Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2479-2021
https://doi.org/10.5194/se-12-2479-2021
Research article
 | 
03 Nov 2021
Research article |  | 03 Nov 2021

Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq

Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli

Related authors

The Miocene subsidence pattern of the NW Zagros foreland basin reflects the southeastward propagating tear of the Neotethys slab
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024,https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
About the trustworthiness of physics-based machine learning – considerations for geomechanical applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025,https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Relict landscape evolution and fault reactivation in the eastern Tian Shan: insights from the Harlik Mountains
Zihao Zhao, Tianyi Shen, Guocan Wang, Peter van der Beek, Yabo Zhou, and Cheng Ma
Solid Earth, 16, 503–530, https://doi.org/10.5194/se-16-503-2025,https://doi.org/10.5194/se-16-503-2025, 2025
Short summary
Switching extensional and contractional tectonics in the West Kunlun Mountains during the Jurassic period: responses to the Neo-Tethyan geodynamics along the Eurasian margin
Hong-Xiang Wu, Han-Lin Chen, Andrew V. Zuza, Yildirim Dilek, Du-Wei Qiu, Qi-Ye Lu, Feng-Qi Zhang, Xiao-Gan Cheng, and Xiu-Bin Lin
Solid Earth, 16, 155–177, https://doi.org/10.5194/se-16-155-2025,https://doi.org/10.5194/se-16-155-2025, 2025
Short summary
Influence of lateral heterogeneities on strike-slip fault behaviour: insights from analogue models
Sandra González-Muñoz, Guido Schreurs, Timothy C. Schmid, and Fidel Martín-González
Solid Earth, 15, 1509–1523, https://doi.org/10.5194/se-15-1509-2024,https://doi.org/10.5194/se-15-1509-2024, 2024
Short summary
Importance of basement faulting and salt decoupling for the structural evolution of the Fars Arc (Zagros fold-and-thrust belt): a numerical modeling approach
Fatemeh Gomar, Jonas B. Ruh, Mahdi Najafi, and Farhad Sobouti
Solid Earth, 15, 1479–1507, https://doi.org/10.5194/se-15-1479-2024,https://doi.org/10.5194/se-15-1479-2024, 2024
Short summary

Cited articles

Abdallah, F. T. and Al-Dulaimi, S. I.: Biostratigraphy of the Upper Cretaceous for selected sections in northern Iraq, Iraqi Journal of Science, 60, 545–553, 2019. 
Abdel-Kireem, M. R.: Planktonic foraminifera and stratigraphy of the Tanjero Formation (Maastrichtian), northeastern Iraq, Micropaleontology, 32, 215–231, 1986. 
Abdollahi, F., Nabatian, G., Li, J. W., Honarmand, M., and Ebrahimi, M.: Saheb Granitoid Batholith, North of Kurdistan: An Evidence of Cretaceous-Paleocene Magmatism in the Sanandaj-Sirjan Zone, Journal Of Economic Geology, 12, 359–376, 2020. 
Abdula, R. A., Chicho, J., Surdashy, A., Nourmohammadi, M. S., Hamad, E., Muhammad, M. M., Smail, A. A., and Ashoor, A.: Sedimentology of the Govanda Formation at Gali Baza locality, Kurdistan region, Iraq, Iraqi Bulletin of Geology and Mining, 14, 1–12, 2018. 
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F.: Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, Int. J. Earth Sci., 94, 401–419, 2005. 
Download
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Share