analysis, PhD
thesis, Faculteit Wetenschappen, Universiteit Gent, Gent, 191 pp., 1994.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., and Simon, A.: Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift, Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, 2021.
Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A.,
Schröder, B., Stöckhert, B., Wemmer, K., Zulauf, G., Ahrendt, H.,
Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Nand Lal, Van den Haute, P.,
Vercoutere, C., and Welzel, B.: Post-Variscan thermal and tectonic evolution
of the KTB site and its surroundings, J. Geophys. Res., 102, 18221–18232,
https://doi.org/10.1029/96JB02565, 1997.
Wagner, G. A., Michalski, I., and Zaun, P.: Apatite Fission Track Dating of
the Central European Basement. Postvariscan Thermo-Tectonic Evolution, in:
The German continental deep drilling program (KTB): Site selection studies
in the Oberpfalz and Schwarzwald, edited by: Emmermann, R. and Wohlenberg, J., Springer,
Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, 481–500,
1989.
Wallbrecher, E., Dallmeyer, R. D., Brandmayr, M., Handler, R.,
Maderbacher, F., and Platzer, R.: Kinematik und Alter der
Blattverschiebungszonen in der südlichen Böhmischen Masse, in:
Arbeitstagung Geol. B.-A., edited by: Gattiner, T. E. and Roetzel, R.,
Verlag d. Geologischen Bundesanstalt, 35–48, 1991.
Weinberg, R. F., Sial, A. N., and Mariano, G.: Close spatial relationship
between plutons and shear zones, Geology, 32, 377–380,
https://doi.org/10.1130/G20290.1, 2004.
Welzel, B.: Die Bedeutung von K-/Ar-Datierungen an detritischen
Muskoviten fur die Rekonstruktion tektonometamorpher Einheiten im orogenen
Liefergebiet – ein Beitrag zur Frage der variskischen Krustenentwicklung in
der Böhmischen Masse, Göttinger Arb. Geol. Paläont., 61 pp., 1991.
Wimmenauer, W. and Bryhni, I.: A systematic nomenclature for metamorphic
rocks: Migmatites and related rocks, A proposal on behalf of the IUGS
Subcommission on the Systematics of Metamorphic Rocks, Web version of
01.02.2007, 5 pp., 2007.
Winter, J. D.: An introduction to igneous and metamorphic petrology, 2. ed.,
Prentice Hall, Upper Saddle River, NJ, 702 pp., 2010.
Žák, J. and Sláma, J.: How far did the Cadomian 'terranes'
travel from Gondwana during early Palaeozoic? A critical reappraisal based
on detrital zircon geochronology, Int. Geol. Rev., 60,
319–338, https://doi.org/10.1080/00206814.2017.1334599, 2018.
Žák, J., Verner, K., Janoušek, V., Holub, F. V., Kachlík,
V., Finger, F., Hajná, J., Tomek, F., Vondrovic, L., and Trubač, J.:
A plate-kinematic model for the assembly of the Bohemian Massif constrained
by structural relationships around granitoid plutons, Geol. Soc. Spec.
Publ., 405, 169–196, https://doi.org/10.1144/SP405.9, 2014.
Zeitlhöfler, M., Wagner, B., and Spörlein, T.: Geologica Bavarica
Nr. 112: Strukturgeologie und Grundwasserführung im ostbayerischen
Grundgebirge, Augsburg, 64 pp., 2015.
Zeitlhöfler, M.: Brittle Petrofabrics in the Central Bavarian Forest (SE
Germany): Tectonic Evolution, Geomorphological Effects, and Hydrogeologic
Implications, PhD thesis, Fakultät für Geowissenschaften,
Ludwig-Maximilians-Universität München, München, 249 pp., 2007.
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tectonophysics,
137, 389–420, https://doi.org/10.1016/0040-1951(87)90330-1, 1987.
Ziegler, P. A., Cloetingh, S., and van Wees, J.-D.: Dynamics of intra-plate
compressional deformation: the Alpine foreland and other examples,
Tectonophysics, 252, 7–59, https://doi.org/10.1016/0040-1951(95)00102-6,
1995.
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
We combine gravity anomaly and topographic data with observations from thermochronology,...