Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Luca Smeraglia
National Research Council, IGAG, Rome, Italy
Chrono-Environnement, UMR 6249, Université de Bourgogne-Franche
Comté, 25000 Besançon, France
formerly at: Dipartimento di Scienze della Terra, Sapienza Università
di Roma, P.le Aldo Moro 5, 00185, Rome, Italy
Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zurich,
Switzerland
Olivier Fabbri
Chrono-Environnement, UMR 6249, Université de Bourgogne-Franche
Comté, 25000 Besançon, France
Flavien Choulet
Chrono-Environnement, UMR 6249, Université de Bourgogne-Franche
Comté, 25000 Besançon, France
Marcel Guillong
Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zurich,
Switzerland
Stefano M. Bernasconi
Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zurich,
Switzerland
Related authors
No articles found.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Kilian Lecacheur, Olivier Fabbri, Francesca Piccoli, Pierre Lanari, Philippe Goncalves, and Henri Leclère
Eur. J. Mineral., 36, 767–795, https://doi.org/10.5194/ejm-36-767-2024, https://doi.org/10.5194/ejm-36-767-2024, 2024
Short summary
Short summary
In this study, we analyze a peculiar eclogite from the Western Alps, which not only recorded a classical subduction-to-exhumation path but revealed evidence of Ca-rich fluid–rock interaction. Chemical composition and modeling show that the rock experienced peak metamorphic conditions followed by Ca-rich pulsed fluid influx occurring consistently under high-pressure conditions. This research enhances our understanding of fluid–rock interactions in subduction settings.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Alban Cheviet, Martine Buatier, Flavien Choulet, Christophe Galerne, Armelle Riboulleau, Ivano Aiello, Kathleen M. Marsaglia, and Tobias W. Höfig
Eur. J. Mineral., 35, 987–1007, https://doi.org/10.5194/ejm-35-987-2023, https://doi.org/10.5194/ejm-35-987-2023, 2023
Short summary
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Cited articles
Affolter, T. and Gratier, J. P.: Map view retrodeformation of an arcuate
fold-and-thrust belt: The Jura case, J. Geophy. Res.-Sol.
Ea., 109, B03404, https://doi.org/10.1029/2002JB002270, 2004.
Beaudoin, N. and Lacombe, O.: Recent and future trends in paleopiezometry
in the diagenetic domain: Insights into the tectonic paleostress and burial
depth history of fold-and-thrust belts and sedimentary basins, J.
Struct. Geol., 114, 357–365, 2018.
Beaudoin, N., Lacombe, O., Roberts, N. M., and Koehn, D.: U-Pb dating of
calcite veins reveals complex stress evolution and thrust sequence in the
Bighorn Basin, Wyoming, USA, Geology, 46, 1015–1018, 2018.
Becker, A.: The Jura Mountains – an active foreland fold-and-thrust belt?,
Tectonophysics, 321, 381–406, 2000.
Bellahsen, N., Mouthereau, F., Boutoux, A., Bellanger, M., Lacombe, O.,
Jolivet, L., and Rolland, Y.: Collision kinematics in the western external
Alps, Tectonics, 33, 1055–1088, 2014.
Bergerat, F.: Stress fields in the European platform at the time of
Africa-Eurasia collision, Tectonics 6, 99–132, 1987.
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation
of tectonic veins and their microstructures, J. Struct. Geol.,
43, 33–62, 2012.
Carminati, E., Aldega, L., Smeraglia, L., Scharf, A., Mattern, F., Albert, R., and
Gerdes, A.: Tectonic evolution of the Northern Oman Mountains, part of the
Strait of Hormuz Syntaxis: new structural and paleothermal analyses and U-Pb
dating of synkinematic calcite, Tectonics, 39, e2019TC005936, https://doi.org/10.1029/2019TC005936, 2020.
Craig, M. S. and Warvakai, K.: Structure of an active foreland fold and
thrust belt, Papua New Guinea, Aust. J. Earth Sci., 56,
719–738, 2009.
Fagereng, Å., Remitti, F., and Sibson, R. H.: Shear veins observed
within anisotropic fabric at high angles to the maximum compressive stress,
Nat. Geosci., 3, 482–485, https://doi.org/10.1038/NGEO898, 2010.
Ferril, D. A., Smart, K. J., Cawood, A. J., and Morris, A. P.: The fold-thrust belt
stress cycle: Superposition of normal, strike-slip, and thrust faulting
deformation regimes, J. Struct. Geol., 148, 482–485, 2021.
Goodfellow, B. W., Viola, G., Bingen, B., Nuriel, P., and Kylander-Clark, A.
R.: Paleocene faulting in SE Sweden from U–Pb dating of slickenfiber
calcite, Terra Nova, 29, 321–328, 2017.
Gratier, J. P. and Gamond, J. F.: Transition between seismic and aseismic
deformation in the upper crust. London, Geol. Soc. Spec.
Publ., 54, 461–473, 1990.
Gratier, J. P., Thouvenot, F., Jenatton, L., Tourette, A., Doan, M. L., and Renard, F.: Geological control of the partitioning between seismic and
aseismic sliding behaviours in active faults: evidence from the Western
Alps, France, Tectonophysics, 600, 226–242, 2013.
Gruber, M.: Structural Investigations of the Western Swiss Molasse Basin – From 2D Seismic Interpretation to a 3D Geological Model, GeoFocus, 41, 190 pp., 2017.
Guillong, M., Wotzlaw, J.-F., Looser, N., and Laurent, O.: Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material, Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, 2020.
Hansman, R. J., Albert, R., Gerdes, A., and Ring, U.: Absolute ages of
multiple generations of brittle structures by U-Pb dating of calcite,
Geology, 46, 207–210, 2018.
Hibsch, C., Jarrige, J. J., Cushing, E. M., and Mercier, J.: Palaeostress
analysis, a contribution to the understanding of basin tectonics and
geodynamic evolution. Example of the Permian/Cenozoic tectonics of Great
Britain and geodynamic implications in western Europe, Tectonophysics,
252, 103–136, 1995.
Hoareau, G., Crognier, N., Lacroix, B., Aubourg, C., Roberts, N. M., Niemi, N., Branellec, M., Beaudoin, N., and Suarez Ruiz, I.:
Combination of Δ47 and U-Pb dating in tectonic calcite veins unravel
the last pulses related to the Pyrenean Shortening (Spain), Earth
Planet. Sc. Lett., 553, 116636, https://doi.org/10.1016/j.epsl.2020.116636, 2021.
Holland, M. and Urai, J. L.: Evolution of anastomosing crack–seal vein
networks in limestones: Insight from an exhumed high-pressure cell, Jabal
Shams, Oman Mountains, J. Struct. Geol., 32, 1279–1290,
2010.
Homberg, C., Hu, J. C., Angelier, J., Bergerat, F., and Lacombe, O.:
Characterization of stress perturbations near major fault zones: insights
from 2-D distinct-element numerical modelling and field studies (Jura
mountains), J. Struct. Geol., 19, 703–718, 1997.
Homberg, C., Bergerat, F., Philippe, Y., Lacombe, O., and Angelier, J.:
Structural inheritance and Cenozoic stress fields in the Jura
fold-and-thrust belt (France), Tectonophysics, 357, 137–158, 2002.
Jordan, P.: Evidence for large-scale decoupling in the Triassic evaporites
of Northern Switzerland: an overview, Eclogae Geol. Helv., 85,
677–693, 1992.
Lacombe, O. and Bellahsen, N.: Thick-skinned tectonics and
basement-involved fold–thrust belts: insights from selected Cenozoic
orogens, Geol. Mag., 153, 763–810, 2016.
Lacombe, O. and Mouthereau, F.: What is the real front of orogens? The
Pyrenean orogen as a case study, Comptes Rendus de l'Academie des Sciences
Series IIA Earth and Planetary Science, 329, 889–896, 1999.
Lacombe, O. and Mouthereau, F.: Basement‐involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pyrenees), Tectonics, 21, 1–22, https://doi.org/10.1029/2001TC901018, 2002.
Lacombe, O. and Obert, D.: Structural inheritance and cover deformation:
Tertiary folding and faulting in, the western Paris Basin, Comptes rendus de
l'academie des sciences serie ii fascicule a-sciences de la terre et des
planetes, 330, 793–798, 2000.
Lacombe, O., Angelier, J., Laurent, P., Bergerat, F., and Tourneret, C.:
Joint analyses of calcite twins and fault slips as a key for deciphering
polyphase tectonics: Burgundy as a case study, Tectonophysics, 182,
279–300, 1990.
Lacombe, O., Angelier, J., Byrne, D., and Dupin, J. M.: Eocene-Oligocene
tectonics and kinematics of the Rhine-Saone continental transform zone
(eastern France), Tectonics, 12, 874–888, 1993.
Lacombe, O., Lavé, J., Roure, F. M., and Vergés, J. (Eds.).: Thrust
belts and foreland basins: From fold kinematics to hydrocarbon systems,
Springer Science and Business Media, Berlin, ISBN 978-3-540-69426-7, 2007.
Looser, N., Madritsch, H., Guillong, M., Laurent, O., Wohlwend, S., and
Bernasconi, S. M.: Absolute age and temperature constraints on
deformation along the basal deìcollement of the Jura fold-and- thrust belt
from carbonate U-Pb dating and clumped isotopes, Tectonics, 40,
e2020TC006439, https://doi.org/10.1029/2020TC006439, 2021.
Madritsch, H., Schmid, S. M., and Fabbri, O.: Interactions between thin- and
thick-skinned tectonics at the northwestern front of the Jura
fold-and-thrust belt (eastern France), Tectonics, 27, 1–31, 2008.
Mazurek, M., Hurford, A. J., and Leu, W.: Unravelling the multi-stage burial
history of the Swiss Molasse Basin: integration of apatite fission track,
vitrinite reflectance and biomarker isomerisation analysis, Basin Research,
18, 27–50, 2006.
Mazurek, M., Davis, D. W., Madritsch, H., Rufer, D., Villa, I., Sutcliffe, C. N., de Haller, A., and Traber, D.: Veins in clay-rich aquitards as records of deformation and
fluid-flow events in northern Switzerland, Appl. Geochem., 95, 57–70,
2018.
Merle, O. and Michon, L.: The formation of the West European Rift;
a new model as exemplified by the Massif Central area, B.
Soc. Geol. Fr., 172, 213–221, 2001.
Mosar, J.: Present-day and future tectonic underplating in the western Swiss
Alps: reconciliation of basement/wrench-faulting and décollement folding
of the Jura and Molasse basin in the Alpine foreland, Earth Planet.
Sc. Lett., 173, 143–155, 1999.
Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R., and
Craddock, J. P.: The onset of the Dead Sea transform based on calcite
age-strain analyses, Geology, 45, 587–590, 2017.
Parrish, R. R., Parrish, C. M., and Lasalle, S.: Vein calcite dating reveals
Pyrenean orogen as cause of Paleogene deformation in southern England,
J. Geol. Soc., 175, 425–442, 2018.
Pfiffner, O. A.: Geology of the Alps, Chichester, John Wiley and Son, ISBN 978-1-118-70812-5, Hoboken, New Jersey, USA, 2014.
Philippe, Y., Colletta, B., Deville, E., and Mascle, A.: The Jura
fold-and-thrust belt: a kinematic model based on map-balancing, Mémoires
du Muséum national d'histoire naturelle, 170, 235–261, 1996.
Radaideh, O. M. and Mosar, J.: Cenozoic Tectonic Deformation Along the Pontarlier Strike‐Slip Fault Zone (Swiss and French Jura Fold‐and‐Thrust Belt): Insights From Paleostress and Geomorphic Analyses, Tectonics, 40, e2021TC006758, https://doi.org/10.1029/2021TC006758, 2021.
Rime, V., Sommaruga, A., Schori, M., and Mosar, J.: Tectonics of the
Neuchâtel Jura Mountains: insights from mapping and forward modelling,
Swiss J. Geosci., 112, 563–578, 2019.
Roberts, N. M., Drost, K., Horstwood, M. S., Condon, D. J., Chew, D., Drake,
H., and Haslam, R.: Laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress,
and limitations, Geochronology, 2, 33–61, 2020.
Roberts, N. M., Žák, J., Vacek, F., and Sláma, J.: No more blind
dates with calcite: Fluid-flow vs. fault-slip along the Očkov thrust,
Prague Basin. Geosci. Front., 12, 101143, https://doi.org/10.1016/j.gsf.2021.101143, 2021.
Sissingh, W.: Comparative Tertiary stratigraphy of the Rhine Graben, Bresse
Graben and Molasse Basin: correlation of Alpine foreland events,
Tectonophysics, 1-4, 300, 249–284, https://doi.org/10.1016/S0040-1951(98)00243-1, 1998.
Smeraglia, L., Aldega, L., Billi, A., Carminati, E., Di Fiore, F., Gerdes,
A., and Vignaroli, G.: Development of an Intrawedge Tectonic Mélange by
Out-of-Sequence Thrusting, Buttressing, and Intraformational Rheological
Contrast, Mt. Massico Ridge, Apennines, Italy, Tectonics, 38, 1223–1249,
2019.
Smeraglia, L., Fabbri, O., Choulet, F., Buatier, M., Boulvais, P.,
Bernasconi, S. M., and Castorina, F.: Syntectonic fluid flow and deformation
mechanisms within the frontal thrust of foreland fold-and-thrust belt:
Example from the Internal Jura, Eastern France, Tectonophysics, 778, 228178,
https://doi.org/10.1016/j.tecto.2019.228178, 2020.
Smeraglia, L., Looser, N., Fabbri, O., Choulet, F., Guillong, M., and Bernasconi, S. M.: Dataset for “U-Pb dating of middle Eocene-Pliocene
multiple tectonic pulses in the Alpine foreland” by Smeraglia et al.,
Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set],
https://doi.org/10.26022/IEDA/112155, 2021.
Sommaruga, A.: Geology of the Central Jura and the Molasse basin: New
insight into an evaporite-based foreland fold and thrust belt, Mémoires
de la Société Neuchâteloise de Sciences Naturelles, 12, 176 pp.,
1997.
Sommaruga, A., Mosar, J., Schori, M., and Gruber, M.: The role of the
Triassic evaporites underneath the North Alpine foreland, in: Permo- Triassic salt provinces of Europe,
North Africa and the Atlantic Margins: tectonics and hydrocarbon potential, chapter 22 (IV), edited by: Soto, J.,
Flinch, J., and Tari, G., Elsevier, Amsterdam, the Netherlands, 2017.
Thouvenot, F., Fréchet, J., Tapponnier, P., Thomas, J. C., Le Brun, B.,
Ménard, G., and Paul, A.: The ML 5.3 Epagny (French Alps) earthquake of
1996 July 15: a long-awaited event on the Vuache Fault, Geophys. J.
Int., 135, 876–892, 1998.
Timar-Geng, Z., Fügenschuh, B., Wetzel, A., and Dresmann,
H.: The low termperature thermal history of northern Switzerland as revealed
by fission track analysis and inverse thermal modelling, Eclogae Geol.
Helv., 99, 255–270, 2006.
Twiss, R. J. and Moores, E. M.: Structural geology, Freeman and Co., San Francisco, pp. 532, ISBN 0 7167 2252 6, 1992.
Urai, J. L., Williams, P. F., and Van Roermund, H. L. M.: Kinematics of
crystal growth in syntectonic fibrous veins, J. Struct. Geol.,
13, 823–836, 1991.
Ustaszewski, K. and Schmid, S. M.: Control of preexisting faults on
geometry and kinematics in the northernmost part of the Jura fold-and-thrust
belt, Tectonics, 25, 1–26, https://doi.org/10.1029/2005TC001915, 2006.
Ustaszewski, K. and Schmid, S. M.: Latest Pliocene to recent thick-skinned tectonics at the Upper Rhine Graben–Jura Mountains junction, Sw. J. Geosci., 100, 293–312, 2007.
Van der Pluijm, B. A., Hall, C. M., Vrolijk, P. J., Pevear, D. R., and
Covey, M. C.: The dating of shallow faults in the Earth's crust, Nature,
412, 172–175, 2001.
Vergés, J., Muñoz, J. A., and Martínez, A.: South Pyrenean fold
and thrust belt: The role of foreland evaporitic levels in thrust geometry,
in: Thrust tectonics, Springer, Dordrecht, 255–264, 1992.
Von Hagke, C., Cederbom, C. E., Oncken, O., Stöckli, D. F., Rahn, M. K.,
and Schlunegger, F.: Linking the northern Alps with their foreland: The
latest exhumation history resolved by low-temperature thermochronology,
Tectonics, 31, TC5010, 1–25, https://doi.org/10.1029/2011TC003078, 2012.
Von Hagke, C., Oncken, O., Ortner, H., Cederbom, C. E., and Aichholzer, S.:
Late Miocene to present deformation and erosion of the Central
Alps – Evidence for steady state mountain building from thermokinematic
data, Tectonophysics, 632, 250–260, 2014.
Vrolijk, P., Pevear, D., Covey, M., and LaRiviere, A.: Fault gouge dating:
history and evolution, Clay Miner., 53, 305–324, 2018.
Woodcock, N. H., Miller, A. V. M., and Woodhouse, C. D.: Chaotic breccia
zones on the Pembroke Peninsula, south Wales: Evidence for collapse into
voids along dilational faults, J. Struct. Geol., 69, 91–107,
2014.
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary...