Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2479-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2479-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
Renas I. Koshnaw
CORRESPONDING AUTHOR
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
present address: Department of Structural Geology and Geodynamics,
Geoscience Center, University of Göttingen, Goldschmidtstraße 3,
37077 Göttingen, Germany
Fritz Schlunegger
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Daniel F. Stockli
Department of Geological Sciences, Jackson School of Geosciences,
The University of Texas at Austin, Austin, TX 78712, USA
Related authors
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Michael A. Schwenk, Laura Stutenbecker, Patrick Schläfli, Dimitri Bandou, and Fritz Schlunegger
E&G Quaternary Sci. J., 71, 163–190, https://doi.org/10.5194/egqsj-71-163-2022, https://doi.org/10.5194/egqsj-71-163-2022, 2022
Short summary
Short summary
We investigated the origin of glacial sediments in the Bern area to determine their route of transport either with the Aare Glacier or the Valais Glacier. These two ice streams are known to have joined in the Bern area during the last major glaciation (ca. 20 000 years ago). However, little is known about the ice streams prior to this last glaciation. Here we collected evidence that during a glaciation about 250 000 years ago the Aare Glacier dominated the area as documented in the deposits.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022, https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Cited articles
Abdallah, F. T. and Al-Dulaimi, S. I.: Biostratigraphy of the Upper Cretaceous for selected sections in northern Iraq, Iraqi Journal of Science, 60, 545–553, 2019.
Abdel-Kireem, M. R.: Planktonic foraminifera and stratigraphy of the Tanjero
Formation (Maastrichtian), northeastern Iraq, Micropaleontology, 32, 215–231, 1986.
Abdollahi, F., Nabatian, G., Li, J. W., Honarmand, M., and Ebrahimi, M.:
Saheb Granitoid Batholith, North of Kurdistan: An Evidence of
Cretaceous-Paleocene Magmatism in the Sanandaj-Sirjan Zone, Journal Of
Economic Geology, 12, 359–376, 2020.
Abdula, R. A., Chicho, J., Surdashy, A., Nourmohammadi, M. S., Hamad, E.,
Muhammad, M. M., Smail, A. A., and Ashoor, A.: Sedimentology of the Govanda
Formation at Gali Baza locality, Kurdistan region, Iraq, Iraqi Bulletin of
Geology and Mining, 14, 1–12, 2018.
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F.: Convergence history
across Zagros (Iran): constraints from collisional and earlier
deformation, Int. J. Earth Sci., 94, 401–419, 2005.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman,
W., Monié, P., Meyer, B., and Wortel, R.: Zagros orogeny: a
subduction-dominated process, Geological Magazine, 148, 692–725, 2011.
Al Humadi, H., Väisänen, M., Ismail, S. A., Kara, J., O'Brien, H.,
Lahaye, Y., and Lehtonen, M.: U–Pb geochronology and Hf isotope data from
the Late Cretaceous Mawat ophiolite, NE Iraq, Heliyon, 5, e02721, https://doi.org/10.1016/j.heliyon.2019.e02721, 2019.
Al-Banna, N. Y. and Al-Mutwali, M. M.: Microfacies and age determination of
the sedimentary sequences within Walash volcano-sedimentary Group, Mawat
Complex, northeast Iraq, Tikrit Journal of Pure Science, 13, 46–52, 2008.
Al-Bassam, K. S.: Petrology, geochemistry and depositional environment of the
Khabour Formation in Ora and Khabour localities, Northern Iraq, Iraqi
Bulletin of Geology and Mining, 6, 71–94, 2010.
Al-Hadide, A. H., Al-Juboury, A. I., and Al-Eisa, M. I.: Stratigraphic
sequence of late Paleozoic era in Iraq, Iraqi National Journal of Earth
Sciences, 2, 28–42, 2002.
Al-Hadidy, A. H.: Paleozoic stratigraphic lexicon and hydrocarbon habitat of
Iraq, GeoArabia, 12, 63–130, 2007.
Al-Husseini, M.: Preliminary chronostratigraphic chart of the Gulf Region,
Gulf Petrolink, Manama, Bahrain, poster, 2000.
Al-Juboury, A. I., Morton, A., Shingaly, W. S., Howard, J., Thusu, B.,
Vincent, S., and Fanning, M.: Stratigraphy and age revision of the Pirispiki
Formation, Kurdistan Region, Northern Iraq, Arab. J. Geosci., 13, 1–15, 2020.
Al-Mashaikie, S. Z. A. K., Al-Azzawi, A. T. A., and Kadum, A. K.:
Depositional Environment of the Gercus Formation in Jabal Haibat Sultan, NE
Iraq, New Sedimentological Approach, Iraqi Journal of Science, 55,
471–483, 2014.
Al-Qayim, B. A., Al-Mutwali, M. M., and Nissan, B. Y.: Flysch–Molasse
sediments of the Paleogene foreland basin of north Arabia, Shiranish area,
north Iraq, Iraqi Bulletin of Geology and Mining, 4, 1–20, 2008.
Al-Qayim, B. and Saadallah, A.: Sedimentary faces and evolution of an active
margin buildup, Aqra-Bekhme Formation, N. E. Iraq, Iraqi Geological Journal,
27, 1–28, 1994.
Al-Qayim, B., Omer, A., and Koyi, H.: Tectonostratigraphic overview of the
Zagros suture zone, Kurdistan region, Northeast Iraq, GeoArabia, 17,
109–156, 2012.
Al-Shaibani, S. and Al-Qayim, B.: Micropaleontology of Tertiary-Cretaceous
transect, Dokan area, northeastern Iraq, Iraqi Journal of Science, 31, 353-396, 1990.
Alavi, M.: Tectonics of the Zagros orogenic belt of Iran: new data and
interpretations, Tectonophysics, 229, 211–238, 1994.
Alavi, M.: Regional stratigraphy of the Zagros fold-thrust belt of Iran and
its proforeland evolution, Am. J. Sci., 304, 1–20, 2004.
Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A., and Nutman, A. P.: Recognition of Late Cretaceous Hasanbag ophiolite-arc rocks in the
Kurdistan Region of the Iraqi Zagros suture zone: A missing link in the
paleogeography of the closing Neotethys Ocean, Lithosphere-US, 4, 395–410,
2012.
Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A., and Nutman, A. P.: The tectonic evolution of a Neo-T ethyan (Eocene-Oligocene)
island-arc (Walash and Naopurdan groups) in the Kurdistan region of the
Northeast Iraqi Zagros Suture Zone, Island Arc, 22, 104–125, 2013.
Ali, S. A., Mohajjel, M., Aswad, K., Ismail, S., Buckman, S., and Jones, B.:
Tectono-stratigraphy and structure of the northwestern Zagros collision zone
across the Iraq-Iran border, Journal of Environment and Earth Science, 4, 92–110, 2014.
Ali, S. A., Nutman, A. P., Aswad, K. J., and Jones, B. G.: Overview of the
tectonic evolution of the Iraqi Zagros thrust zone: Sixty million years of
Neotethyan ocean subduction, J. Geodyn., 129, 162–177, 2019.
Ali, S. A., Sleabi, R. S., Talabani, M. J., and Jones, B. G.: Provenance of the
Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture
Zone, J. Afr. Earth Sci., 125, 73–87, 2017.
Alirezaei, S. and Hassanzadeh, J.: Geochemistry and zircon geochronology of
the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record
of the Gondwana break-up in Iran, Lithos, 151, 122–134, 2012.
Allen, M. B. and Armstrong, H. A.: Arabia-Eurasia collision and the forcing
of mid-Cenozoic global cooling, Palaeogeogr. Palaeocl., 265, 52–58, 2008.
Alsultan, H. A. A. and Gayara, D. A.: Basin Development of the Red Bed Series, Ne Iraq, Journal of University of Babylon, 24, 2, 435–555, 2016.
Ameen, B. M.: Lthological indicators for the Oligocene unconformity, NE
Iraq, Iraqi Bulletin of Geology and Mining, 5, 25–34, 2009.
Ameen, M. S.: Effect of basement tectonics on hydrocarbon generation,
migration, and accumulation in northern Iraq, AAPG Bull., 76, 356–370,
1992.
Aqrawi, A. A., Goff, J. C., Horbury, A. D., and Sadooni, F. N.: The Petroleum
Geology of Iraq, Scientific Press Ltd, Beaconsfield, UK, 424 pp., ISBN 978-0-901360-36-8, 2010.
Aswad, K. J. and Elias, E. M.: Petrogenesis, geochemistry and metamorphism of
spilitized subvolcanic rocks of the Mawat Ophiolite Complex, NE
Iraq, Ofioliti, 13, 95–109, 1988.
Aswad, K. J., Al-Samman, A. H., Aziz, N. R., and Koyi, A. M.: The geochronology
and petrogenesis of Walash volcanic rocks, Mawat nappes: constraints on the
evolution of the northwestern Zagros suture zone, Kurdistan Region,
Iraq, Arab. J. Geosci., 7, 1403–1432, 2014.
Aswad, K. J., Ali, S. A., Sheraefy, R. M. A., Nutman, A. P., Buckman, S., Jones, B. G., and Jourdan, F.: 40Ar/39Ar hornblende and biotite geochronology of the Bulfat igneous complex, Zagros suture zone, NE Iraq: new insights on complexities of Paleogene arc magmatism during closure of the Neotethys Ocean, Lithos, 266, 406–413, 2016.
Avigad, D., Abbo, A., and Gerdes, A.: Origin of the Eastern Mediterranean:
Neotethys rifting along a cryptic Cadomian suture with
Afro-Arabia, Bulletin, 128, 1286–1296, 2016.
Avigad, D., Morag, N., Abbo, A., and Gerdes, A.: Detrital rutile U-Pb
perspective on the origin of the great Cambro-Ordovician sandstone of North
Gondwana and its linkage to orogeny, Gondwana Res., 51, 17–29, 2017.
Avouac, J. P. and Burov, E. B.: Erosion as a driving mechanism of
intracontinental mountain growth, J. Geophys. Res.-Sol. Ea., 101, 17747–17769, 1996.
Avouac, J. P., Meng, L., Wei, S., Wang, T., and Ampuero, J. P.: Lower edge of
locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nat.
Geosci., 8, 708–711, 2015.
Aziz, N. R. H. and Sadiq, D. M.: U-Pb Zircon Dating of Upper Cretaceous Siliciclastic Rocks from the Tanjero Flysch, NE Iraq: New Constraints on their Provenance, and Tectonic Evolution, Kuwait J. Sci., 47, 4, 2020.
Aziz, N. R., Elias, E. M., and Aswad, K. J.: Rb−Sr and Sm−Nd isotopes study of
serpentinites and their impact on the tectonic setting of Zagros suture
zone, NE Iraq, Iraqi Bulletin of Geology and Mining, 7, 67–75, 2011.
Azizi, H., Tanaka, T., Asahara, Y., Chung, S. L., and Zarrinkoub, M. H.:
Discrimination of the age and tectonic setting for magmatic rocks along the
Zagros thrust zone, northwest Iran, using the zircon U-Pb age and Sr−Nd isotopes, J. Geodyn., 52, 304–320, 2011.
Azizi, H., Hadi, A., Asahara, Y., and Mohammad, Y.: Geochemistry and
geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast
Iraq, Open Geosci., 5, 523–537, 2013.
Azizi, H., Hadad, S., Stern, R. J., and Asahara, Y.: Age, geochemistry, and
emplacement of the ∼ 40-Ma Baneh granite–appinite complex in a
transpressional tectonic regime, Zagros suture zone, northwest
Iran, Int. Geol. Rev., 61, 195–223, 2019.
Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli,
D. F., Friedrich, A., and Tabatabaei, S. H.: Arabia-Eurasia continental
collision: Insights from late Tertiary foreland-basin evolution in the
Alborz Mountains, northern Iran, Bulletin, 123, 106–131, 2011.
Barber, D. E., Stockli, D. F., Horton, B. K., and Koshnaw, R. I.: Cenozoic
exhumation and foreland basin evolution of the Zagros orogen during the
Arabia-Eurasia collision, western Iran, Tectonics, 37, 4396–4420, 2018.
Barber, D. E., Stockli, D. F., and Galster, F.: The Proto-Zagros foreland
basin in Lorestan, western Iran: Insights from multimineral detrital
geothermochronometric and trace elemental provenance analysis, Geochem. Geophy. Geosy., 20, 2657–2680, 2019.
Barrier, E. and Vrielynck, B.: MEBE atlas of paleotectonic maps of the
Middle East, Commission for the geological map of the world, Paris, France, 2008.
Behyari, M., Mohajjel, M., Sobel, E. R., Rezaeian, M., Moayyed, M., and
Schmidt, A.: Analysis of exhumation history in Misho Mountains, NW Iran:
Insights from structural and apatite fission track data, Neues Jahrb. Geol.
P.-A., 283, 291–308, 2017.
Braud, J.: La Suture Du Zagros Au Niveau De Kermanshah (Kurdistan Iranien):
Reconstitution Paleogeographique, Evolution Geodynamique, Magmatique Et
Structurale, PhD Thesis, Universtie Paris-Sud, pp. 488, unpublished, 1987.
Braud, J. E. A. N. and Ricou, L. E.: Eléments de continuité entre le
Zagros et la Turquie du Sud-Est, B. Soc. Geol. Fr., 7, 1015–1023, 1975.
Cawood, P. A., Hawkesworth, C. J., and Dhuime, B.: Detrital zircon record and
tectonic setting, Geology, 40, 875–878, 2012.
Çelik, H. and Salih, T. M. H.: Provenance investigation from sedimentary
petrography of the Upper Cretaceous deep marine low density turbidites of
the Tanjero Formation around Arbat, northeastern Iraq, Turk. J. Earth Sci., 27, 432–459, 2018.
Çelik, H. and Salih, T. M. H.: Petrographic characteristics of deep marine
turbidite sandstones of the Upper Cretaceous Tanjero Formation, Northwestern
Sulaimaniyah, Iraq: implications for provenance and tectonic setting,
Bulletin of the Mineral Research and Exploration, 164, 11–38, 2021.
Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M.,
and Iizuka, Y.: Zircon U-Pb age constraints from Iran on the magmatic
evolution related to Neotethyan subduction and Zagros orogeny, Lithos, 162,
70–87, 2013.
Cloos, M.: Lithospheric buoyancy and collisional orogenesis: Subduction of
oceanic plateaus, continental margins, island arcs, spreading ridges, and
seamounts, Geol. Soc. Am. Bull., 105, 715–737, 1993.
Colleps, C. L., McKenzie, N. R., Horton, B. K., Webb, A. A. G., Ng, Y. W., and
Singh, B. P.: Sediment provenance of pre-and post-collisional
Cretaceous-Paleogene strata from the frontal Himalaya of northwest
India, Earth Planet. Sc. Lett., 534, 116079, 2020.
Darin, M. H., Umhoefer, P. J., and Thomson, S. N.: Rapid late Eocene exhumation
of the Sivas Basin (Central Anatolia) driven by initial Arabia-Eurasia
collision, Tectonics, 37, 3805–3833, 2018.
Delaloye, M. and Desmons, J.: Ophiolites and mélange terranes in Iran: a
geochronological study and its paleotectonic
implications, Tectonophysics, 68, 83–111, 1980.
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X.,
Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier,
C., and Pechersky, D. H.: Geological evolution of the Tethys belt from the
Atlantic to the Pamirs since the Lias, Tectonophysics, 123, 241–315,
1986.
Dewey, J. F., Pitman III, W. C., Ryan, W. B., and Bonnin, J.: Plate
tectonics and the evolution of the Alpine system, Geol. Soc. Am. Bull., 84, 3137–3180, 1973.
Dunnington, H. V.: Generation, migration, accumulation and dissipation of
oil in northern Iraq, in: Habitat of oil, a symposium, edited by: Weeks, L. G., Am. Assoc. Petr. Geol., Tulsa, 1149–1251, 1958.
English, J. M., Lunn, G. A., Ferreira, L., and Yacu, G.: Geologic evolution of
the Iraqi Zagros, and its influence on the distribution of hydrocarbons in
the Kurdistan region, AAPG Bull., 99, 231–272, 2015.
Etemad-Saeed, N., Najafi, M., and Vergés, J.: Provenance evolution of
Oligocene-Pliocene foreland deposits in the Dezful embayment to constrain
Central Zagros exhumation history, J. Geol. Soc., 177, 799–817, 2020.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long
alpha-stopping distances on (U-Th) He ages, Geochim. Cosmochim. Ac., 60, 4223–4229, 1996.
Francois, T., Agard, P., Bernet, M., Meyer, B., Chung, S. L., Zarrinkoub,
M. H., Burov, E., and Monie, P.: Cenozoic exhumation of the internal Zagros:
first constraints from low-temperature thermochronology and implications for
the build-up of the Iranian plateau, Lithos, 206, 100–112, 2014.
Gehrels, G.: Detrital zircon U-Pb geochronology applied to tectonics, Annu. Rev. Earth Pl. Sc., 42, 127–149, 2014.
Gehrels, G. E.: Introduction to detrital zircon studies of Paleozoic and
Triassic strata in western Nevada and northern California, Special Paper of
the Geological Society of America, 347, 1–17, 2000.
Golan, T., Katzir, Y., and Coble, M. A.: Early Carboniferous anorogenic
magmatism in the Levant: implications for rifting in northern
Gondwana, Int. Geol. Rev., 60, 101–108, 2018.
Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L.,
Cheadle, M. J., Hanghøj, K., and Schwartz, J. J.: Trace element chemistry
of zircons from oceanic crust: A method for distinguishing detrital zircon
provenance, Geology, 35, 643–646, 2007.
Hart, N. R., Stockli, D. F., and Hayman, N. W.: Provenance evolution during
progressive rifting and hyperextension using bedrock and detrital zircon
U-Pb geochronology, Mauléon Basin, western Pyrenees, Geosphere, 12, 1166–1186, 2016.
Hassan, M. M., Jones, B. G., Buckman, S., Al-Jubory, A. I., and Al Gahtani,
F. M.: Provenance of Paleocene-Eocene red beds from NE Iraq: constraints
from framework petrography, Geol. Mag., 151, 1034–1050, 2014.
Hassanzadeh, J. and Wernicke, B. P.: The Neotethyan Sanandaj-Sirjan zone of
Iran as an archetype for passive margin-arc transitions, Tectonics, 35,
586–621, 2016.
Hempton, M. R.: Structure and deformation history of the Bitlis suture near
Lake Hazar, southeastern Turkey, Geol. Soc. Am. Bull., 96, 233–243, 1985.
Hempton, M. R.: Constraints on Arabian plate motion and extensional history
of the Red Sea, Tectonics, 6, 687–705, 1987.
Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H., and Shabanian, E.: Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains, J. Geol. Soc., 158, 969–981, 2001.
Homke, S., Vergés, J., Van Der Beek, P., Fernàndez, M., Saura, E.,
Barbero, L., Badics, B., and Labrin, E.: Insights in the exhumation history
of the NW Zagros from bedrock and detrital apatite fission-track analysis:
evidence for a long-lived orogeny, Basin Res., 22, 659–680, 2010.
Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J.,
Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M., and Grove, M.:
Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran:
Implications for chronostratigraphy and collisional
tectonics, Tectonophysics, 451, 97–122, 2008.
Horton, B. K.: Cenozoic evolution of hinterland basins in the Andes and Tibet, in: Tectonics of Sedimentary Basins: Recent Advances, first edn., edited by: Busby, C. and Azor, A., Blackwell Publishing Ltd., Oxford, UK, 2012.
Ismail, S. A., Koshnaw, R. I., Barber, D. E., Al Humadi, H., and
Stockli, D. F.: Generation and exhumation of granitoid intrusions in the
Penjween ophiolite complex, NW Zagros of the Kurdistan region of Iraq:
Implications for the geodynamic evolution of the Arabian-Eurasian collision
zone, Lithos, 376, 105714, https://doi.org/10.1016/j.lithos.2020.105714, 2020.
Jagoutz, O., Royden, L., Holt, A. F., and Becker, T. W.: Anomalously fast
convergence of India and Eurasia caused by double subduction, Nat.
Geosci., 8, 475–478, 2015.
James, G. A. and Wynd, J. G.: Stratigraphic nomenclature of Iranian oil
consortium agreement area, AAPG Bull., 49, 2182–2245, 1965.
Jassim, S. Z. and Sisakian, V.: Field guide to the geology of Salah
Al-Din-Shaqlawa area, northeastern Iraq, Geological society of Iraq and
Union of Iraqi Geologists, Fifth Iraqi geological congress, Baghdad, Iraq, 1978.
Jassim, S. Z. and Buday, T.: Units of the unstable shelf and the Zagros
suture, in: Geology of Iraq, edited by: Jassim, S. Z. and Goff, J. C., Dolin and Moravian Museum, Prague and Brno, Czech Republic, 73–90, 2006.
Jassim, S. Z., Buday, T., Cicha, I., and Opletal, M.: Tectonostratigraphy of
the Zagros suture, in: Geology of Iraq, edited by: Jassim, S. Z. and Goff, J. C., Dolin and Moravian Museum, Prague and Brno, Czech Republic, 276–29, 2006.
Jones, B. G., Ali, S. A., and Nutman, A. P.: Provenance of Tanjero and Red Bed
clastic sedimentary rocks revealed by detrital zircon SHRIMP dating,
Kurdistan region, NE Iraq: Constraints on ocean closure and unroofing of
Neo-Tethyan allochthons, J. Afr. Earth Sci., 172, 103981,
2020.
Kadem, L. S.: Mixed carbonate clastic sediment facies of the Paleocene-L,
Eocene Kolosh Formation from selected locations in North Iraq, Tikrit
Journal of Pure Science, 11, 205–209, https://iasj.net/iasj?func=article&aId=39660 (last access: 29 October 2021) 2006.
Karim, H. K. and Surdashy, A. M.: Paleocurrent Analysis of Upper Cretaceous
Zagros Foreland Basin: A Case Study for Tanjero Formation in Sulaimaniya
Area NE-Iraq, Iraqi National Journal of Earth Sciences, 5, 30–44, 2005.
Karim, K. H., Al-Barzinjy, S. T., and Ameen, B. M.: History and geological
setting of intermontane basins in the Zagros fold-thrust belt, Kurdistan
region, NE Iraq, Iraqi Bulletin of Geology and Mining, 4, 21–33, 2008.
Karim, K. H., Koyi, H., Baziany, M. M., and Hessami, K.: Significance of
angular unconformities between Cretaceous and Tertiary strata in the
northwestern segment of the Zagros fold-thrust belt, Kurdistan Region, NE
Iraq, Geol. Mag., 148, 925–939, 2011.
Karo, N. M., Oberhänsli, R., Aqrawi, A. M., Elias, E. M., Aswad, K. J., and
Sudo, M.: New age constraints on cooling and unroofing history
of the metamorphic host rocks (and igneous intrusion associates) from the
Bulfat Complex (Bulfat area), NE-Iraq, Arab. J. Geosci., 11, 1–11, 2018.
Khadivi, S., Mouthereau, F., Larrasoaña, J. C., Vergés, J., Lacombe,
O., Khademi, E., and Suc, J. P.: Magnetochronology of synorogenic Miocene
foreland sediments in the Fars arc of the Zagros Folded Belt (SW Iran),
Basin Res., 22, 918–932, 2010.
Khadivi, S., Mouthereau, F., Barbarand, J., Adatte, T., and Lacombe, O.:
Constraints on palaeodrainage evolution induced by uplift and exhumation on
the southern flank of the Zagros-Iranian Plateau, J. Geol. Soc., 169, 83–97, 2012.
Kharajiany, S., Al-Qayim, B., and Wise Jr., S.: Calcareous nannofossil
stratigraphy of the Upper Cretaceous-lower Paleocene sequence from the
Chinarok section, Sulaimaniah area, Kurdistan region, NE Iraq, Iraqi
Bulletin of Geology and Mining, 15, 1–4, 2019.
Konert, G., Afifi, A. M., Al-Hajri, S. I. A., and Droste, H. J.: Paleozoic
stratigraphy and hydrocarbon habitat of the Arabian Plate, GeoArabia, 6,
407–442, 2001.
Koop, W. J. and Stoneley, R.: Subsidence history of the Middle East Zagros
basin, Permian to recent, Philosophical Transactions of the Royal Society of
London, Series A, Mathematical and Physical Sciences, 305, 149–168,
1982.
Koshnaw, R.: Supporting_information_Koshnaw_etal_SolidEarth, V1, Mendeley Data [data set], https://doi.org/10.17632/9ksxs85d9t.1, 2021.
Koshnaw, R. I., Horton, B. K., Stockli, D. F., Barber, D. E., Tamar-Agha, M. Y., and Kendall, J. J.: Neogene shortening and exhumation of the Zagros
fold-thrust belt and foreland basin in the Kurdistan region of northern
Iraq, Tectonophysics, 694, 332–355, 2017.
Koshnaw, R. I., Stockli, D. F., and Schlunegger, F.: Timing of the
Arabia-Eurasia continental collision-Evidence from detrital zircon U-Pb
geochronology of the Red Bed Series strata of the northwest Zagros
hinterland, Kurdistan region of Iraq, Geology, 47, 47–50, 2019.
Koshnaw, R. I., Horton, B. K., Stockli, D. F., Barber, D. E., and Tamar-Agha,
M. Y.: Sediment routing in the Zagros foreland basin: Drainage reorganization
and a shift from axial to transverse sediment dispersal in the Kurdistan
region of Iraq, Basin Res., 32, 688–715, 2020a.
Koshnaw, R. I., Stockli, D. F., Horton, B. K., Teixell, A., Barber, D. E., and Kendall, J. J.: Late Miocene Deformation Kinematics Along the NW Zagros
Fold-Thrust Belt, Kurdistan Region of Iraq: Constraints From Apatite
(U-Th) He Thermochronometry and Balanced Cross Sections, Tectonics, 39, e2019TC005865, 2020b.
Koyi, A. M.: Sr−Nd isotopical significance of Walash volcanic rocks, Mawat area, NE Iraq, Zanco J. Pure Appl. Sci. 21, 39–45, 2009.
Lawa, F. A., Koyi, H., and Ibrahim, A.: Tectono-stratigraphic evolution of
the NW segment OF the Zagros fold-thrust belt, Kurdistan, NE Iraq, J. Petrol. Geol., 36, 75–96, 2013.
Le Garzic, E., Vergés, J., Sapin, F., Saura, E., Meresse, F., and
Ringenbach, J. C.: Evolution of the NW Zagros Fold-and-Thrust Belt in
Kurdistan Region of Iraq from balanced and restored crustal-scale sections
and forward modelling, J. Struct. Geol., 124, 51–69, 2019.
Leterrier, J.: Mineralogical, geochemical and isotopic evolution of two
Miocene mafic intrusions from the Zagros (Iran), Lithos, 18, 311–329, 1985.
Marsh, J. H. and Stockli, D. F.: Zircon U-Pb and trace element zoning
characteristics in an anatectic granulite domain: Insights from LASS-ICP-MS
depth profiling, Lithos, 239, 170–185, 2015.
Mazhari, S. A., Bea, F., Amini, S., Ghalamghash, J., Molina, J. F., Montero,
P., Scarrow, J. H., and Williams, I. S.: The Eocene bimodal Piranshahr massif
of the Sanandaj-Sirjan Zone, NW Iran: a marker of the end of the collision
in the Zagros orogeny, J. Geol. Soc., 166, 53–69, 2009.
Mazhari, S. A., Ghalamghash, J., Kumar, S., Shellnutt, J. G., and Bea, F.:
Tectonomagmatic development of the Eocene Pasevh pluton (NW Iran):
Implications for the Arabia-Eurasia collision, J. Asian Earth
Sci., 203, 104551, 2020.
McQuarrie, N. and van Hinsbergen, D. J.: Retrodeforming the Arabia-Eurasia
collision zone: Age of collision versus magnitude of continental
subduction, Geology, 41, 315–318, 2013.
McQuarrie, N., Stock, J. M., Verdel, C., and Wernicke, B. P.: Cenozoic
evolution of Neotethys and implications for the causes of plate motions,
Geophys. Res. Lett., 30, 2036, https://doi.org/10.1029/2003GL017992, 2003.
Meinhold, G., Bassis, A., Hinderer, M., Lewin, A., and Berndt, J.: Detrital zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia, Geological Magazine, 158, 442–458, 2021.
Minstry of Natural Resources (MNR), Kurdistan regional government.:
Occurrences of metallic deposits in the kurdistan region-Iraq, Kurdistan
region, Iraq, 2016.
Moghadam, H. S. and Stern, R. J.: Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone, Geological Magazine, 148, 762–801, 2011.
Moghadam, H. S., Li, Q. L., Stern, R. J., Chiaradia, M., Karsli, O., and
Rahimzadeh, B.: The Paleogene ophiolite conundrum of the Iran-Iraq border
region, J. Geol. Soc., 177, 955–964, 2020.
Mohammad, Y. O. and Cornell, D. H.: U-Pb zircon geochronology of the
Daraban leucogranite, Mawat ophiolite, Northeastern Iraq: a record of the
subduction to collision history for the Arabia-Eurasia plates, Isl.
Arc, 26, e12188, 2017.
Mohammad, Y. O., Cornell, D. H., Qaradaghi, J. H., and Mohammad, F. O.:
Geochemistry and Ar−Ar muscovite ages of the Daraban Leucogranite, Mawat
Ophiolite, northeastern Iraq: implications for Arabia-Eurasia continental
collision, J. Asian Earth Sci., 86, 151–165, 2014.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and
global climate change: chicken or egg?, Nature, 346, 29–34, 1990.
Moritz, R., Ghazban, F., and Singer, B. S.: Eocene gold ore formation at
Muteh, Sanandaj-Sirjan tectonic zone, Western Iran: a result of late-stage
extension and exhumation of metamorphic basement rocks within the Zagros
Orogen, Econ. Geol., 101, 1497–1524, 2006.
Mouthereau, F., Lacombe, O., and Vergés, J.: Building the Zagros
collisional orogen: timing, strain distribution and the dynamics of
Arabia/Eurasia plate convergence, Tectonophysics, 532, 27–60, 2012.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams,
S., Pfaffelmoser, T., Seton, M., Russell, S. H., and Zahirovic, S.: GPlates:
building a virtual Earth through deep time, Geochem. Geophy.
Geosy., 19, 2243–2261, 2018.
Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti,
E., Godin, L., Han, J., Liebke, U., Oliver, G., and Parrish, R.: Timing of
India-Asia collision: Geological, biostratigraphic, and palaeomagnetic
constraints, J. Geophys. Res.-Sol. Ea., 115, https://doi.org/10.1029/2010JB007673 , 2010.
Navabpour, P., Barrier, E., and McQuillan, H.: Oblique oceanic opening and
passive margin irregularity, as inherited in the Zagros fold-and-thrust
belt, Terra Nova, 26, 208–215, 2014.
Norton, K. and Schlunegger, F.: Migrating deformation in the Central Andes
from enhanced orographic rainfall, Nat. Commun., 2, 1–7, 2011.
Nouri, F., Azizi, H., Golonka, J., Asahara, Y., Orihashi, Y., Yamamoto, K.,
Tsuboi, M., and Anma, R.: Age and petrogenesis of Na-rich felsic rocks in western Iran: evidence for closure of the southern branch of the Neo-Tethys
in the Late Cretaceous, Tectonophysics, 671, 151–172, 2016.
Numan, N. M.: A plate tectonic scenario for the Phanerozoic succession in
Iraq, Iraqi Geological Journal, 30, 85–110, 1997.
Numan, N. M. S., Hammoudi, R. A., and Chorowicz, J.: Synsedimentary tectonics
in the Eocene Pila Spi limestone formation in Iraq and its geodynamic
implications, J. Afr. Earth Sci., 27, 141–148, 1998.
Oberhänsli, R. O. R. G. A. J. M., Candan, O., Bousquet, R., Rimmele, G.,
Okay, A., and Goff, J.: Alpine high pressure evolution of the eastern Bitlis
complex, SE Turkey, Special Publications, London, Geol. Soc., 340, 461–483, 2010.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L.: Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences, Lithos, 106, 380–398, 2008.
Orme, D. A., Carrapa, B., and Kapp, P.: Sedimentology, provenance and
geochronology of the Upper Cretaceous-Lower Eocene western Xigaze forearc
basin, southern Tibet, Basin Res., 27, 387–411, 2015.
Omer, M. F., Friis, H., Kokfelt, T. F., and Thomsen, T. B.: Provenance of
northern Gondwana Lower Ordovician sandstones (Khabour Formation, northern
Iraq) revealed by detrital zircon using LA-ICP-MS dating, Geol. J., 56, 1–18, https://doi.org/10.1002/gj.4210, 2021.
Pujols, E. J., Stockli, D. F., Constenius, K. N., and Horton, B. K.:
Thermochronological and geochronological constraints on Late Cretaceous
unroofing and proximal sedimentation in the Sevier orogenic belt,
Utah, Tectonics, 39, e2019TC005794, 2020.
Reiners, P. W., Farley, K. A., and Hickes, H. J.: He diffusion and (U-Th) He
thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold
Butte, Tectonophysics, 349, 297–308, 2002.
Robertson, A. H. F., Parlak, O., Rizaoğlu, T., Ünlügenç,
Ü., İnan, N., Tasli, K., and Ustaömer, T.: Tectonic evolution of
the South Tethyan ocean: evidence from the Eastern Taurus Mountains
(Elaziğ region, SE Turkey), Special
Publications, London, Geol. Soc., 272, 231–270, 2007.
Rolland, Y., Perincek, D., Kaymakci, N., Sosson, M., Barrier, E., and
Avagyan, A.: Evidence for ∼80–75 Ma subduction jump during
Anatolide-Tauride-Armenian block accretion and ∼48 Ma
Arabia-Eurasia collision in Lesser Caucasus-East Anatolia, J. Geodyn., 56, 76–85, 2012.
Salih, N., Mansurbeg, H., Kolo, K., Gerdes, A., and Préat, A.: In situ
U-Pb dating of hydrothermal diagenesis in tectonically controlled fracturing
in the Upper Cretaceous Bekhme Formation, Kurdistan
Region-Iraq, Int. Geol. Rev., 62, 2261–2279, 2020.
Sasvari, A., Davies, L., Mann, A., Afzal, J., Vakarcs, G., and Iwaniw, E.:
Dachstein-type Avroman Formation: An indicator of the Harsin Basin in
Iraq, GeoArabia, 20, 17–36, 2015.
Saura, E., Vergés, J., Homke, S., Blanc, E., Serra-Kiel, J., Bernaola,
G., Casciello, E., Fernández, N., Romaire, I., Casini, G., and Embry,
J. C.: Basin architecture and growth folding of the NW Zagros early foreland
basin during the Late Cretaceous and early Tertiary, J. Geol. Soc., 168, 235–250, 2011.
Saura, E., Garcia-Castellanos, D., Casciello, E., Parravano, V., Urruela,
A., and Vergés, J.: Modeling the flexural evolution of the Amiran and
Mesopotamian foreland basins of NW Zagros (Iran-Iraq), Tectonics, 34,
377–395, 2015.
Saylor, J. E. and Sundell, K. E.: Quantifying comparison of large detrital geochronology data sets, Geosphere, 12, 203–220, 2016.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., and
Heward, A. P.: Arabian plate sequence stratigraphy, GeoArabia Special Publication 2, Gulf PetroLink, Manama, Bahrain, 371 pp. 2001.
Shawkat, M. G. and Tucker, M. E.: Stromatolites and sabkha cycles from the
lower Fars formation (Miocene) of Iraq, Geol. Rev., 67, 1–14, 1978.
Sissakian, V. K.: Geological Map of Arbeel and Mahabad Quadrangles Sheets
NJ-38-14 and NJ-38-15, Geological Survey and Mining, Baghdad, Iraq, Scale
1:250 000, 1997.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and
Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrones, Earth Planet. Sc. Lett., 196, 17–33, 2002.
Stern, R. J.: Subduction zones, Rev. Geophy., 40, 3–1, 2002.
Stern, R. J.: The anatomy and ontogeny of modern intra-oceanic arc
systems, Special Publications, London, Geol. Soc., 338, 7–34, 2010.
Stern, R. J. and Johnson, P.: Continental lithosphere of the Arabian Plate:
a geologic, petrologic, and geophysical synthesis, Earth-Sci. Rev., 101, 29–67, 2010.
Stern, R. J., Ren, M., Ali, K., Förster, H. J., Al Safarjalani, A.,
Nasir, S., and Romer, R. L.: Early Carboniferous (∼357 Ma) crust
beneath northern Arabia: Tales from Tell Thannoun (southern Syria), Earth Planet. Sci. Lett., 393, 83–93, 2014.
Stockli, D., Boyd, P., and Galster, F.: Intragrain common Pb correction in
apatite by LA-ICP-MS depth profiling and implications for detrital apatite
U-Pb dating, Geophysical Research Abstracts, 19th EGU General Assembly, Vienna, Austria, 23–28 April 2017, p. 12225, 2017.
Stoneley, R.: On the origin of ophiolite complexes in the southern Tethys
region, Tectonophysics, 25, 303–322, 1975.
Tamar-Agha, M. Y. and Al-Aslami, O. J. M.: Facies, Depositional Environment and
Cyclicity of the Fatha Formation in East Baghdad Oil Field, Iraq, Iraqi
Journal of Science, 56, 2939–2952, 2015.
Tamar-Agha, M. Y. and Salman, N. A.: Facies and Depositional Environments of
Injana Formation in Zawita, Amadia and Zakho Areas, Northern Iraq, Iraqi
Bulletin of Geology and Mining, 11, 39–60, 2015.
Tamar-Agha, M., Numan, N. M. S., and Malala, K.: Field guide for the geology
of Dohok and Sinjar areas, Geological society of Iraq and Union of Iraqi
Geologists, Fifth Iraqi Geological Congress, Baghdad, Iraq, 1978.
Thomson, K. D., Stockli, D. F., Clark, J. D., Puigdefàbregas, C., and
Fildani, A.: Detrital zircon (U-Th) He double-dating constraints on
provenance and foreland basin evolution of the Ainsa Basin, south-central
Pyrenees, Spain, Tectonics, 36, 1352–1375, 2017.
van Bellen, V. R. C., Dunnington, H. V., Wetzel, R., and Morton, D. M.:
Lexique Stratigraphique International 3, Asie, fasc. 10a, Iraq, CNRS (Cent.
Natl. Rech. Sci.), Paris, 1959.
van der Boon, A., Kuiper, K. F., van der Ploeg, R., Cramwinckel, M. J., Honarmand, M., Sluijs, A., and Krijgsman, W.: Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up, Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, 2021.
van der Meer, D. G., Van Hinsbergen, D. J., and Spakman, W.: Atlas of the
underworld: Slab remnants in the mantle, their sinking history, and a new
outlook on lower mantle viscosity, Tectonophysics, 723, 309–448, 2018.
van Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C.,
Maffione, M., Vissers, R. L., and Spakman, W.: Orogenic architecture of the
Mediterranean region and kinematic reconstruction of its tectonic evolution
since the Triassic, Gondwana Res., 81, 79–229, 2020.
Verdel, C., Wernicke, B. P., Hassanzadeh, J., and Guest, B.: A Paleogene
extensional arc flare-up in Iran, Tectonics, 30, TC3008, https://doi.org/10.1029/2010TC002809, 2011.
Vergés, J., Saura, E., Casciello, E., Fernandez, M., Villaseñor, A.,
Jimenez-Munt, I., and García-Castellanos, D.: Crustal-scale
cross-sections across the NW Zagros belt: implications for the Arabian
margin reconstruction, Geol. Mag., 148, 739–761, 2011.
Vergés, J. H. M. E. S. P. A., Emami, H., Garcés, M., Beamud, E.,
Homke, S., and Skott, P.: Zagros foreland fold belt timing across Lurestan
to constrain Arabia-Iran collision, in: Developments in Structural Geology
and Tectonics, Elsevier, 3, 29–52, 2019.
Vermeesch, P.: How many grains are needed for a provenance study?, Earth Planet. Sc. Lett., 224, 441–451, 2004.
Vermeesch, P.: On the visualisation of detrital age distributions, Chem. Geol., 312, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Vermeesch, P.: Multi-sample comparison of detrital age distributions, Chem. Geol., 341, 140–146, 2013.
Webb, A. A. G., Yin, A., and Dubey, C. S.: U-Pb zircon geochronology of major
lithologic units in the eastern Himalaya: Implications for the origin and
assembly of Himalayan rocks, Geol. Soc. Am. Bull., 125, 499–522, 2013.
Wells, M., Morton, A., and Frei, D.: Provenance of Lower Cretaceous clastic
reservoirs in the Middle East, J. Geol. Soc., 174, 1048–1061, 2017.
Whitechurch, H., Omrani, J., Agard, P., Humbert, F., Montigny, R., and
Jolivet, L.: Evidence for Paleocene-Eocene evolution of the foot of the
Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc:
implications for regional geodynamics and obduction, Lithos, 182, 11–32,
2013.
Wolfe, M. R. and Stockli, D. F.: Zircon (U-Th) He thermochronometry in the
KTB drill hole, Germany, and its implications for bulk He diffusion kinetics
in zircon, Earth Planet. Sci. Lett., 295, 69–82, 2010.
Wrobel-Daveau, J. C., Ringenbach, J. C., Tavakoli, S., Ruiz, G. M., Masse,
P., and de Lamotte, D. F.: Evidence for mantle exhumation along the Arabian
margin in the Zagros (Kermanshah area, Iran), Arab. J. Geosci., 3, 499–513, 2010.
Xu, J., Stockli, D. F. and Snedden, J. W.: Enhanced provenance interpretation
using combined U-Pb and (U-Th) He double dating of detrital zircon grains
from lower Miocene strata, proximal Gulf of Mexico Basin, North America,
Earth Planet. Sci. Lett., 475, 44–57, 2017.
Yilmaz, Y.: New evidence and model on the evolution of the southeast
Anatolian orogen, Geol. Soc. Am. Bull., 105, 251–271,
1993.
Zhang, Z., Xiao, W., Majidifard, M. R., Zhu, R., Wan, B., Ao, S., Chen, L.,
Rezaeian, M., and Esmaeili, R.: Detrital zircon provenance analysis in the
Zagros Orogen, SW Iran: implications for the amalgamation history of the
Neo-Tethys, Int. J. Earth Sci., 106, 1223–1238, 2017.
Ziegler, M. A.: Late Permian to Holocene paleofacies evolution of the
Arabian Plate and its hydrocarbon occurrences, GeoArabia, 6, 445–504,
2001.
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
As continental plates collide, mountain belts grow. This study investigated the provenance of...