Articles | Volume 12, issue 12
https://doi.org/10.5194/se-12-2735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Total SA, CSTJF, Avenue Larribeau, 64000 Pau, France
Philippe Hervé Leloup
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Philippe Sorrel
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Albert Galy
CRPG, 15 rue Notre Dames des Pauvres, 54500 Vandœuvre-lès-Nancy, France
François Demory
Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE,
Aix-en-Provence, France
Vincenzo Spina
Total SA, CSTJF, Avenue Larribeau, 64000 Pau, France
Bastien Huet
Total SA, CSTJF, Avenue Larribeau, 64000 Pau, France
Frédéric Quillévéré
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Frédéric Ricciardi
Total SA, CSTJF, Avenue Larribeau, 64000 Pau, France
Daniel Michoux
Total SA, CSTJF, Avenue Larribeau, 64000 Pau, France
Kilian Lecacheur
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Romain Grime
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Bernard Pittet
Laboratoire de Géologie de Lyon, Terre Planètes et Environement, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne,
France
deceased
Jean-Loup Rubino
Total SA, CSTJF, Avenue Larribeau, 64000 Pau, France
Related authors
No articles found.
Kilian Lecacheur, Olivier Fabbri, Francesca Piccoli, Pierre Lanari, Philippe Goncalves, and Henri Leclère
Eur. J. Mineral., 36, 767–795, https://doi.org/10.5194/ejm-36-767-2024, https://doi.org/10.5194/ejm-36-767-2024, 2024
Short summary
Short summary
In this study, we analyze a peculiar eclogite from the Western Alps, which not only recorded a classical subduction-to-exhumation path but revealed evidence of Ca-rich fluid–rock interaction. Chemical composition and modeling show that the rock experienced peak metamorphic conditions followed by Ca-rich pulsed fluid influx occurring consistently under high-pressure conditions. This research enhances our understanding of fluid–rock interactions in subduction settings.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Robert Emberson, Niels Hovius, Albert Galy, and Odin Marc
Earth Surf. Dynam., 4, 727–742, https://doi.org/10.5194/esurf-4-727-2016, https://doi.org/10.5194/esurf-4-727-2016, 2016
Short summary
Short summary
Rapid dissolution of bedrock and regolith mobilised by landslides can be an important control on rates of overall chemical weathering in mountain ranges. In this study we analysed a number of landslides and rivers in Taiwan to better understand why this occurs. We find that sulfuric acid resulting from rapid oxidation of highly reactive sulfides in landslide deposits drives the intense weathering and can set catchment-scale solute budgets. This could be a CO2 source in fast-eroding mountains.
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
R. G. Hilton, A. Galy, A. J. West, N. Hovius, and G. G. Roberts
Biogeosciences, 10, 1693–1705, https://doi.org/10.5194/bg-10-1693-2013, https://doi.org/10.5194/bg-10-1693-2013, 2013
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Along-strike variation of volcanic addition controlling post breakup sedimentary infill: Pelotas margin, Austral South Atlantic
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Effects of basal drag on subduction dynamics from 2D numerical models
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
The enigmatic curvature of Central Iberia and its puzzling kinematics
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Gonzalo Yanez, Jose Piquer, and Orlando Rivera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1338, https://doi.org/10.5194/egusphere-2024-1338, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organized in segments where large events are repeated every 100–300 years, depends on large scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coast line morphology).
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Marlise Colling Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
EGUsphere, https://doi.org/10.5194/egusphere-2023-2584, https://doi.org/10.5194/egusphere-2023-2584, 2023
Short summary
Short summary
The Atlantic Ocean results from the break-up of the palaeocontinent Gondwana. Since then, the Brazilian and African margins record a thick volcanic layers and received a large contribution of sediments recording this process. We show the influence of early volcanics on the sediments deposited later by analysing the Pelotas Margin, south of Brazil. The volume of volcanic layers is not homogeneous along this sector, promoting variation in the space available to accommodate later sediments.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Torsten Hundebøl Hansen, Ole Rønø Clausen, and Katrine Juul Andresen
Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, https://doi.org/10.5194/se-12-1719-2021, 2021
Short summary
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Short summary
Many of the world's hydrocarbon resources are found in rifted sedimentary basins. Some rifts experience multiple phases of extension and inversion. This results in complicated oil and gas generation, migration, and entrapment histories. We present examples of basins in the Western Desert of Egypt and the western Black Sea that were inverted multiple times, sometimes separated by additional phases of extension. We then discuss how these complex deformation histories impact exploration campaigns.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020, https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary
Short summary
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and winding orogeny that today transects Europe, northwestern Africa, and eastern North America. This orogen is characterized by an
Sshape corrugated geometry in Iberia. This paper presents the advances and milestones in our understanding of the geometry and kinematics of the Central Iberian curve from the last decade with particular attention paid to structural and paleomagnetic studies.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Manfred Lafosse, Elia d'Acremont, Alain Rabaute, Ferran Estrada, Martin Jollivet-Castelot, Juan Tomas Vazquez, Jesus Galindo-Zaldivar, Gemma Ercilla, Belen Alonso, Jeroen Smit, Abdellah Ammar, and Christian Gorini
Solid Earth, 11, 741–765, https://doi.org/10.5194/se-11-741-2020, https://doi.org/10.5194/se-11-741-2020, 2020
Short summary
Short summary
The Alboran Sea is one of the most active region of the Mediterranean Sea. There, the basin architecture records the effect of the Africa–Eurasia plates convergence. We evidence a Pliocene transpression and a more recent Pleistocene tectonic reorganization. We propose that main driving force of the deformation is the Africa–Eurasia convergence, rather than other geodynamical processes. It highlights the evolution and the geometry of the present-day Africa–Eurasia plate boundary.
Cited articles
Aguilar, J.-P., Berggren, W. A., Aubry, M.-P., Kent, D. V., Clauzon, G.,
Benammi, M., and Michaux, J.: Mid-Neogene Mediterranean marine–continental
correlations: an alternative interpretation, Palaeogeogr. Palaeocl., 204, 165–186, 2004.
Allen, P. A.: Reconstruction of ancient sea conditions with an example from
the Swiss Molasse, Mar. Geol., 60, 455–473, 1984.
Allen, P. A. and Bass, J. P.: Sedimentology of the upper marine molasse of
the Rhône-Alp Region, Eastern France: implications of basin evolution,
Eclogae Geol. Helv., 86, 121–172, 1993.
Arnaud, H., Combier, J., and Monjuvent, G.: Notice explicative, Carte
géol. France (1 50 000), feuille Romans-sur-Isère (795), BRGM,
Orléans, 30 pp., 1975.
Barféty, J.-C. and Barbier, R.: Carte géologique (1 50 000), feuille
La Rochette (750), BRGM, Orléans, 1983.
Barféty, J.-C. and Gidon, M.: La structure des Collines bordières du
Grésivaudan et des secteurs adjacents, à l'est de Grenoble
(Isère, France), Géologie Alp., 72, 5–22, 1996.
Barféty, J.-C., Antoine, P., Girod, J.-P., Bellamy, J., Chabod, J.-C.,
Boullud, C., Bullière, J., Debelmas, J., Sarrot-Reynaud, J., and Goguel,
J.: Carte géol. France (1 50 000), feuille Vif (796), BRGM, Orléans,
1967.
Bass, J. P.: The sedimentology and basin evolution of the upper marine
molasse of the Rhône-Alp region, France, PhD Thesis, Department of
Earth sciences, University of Oxford, 1991.
Beaudoin, B., Campredon, R., Cotillon, P., and Gigot, P.: Alpes Méridionales
Françaises : Reconstitution du bassin de sédimentation, Excursion
No. 7, IX Congrès International de Sédimentologie, Nice,
IAS Publ., 1975.
Beaumont, C.: Foreland basins, Geophys. J. Int., 65, 291–329, 1981.
Beck, C., Deville, E., Blanc, E., Philippe, Y., and Tardy, M.: Horizontal
shortening control of Middle Miocene marine siliciclastic accumulation
(Upper Marine Molasse) in the southern termination of the Savoy Molasse
Basin (northwestern Alps/southern Jura), Geol. Soc. Lond. Spec. Publ.,
134, 263–278, 1998.
Becker, A.: The Jura Mountains – an active foreland fold-and-thrust belt?, Tectonophysics,
321, 381–406, 2000.
Bellahsen, N., Jolivet, L., Lacombe, O., Bellanger, M., Boutoux, A., Garcia,
S., Mouthereau, F., Le Pourhiet, L., and Gumiaux, C.: Mechanisms of margin
inversion in the external Western Alps: Implications for crustal rheology, Tectonophysics,
560, 62–83, 2012.
Bellahsen, N., Mouthereau, F., Boutoux, A., Bellanger, M., Lacombe, O.,
Jolivet, L., and Rolland, Y.: Collision kinematics in the western external
Alps, 33, 1055–1088, 2014.
Berger, J.-P.: La transgression de la molasse marine supérieure (OMM) en
Suisse occidentale, Munchn. geowiss. Abh. A5, 1–207, 1985.
Berger, J.-P.: Paléontologie de la Molasse de Suisse occidentale, Th.
d'habilitation sci., University of Fribourg, 452 pp., 1992.
Berger, J. P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot,
L., Storni, A., Pirkenseer, C., Derer, C., and Schaefer, A.: Eocene-Pliocene
time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss
Molasse Basin (SMB), Int. J. Earth Sci., 94, 711–731,
2005.
Bergerat, F.: Paléo-champs de contrainte tertiaires dans la plate-forme
européenne au front de l'orogène alpin, Bull. la Société
géologique Fr., 3, 611–620, 1987.
Bergerat, F., Mugnier, J.-L., Guellec, S., Truffert, C., and Cazes, M.:
Extensional tectonics and subsidence of the Bresse basin: an interpretation
from ECORS data, Mémoires la Société géologique Fr., 156,
145–156, 1990.
Blanc, E.: Evolution sédimentaire syntectonique au front d'une
chaîne de collision en environnement littoral, Mem. DEA.,
Université de Savoie (Chambéry), 35 pp., 1991.
Blanchet, F. and Chagny, E.: Le promontoire de la Porte de France près
de Grenoble: Analyse tectonique détaillée-Massif de la Chartreuse,
Bull. Serv. Carte Geol. Fr., 149, 253–276, 1923.
Bocquet, J.: Le delta miocène de Voreppe. Etude des faciès
conglomératiques du Miocène des environs de Grenoble, Trav. du Lab.
Géologie l'Université Grenoble, 42, 53–75, 1966.
Bolliger, T., Engesser, B., and Weidmann, M.: Première découverte de
mammifères pliocènes dans le Jura neuchâtelois, Eclogae Geol.
Helv., 86, 1031–1068, 1993.
Bonnet, C., Malavieille, J., and Mosar, J.: Interactions between tectonics,
erosion, and sedimentation during the recent evolution of the Alpine orogen:
Analogue modeling insights, Tectonics, 26, TC6016, https://doi.org/10.1029/2006TC002048,
2007.
BouDagher-Fadel, M. K.: Biostratigraphic and Geological Significance of
Planktonic Foraminifera, updated 2nd Edn., UCL Press, London, https://doi.org/10.14324/111.9781910634257, 2015.
Brasseur, R.: Etude Géologique du Massif de Suzette (Vaucluse), PhD
Thesis, Université de Lyon, 195 pp., 1962.
Burkhard, M. and Sommaruga, A.: Evolution of the western Swiss Molasse
basin: structural relations with the Alps and the Jura belt, Geol. Soc.
Lond. Spec. Publ., 134, 279–298, 1998.
Butler, R. W. H.: The geometry of crustal shortening in the Western Alps,
in: Tectonic evolution of the Tethyan region, Springer, Dordrecht, 43–76, 1989a.
Butler, R. W. H.: The influence of pre-existing basin structure on thrust
system evolution in the Western Alps, Geol. Soc. Lond. Spec. Publ., 44,
105–122, 1989b.
Butler, R. W. H.: Structural evolution of the western Chartreuse fold and
thrust system, NW French Subalpine chains, in: Thrust tectonics, edited by:
McClay, K. R., Chapman and Hall, London, 287–298, 1992a.
Butler, R. W. H.: Thrusting patterns in the NW French Subalpine chains,
Annales Tectonicae, 6, 150–172, 1992b.
Butler, R. W. H.: Basement-cover tectonics, structural inheritance, and
deformation migration in the outer parts of orogenic belts: A view from the
western Alps, Linkages Feed. Orog. Syst., 213, 55–74, 2017.
Butler, R. W. H. and Bowler, S.: Local displacement rate cycles in the life
of a fold-thrust belt, Terra Nova, 7, 408–416, 1995.
Cardozo, N. and Allmendinger, R. W.: Spherical projections with
OSXStereonet: Comput. Geosci., 51, 193–205, https://doi.org/10.1016/j.cageo.2012.07.021, 2013.
Charollais, J. and Jamet, M.: Principaux résultats géologiques du
forage Brizon 1 (BZN 1) Haute-Savoie, France, Mémoires la
Société géologique Fr., 156, 185–202, 1990.
Clauzon, G.: Quel âge le Lubéron a-t-il?, Etudes Vauclusiennes, XI, 1–6, 1974.
Colomb, E.: Relation plate-forme carbonatée – continent dans le cas de
la transgression Miocène dans les Alpilles (Bouches-du-Rhône),
Géologie Méditerranéenne, 9, 213–215, 1982.
Couëffé, R. and Tourlière, B.: Modélisation géologique
multicouche Bresse, Dombes, Bas-Dauphiné, Couloir rhodanien –
Méthodologie de réalisation, guide d'utilisation des produits
numériques – Rapport final, REP-57712-, BRGM, Orléans, 62 pp., 2008.
Crumeyrolle, P., Rubino, J., and Clauzon, G.: Miocene depositional sequences
within a tectonically controlled transgressive–regressive cycle, in:
Sedimentation, Tectonics and Eustasy: Sea-Level
Changes at Active Margins, edited by: MacDonald, D. I. M., Spec. Publ. Int. Ass. Sediment., 371–390,
1991.
Curial, A.: La sédimentation salifère et suprasalifère du Paléogène bressan (France): comparaison entre les données diagraphiques et lithologiques, Etude diagraphique du champ d'Etrez et synthèse du bassin, PhD Thesis, Université Lyon 1, 1986.
Debelmas, J.: Etude tectonique de la bordure orientale du Massif du Vercors
entre Grenoble et le Mont-Aiguille, Thèse de 3e cycle, University
of Grenoble, 44 pp., 1953.
Debelmas, J.: Quelques observations sur l'extrémité N-orientale du
massif du Vercors, Trav. Lab. Géol. Fac. Sci. Grenoble., 41, 275–281,
1965.
Debelmas, J.: Structure géologique du massif du Moucherotte, Géol.
Alp., 42, 109–116, 1966.
Debelmas, J.: Géologie de la France, Tome 2: Les Chaînes
plissées du cycle alpin et leur avant-pays, Ed. Doin, Paris, 296–540, 1974.
DeCelles, P. G. and Giles, K. A.: Foreland basin systems, Basin Res., 8,
105–123, 1996.
De Graciansky, P. C., Roberts, D. G., and Tricart, P.: The Western Alps, from
rift to passive margin to orogenic belt, an intergated overview,
Developments in Earth Surface Processes, Vol. 14, Elsevier, Amsterdam, 398 pp., ISBN
9780444537249, 2011.
Demarcq, G.: Etude stratigraphique du Miocène rhodanien, Mém. BRGM, Orléans,
Vol. 61 257 pp., 1970.
Demory, F., Conesa, G., Oudet, J., Mansouri, H., Münch,
P., Borgomano, J., Thouveny, N., Lamarche, J., Gisquet, F., and Marié,
L.: Magnetostratigraphy and paleoenvironments in shallow-water carbonates:
the Oligocene-Miocene sediments of the northern margin of the
Liguro-Provençal basin (West Marseille, southeastern France), Bull. la
Société géologique Fr., 182, 37–55, 2011.
Deville, E.: Structure of the Tectonic Front of the Western Alps: Control of
Fluid Pressure and Halite Occurrence on the Decollement Processes,
Tectonics, 40, 4, https://doi.org/10.1029/2020TC006591, 2021.
Deville, É. and Chauvière, A.: Thrust tectonics at the front of the
western Alps: constraints provided by the processing of seismic reflection
data along the Chambéry transect, Comptes Rendus l'Académie des Sci.
IIA-Earth Planet. Sci., 331, 725–732, 2000.
Deville, E. and Sassi, W.: Contrasting thermal evolution of thrust systems:
An analytical and modeling approach in the front of the western Alps, Am.
Assoc. Pet. Geol. Bull., 90, 887–907, 2006.
Deville, E., Mascle, A., and Deronzier, J. F.: Etude non exclusive
Chartreuse-Vercors 91. Rapport d'interprétation (Atlas, 52 planches), IFP-CGG, Paris,
1992.
Deville, E., Blanc, E., Tardy, M., Beck, C., Cousin, M., and Ménard, G.:
Thrust propagation and syntectonic sedimentation in the Savoy Tertiary
Molasse Basin (Alpine foreland), in: Hydrocarbon and petroleum geology of
France, Springer, Berlin, Heidelberg, 269–280, 1994.
Dickinson, R. W.: Plate tectonics and sedimentation, in: Tectonics and
Sedimentation, Vol. 22, edited by: Dickinson, R. W., Special Publications of
SEPM, Tulsa, Oklahoma, USA, 1–27, https://doi.org/10.2110/pec.74.22.0001, 1974.
Donzeau, M., Gamond, J.-F., and Mugnier, J.-L.: Evolution latérale et
amortissement d'une structure chevauchante, un exemple du Nord Vercors,
Comptes rendus l'Académie des Sci. Série 2, Mécanique, Phys.
Chim. Sci. l'univers, Sci. la Terre, 317, 1675–1682, 1993.
Doudoux, B., de Lepinay, B. M., and Tardy, M.: Une interprétation
nouvelle de la structure des massifs subalpins savoyards (Alpes
occidentales): nappes de charriage oligocènes et déformations
superposées, CR Acad. Sci., 295, 63–68, 1982.
Doudoux, B., Rosset, J., Barféty, J.-C., Carfantan, J.-C., and Pairis,
J.-L.: Carte géologique (1/50 000), feuille Annecy-Ugine (702), BRGM,
Orléans, 1992a.
Doudoux, B., Barféty, J. C., Carfantan, J. C., Tardy, M., and Nicoud,
G.: Notice explicative, Carte géol. France (1 50 000), feuille
Annecy-Ugine (702), BRGM, Orléans, 62 pp., 1992b.
Doudoux, B., Barféty, J.-C., Vivier, G., Carfantan, J.-C., Nicoud, G.,
Colletta, B., and Tardy, M.: Carte géologique (1 50 000), feuille
Albertville (726), BRGM, Orléans, 1999.
Dumont, M.: Etude stratigraphique et sédimentologique du Miocène
supérieur de la région de Jujurieux (Ain, France), PhD thesis,
University Lyon 1, 155 pp., 1983.
Dumont, T. and SPIA: Échaillon stone from France: a Global Heritage
Stone Resource proposal, Geol. Soc. Lond. Spec. Publ., 486, 115–128,
2020.
Dumont, T., Champagnac, J.-D., Crouzet, C., and Rochat, P.: Multistage
shortening in the Dauphiné zone (French Alps): the record of Alpine
collision and implications for pre-Alpine restoration, Swiss J. Geosci.,
101, 89–110, 2008.
Dumont, T., Simon-Labric, T., Authemayou, C., and Heymes, T.: Lateral
termination of the north-directed Alpine orogeny and onset of westward
escape in the Western Alpine arc: Structural and sedimentary evidence from
the external zone, Tectonics, 30, TC5006, https://doi.org/10.1029/2010TC002836, 2011.
Dumont, T., Schwartz, S., Guillot, S., Simon-Labric, T., Tricart, P., and
Jourdan, S.: Structural and sedimentary records of the Oligocene revolution
in the Western Alpine arc, J. Geodyn., 56, 18–38, 2012.
Embry, A. F.: Transgressive–regressive (T–R) sequence analysis of the
Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago, Can.
J. Earth Sci., 30, 301–320, 1993.
Embry, A. F.: Sequence boundaries and sequence hierarchies: problems and
proposals, Seq. Stratigr. Northwest Eur. Margin, 5, 1–11, 1995.
Enay, R., Gidon, P., Caillon, M., and Doudoux, B.: Carte géologique de
la France à 1 50 000: Rumilly (701), BRGM, Orléans, 1970.
Ford, M. and Lickorish, W. H.: Foreland basin evolution around the western
Alpine Arc, Geol. Soc. Lond. Spec. Publ., 221, 39–63, 2004.
Garefalakis, P. and Schlunegger, F.: Tectonic processes, variations in sediment flux, and eustatic sea level recorded by the 20 Myr old Burdigalian transgression in the Swiss Molasse basin, Solid Earth, 10, 2045–2072, https://doi.org/10.5194/se-10-2045-2019, 2019.
Gaudant, J., Weidmann, M., Berger, J.-P., Bolliger, T., Kalin, D., and
Reichenbacher, B.: Recherches sur les dents pharyngiennes de Poissons
Cyprinidae de la Molasse d'eau douce oligo-miocène de Suisse (USM, OSM)
et de Haute-Savoie (France), Rev. Paléobiologie, 21, 371–389, 2002.
Gidon, M.: Nouvelle contribution à l'étude du massif de la
Grande-Chartreuse et de ses relations avec les régions avoisinantes,
Trav. du Lab. Géologie Alp., 40, 187–205, 1964.
Gidon, M.: Carte géologique (1 50 000), feuille Annecy-Ugine (748),
BRGM, Orléans, 1970.
Gidon, M.: La structure de l'extrémité méridionale du massif de
la Chartreuse aux abords de Grenoble et son prolongement en Vercors,
Géologie Alp., 57, 93–107, 1981.
Gidon, M.: L'anatomie des zones de chevauchement du massif de la Chartreuse
(Chaînes subalpines septentrionales, Isère, France), Géologie
Alp., 64, 27–48, 1988.
Gidon, M.: Les décrochements et leur place dans la structuration du
massif de la Chartreuse (Alpes occidentales françaises), Géologie
Alp., 66, 39–55, 1990.
Gidon, M.: Quelques aspects des rapports entre l'histoire tectonique et la
morphogenèse dans le massif de la Chartreuse, Géologie Alp., 70,
13–27, 1994.
Gidon, M.: Tectonique et origine de la cluse de Grenoble (France),
Géologie Alp., 71, 175–192, 1995.
Gidon, M.: Tectoniques superposées dans le synclinal des Aillons et ses
abords (massif des Bauges, Savoie, France), Géologie Alp., 75, 91–102,
1999.
Gidon, M.: Les massifs cristallins externes des Alpes occidentales
françaises sont-ils charriés, Géologie Alp., 77, 23–38, 2001.
Gidon, M.: Voreppe, cours inférieur de la Roize, available at:
http://www.geol-alp.com/chartreuse/6_localites_ch/voreppe.html, last access: 17 August 2018.
Gidon, M.: Ugine, gorges de l'Arly, available at:
http://www.geol-alp.com/bornes/_lieux_aravis/Ugine_NE.html, last access: 23 November 2019.
Gidon, M.: Comboire, Claix, Rochefort, available at:
http://www.geol-alp.com/drac/_draclieuxN/comboire.html, last
access: 13 January 2020a.
Gidon, M.: Seyssins – Fontaine, available at: http://www.geol-alp.com/h_vercors/lieux_vercors/seyssins.html, last access: 13 January
2020b.
Gidon, M. and Arnaud, H.: Carte géologique détaillée de la
France à 1 50.000, feuille Grenoble, 2nd Edn., BRGM,
Orléans, 1978.
Gidon, M. and Barféty, J.-C.: Carte géologique (1 50 000), feuille
Montmélian (749), BRGM, Orléans, 1969.
Gidon, M., Arnaud, H., and Montjuvent, A.: Notice explicative, Carte
géol. France (1 50 000), feuille Grenoble (772), BRGM, Orléans, 37
pp., 1978.
Gidon, P.: Notice explicative, Carte géologique de France (1 50 000),
feuille Vif (701), BRGM, Orléans, 11 pp., 1970.
Gignoux, M. and Moret, L.: Géologie dauphinoise: initiation à la
géologie par l'étude des environs de Grenoble, 2nd Edn., Masson et Cie, Paris, 391 pp., 1952.
Gigot, P., Grandjacquet, C., and Haccard, D.: Evolution tectono-sédimentaire
de la bordure septentrionale du bassin tertiaire de Digne depuis
l'Eocène, Bull. Soc. Géol. Fr., Sér., 7, 128–139, 1974.
Giot, P. R.: Contribution à l'étude des terrains tertiaires du
Royans (Isère et Drôme), Trav. Lab. Géol. Grenoble, 24, 49–68,
1943.
Gorin, G., Signer, C., and Amberger, G.: Structural configuration of the
western Swiss Molasse Basin as defined by reflection seismic data, Eclogae
Geol. Helv., 86, 693–716, 1993.
Guellec, S., Mugnier, J.-L., Tardy, M., and Roure, F.: Neogene evolution of
the western Alpine foreland in the light of ECORS data and balanced
cross-section, Mémoires la Société géologique Fr., 156,
165–184, 1990.
Heller, P. L., Angevine, C. L., Winslow, N. S., and Paola, C.: Two-phase
stratigraphic model of foreland-basin sequences, Geology, 16, 501–504,
1988.
Herwegh, M., Berger, A., Glotzbach, C., Wangenheim, C., Mock, S., Wehrens,
P., Baumberger, R., Egli, D., and Kissling, E.: Late stages of
continent-continent collision: Timing, kinematic evolution, and exhumation
of the Northern rim (Aar Massif) of the Alps, Earth-Sci. Rev., 200,
102959, https://doi.org/10.1016/j.earscirev.2019.102959, 2020.
Homewood, P.: Faciès et environnements de dépôt de la Molasse
de Fribourg, Eclogae
Geol. Helv., 74, 29–36, 1981.
Hardenbol, J. A. N., Jacquin, T., Farley, M. B., Jacquin, T., De Graciansky,
P.-C., and Vail, P. R.: Mesozoic and Cenozoic Sequence Chronostratigraphic
Framework of European Basins, in: Mesozoic and Cenozoic sequence
chronostratigraphic framework of European basins, edited by: Graciansky,
P.-C., Hardenbol, J. A. N., Jacquin, T., Vail, P. R., SEPM Society for
Sedimentary Geology, Vol. 60, https://doi.org/10.2110/pec.98.02.0003, 1998.
Hayes, J. M., Strauss, H., and Kaufman, A. J.: The abundance of 13C in marine
organic matter and isotopic fractionation in the global biogeochemical cycle
of carbon during the past 800 Ma, Chem. Geol., 161, 103–125, 1999.
Hudson, J. D.: Carbon isotopes and limestone cement, Geology, 3, 19–22,
1975.
Hudson, J. D.: Stable isotopes and limestone lithification, J. Geol. Soc.
Lond., 133, 637–660, 1977.
Kalifi, A.: Caractérisation sédimentologique et distribution des
dépôts syn-orogéniques Miocènes des chaines subalpines
septentrionales (Royans-Vercors-Chartreuse-Bauges), du sud du Jura et du
Bas-Dauphiné, Cadre chronostratigraphique et tectonostratigraphique,
PhD thesis, University of Lyon 1, 578 pp., 2020.
Kalifi, A., Sorrel, P., Leloup, P.-H., Spina, V., Huet, B., Galy, A.,
Rubino, J.-L., and Pittet, B.: Changes in hydrodynamic process dominance
(wave, tide or river) in foreland sequences: The subalpine Miocene Molasse
revisited (France), Sedimentology, 63, 2455–2501,
https://doi.org/10.1111/sed.12708, 2020.
Kalifi, A., Sorrel, P., Leloup, P.H., Galy, A., Spina, V., Huet, B., Russo,
S., Pittet, B., and Rubino, J.-L.: Tectonic control on the paleogeographical
evolution of the Miocene seaway along the Western Alpine foreland basin,
Geol. Soc. Lond. Spec. Publ., in review, 2021.
Kälin, D.: Litho-und Biostratigraphie der mittel-bis obermiozänen
Bois de Raube-Formation (Nordwestschweiz), Eclogae Geol. Helv., 90, 97–114,
1997.
Kempf, O., Matter, A., Burbank, D. W., and Mange, M.: Depositional and
structural evolution of a foreland basin margin in a magnetostratigraphic
framework: the eastern Swiss Molasse Basin, Int. J. Earth
Sci., 88, 253–275, 1999.
Kwasniewski, A., Rubino, J.-L., Gariteai, T., Lescanne, M., and Mascle, A.:
Stratigraphic Variability of tide dominated depositional systems within
Miocene sandy succession of Bas Dauphiné basin (Miocene Peri-Alpine
foreland basin) SE France, in: IAS congress, 18–22
August 2014, Geneva, Switzerland, 2014.
Lacassin, R., Tapponnier, P., and Bourjot, L.: Culminations anticlinales
d'échelle crustale et imbrication de la lithosphère dans les Alpes,
apports du profil ECORS-CROP, Comptes rendus l'Académie des Sci.
Série 2, Mécanique, Phys. Chim. Sci. l'univers, Sci. la Terre, 310,
807–814, 1990.
Lamiraux, C.: Géologie du Miocène des chainons jurassiens
méridionaux et du Bas-Dauphiné nord oriental entre Chambéry et
La Tour du Pin: étude stratigraphique, sédimentologique et
tectonique, PhD thesis, Université Scientifique et Médicale de
Grenoble, 174 pp., 1977.
Latreille, G.: La sédimentation détritique au Tertiaire dans le
Bas-Dauphiné et les régions limitrophes, PhD thesis, University of
Lyon 1, 340 pp., 1969.
Laubscher, H.: Jura kinematics and the Molasse Bassin, Eclogae Geol. Helv.,
85, 653–675, 1992.
Lickorish, W. H., Ford, M., Burgisser, J., and Cobbold, P. R.: Arcuate
thrust systems in sandbox experiments: A comparison to the external arcs of
the Western Alps, Geol. Soc. Am. Bull., 114, 1089–1107, 2002.
Lirer, F., Maria, F. L., Maria, I. S., Gianfranco, S., Elena, T., Claudia,
C., Javier, S. F., and Antonio, C.: Mediterranean Neogene planktonic
foraminifer biozonation and biochronology, Earth-Sci. Rev., 196,
https://doi.org/10.1016/j.earscirev.2019.05.013, 2019.
Looser, N., Madritsch, H., Guillong, M., Laurent, O., Wohlwend, S., and
Bernasconi, S. M.: Absolute Age and Temperature Constraints on Deformation
Along the Basal Décollement of the Jura Fold-and-Thrust Belt From
Carbonate U-Pb Dating and Clumped Isotopes, 40, e2020TC006439,
https://doi.org/10.1029/2020TC006439, 2021.
Mastrangelo, B. and Charollais, J.: Nouvelle conception de la structure du
Salève, Arch. des Sci., 70, 43–50, 2018.
McArthur, J. M., Howarth, R. J., and Shields, G. A.: Strontium isotope
stratigraphy, in: Geol. time scale, edited by: Gradstein, F. M., Ogg, J. G.,
Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, Vol. 1, 127–144, 2012.
Mein, P.: A new direct correlation between marine and continental scales in
rhodanian Miocene, in: VIII Congr. RCMNS., Hungar. Geol. Survey., Budapest,
377–379, 1985.
Menard, G. and Thouvenot, F.: Balanced cross-sections at crustal
scale-methods and application to the western Alps, Geodin. Acta, 1, 35–45,
1987.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G.
S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and
Pekar, S. F.: The phanerozoic record of global sea-level change, Science,
310, 1293–1298, https://doi.org/10.1126/science.1116412, 2005.
Mock, S., von Hagke, C., Schlunegger, F., Dunkl, I., and Herwegh, M.: Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes, Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, 2020.
Mortaz-Djalili, D.: Sédimentologie des formations détritiques du
Néogène du plateau de Chambaran (Bas-Dauphiné, France), PhD
thesis, Université Scientifique et Médicale de Grenoble, 153 pp.,
1977.
Mortaz-Djalili, D. and Perriaux, J.: Le Néogène du Plateau de
Chambaran (Bas-Dauphiné, France), Géologie Alp., 55, 133–152, 1979.
Mugnier, J. and Marthelot, J.: Crustal Reflections Beneath the Alps and the
Alpine Foreland: Geodynamic Implications, Geodynamic, 22, 177–183, 1991.
Mugnier, J., Arpin, R., and Thouvenot, F.: Balanced cross-sections through
the subalpine massif of the Chartreuse, Geodin. Acta, 1, 125–137, 1987.
Mugnier, J.-L., Guellec, S., Menard, G., Roure, F., and Tardy, M.: A crustal
scale balanced cross-section through the external Alps deduced from the
ECORS profile, Mémoires la Société géologique Fr., 156,
203–216, 1990.
Mujito, S.: Les sédiments tertiaires dans le Jura méridional et les
Bauges occidentales: Savoie, Haute Savoie (France)-Alpes françaises,
PhD thesis, Université Scientifique et Médicale de Grenoble, 221
pp., 1981.
Nelson, C. S. and Smith, A. M.: Stable oxygen and carbon isotope
compositional fields for skeletal and diagenetic components in New Zealand
Cenozoic nontropical carbonate sediments and limestones: a synthesis and
review, New Zeal. J. Geol. Geophys., 39, 93–107, 1996.
Nicolas, A., Polino, R., Hirn, R., Nicolich, R., and ECORS-CROP Working group:
ECORS-CROP traverse and deep structure of the western Alps: a synthesis,
in: Deep structure of the Alps, edited by: Roure, F.,
Heitzmann, P., and Polino, R., Mém. Soc. Geol. France, NS, 15–27, 1990.
Nicolet, C.: Le Bas-Dauphiné septentrional: étude stratigraphique et
sédimentologique, PhD thesis, Université Scientifique et
Médicale de Grenoble, 150 pp., 1979.
Ogg, J. G. and Lowrie, W.: Magnetostratigraphy, in: The Geologic Time Scale
2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G.,
Elsevier, Amsterdam, 85–114, 2012.
Ogg, J. G., Ogg, G. M., and Gradstein, F. M.: A concise geologic time scale:
2016, Elsevier, Amsterdam, 2016.
Ori, G. G. and Friend, P. F.: Sedimentary basins formed and carried
piggyback on active thrust sheets, Geology, 12, 475–478, 1984.
Pelin, S.: Etude géologique du bassin de Pont-en-Royans Vercors-Alpes
françaises, PhD thesis, Université Scientifique et Médicale
de Grenoble, 68 pp., 1965.
Pfiffner, O.-A., Lehner, P., Heitzmann, P., Mueller, S., and Steck, A.: Deep
structure of the Swiss Alps: results of NRP 20, Birkhäuser, Basel, 380
pp., 1997.
Pfiffner, O. A.: Geology of the Alps, John Wiley & Sons, Wiley-Blackwell, Sussex, UK,
368 pp., 2014.
Philippe, Y.: Rampes latérales et zones de transfert dans les
chaînes plissées: géométrie, condition de formation et
pièges structuraux associés, PhD thesis, Université de Savoie
(Chambéry), 1995.
Philippe, Y., Colletta, B., Deville, E., and Mascle, A.: The Jura
fold-and-thrust belt: a kinematic model based on map-balancing, Mémoires
du Muséum Natl. d'histoire Nat., 170, 235–261, 1996.
Philippe, Y., Deville, E., and Mascle, A.: Thin-skinned inversion tectonics
at oblique basin margins: example of the western Vercors and Chartreuse
Subalpine massifs (SE France), Geol. Soc. Lond. Spec. Publ., 134,
239–262, 1998.
Posamentier, H. W. and Allen, G. P.: Siliciclastic sequence stratigraphy:
concepts and applications, SEPM (Society for Sedimentary Geology) Tulsa,
Oklahoma, Vol. 7, https://doi.org/10.2110/csp.99.07, ISBN 101-5-6576-0700, 1999.
Rangheard, Y., Demarcq, G., Muller, C., Poignant, A., and Pharisat, A.:
Donnees nouvelles sur le Burdigalien du Jura interne; paleobiologie,
biostratigraphie et evolution structurale, Bull. la Société
Géologique Fr., 6, 479–486, 1990.
Ricketts, B. D. and Evenchick, C. A.: Evidence of different contractional
styles along foredeep margins provided by Gilbert deltas: examples from
Bowser Basin, British Columbia, Canada, B. Can. Petrol. Geol., 55, 243–261,
2007.
Rigassi, D.: Le Tertiaire de la région genevoise et savoisienne, Bull.
der Vereinigung Schweizerisches Pet. und-Ingenieur, 24, 19–34, 1957.
Roure, F., Howell, D. G., Guellec, S., and Casero, P.: Shallow structures
induced by deep-seated thrusting, Pet. Tectonics Mob. Belts, Technip., Paris,
15–30, 1990.
Rubino, J. L., Lesueur, J. L., and Clauzon, G.: Le Miocène inférieur
et moyen du bassin rhodanien: stratigraphie séquentielle et
sédimentologie, Field Trip Guidebook: Special Publication of the
Association des Sédimentologistes Français, ASF, 67 pp., 1990.
Saltzman, M. R. and Thomas, E.: Carbon isotope stratigraphy, in: The
Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz,
M. D., and Ogg, G. M., Vol. 1, Elsevier, Amsterdam, 207–232, 2012.
Schlunegger, F. and Kissling, E.: Slab rollback orogeny in the Alps and
evolution of the Swiss Molasse basin, Nat. Commun., 6, 8605, https://doi.org/10.1038/ncomms9605, 2015.
Signer, C. and Gorin, G. E.: New geological observations between the Jura
and the Alps in the Geneva area, as derived from reflection seismic data,
Eclogae Geol. Helv., 88, 235–265, 1995.
Simon-Labric, T., Rolland, Y., Dumont, T., Heymes, T., Authemayou, C.,
Corsini, M., and Fornari, M.: dating of Penninic Front
tectonic displacement (W Alps) during the Lower Oligocene (31–34 Ma), Terra
Nova, 21, 127–136, 2009.
Sinclair, H. D.: Tectonostratigraphic model for underfilled peripheral
foreland basins: An Alpine perspective, B. Geol. Soc. Am., 109, 324–346,
1997.
Sinclair, H. D. and Allen, P. A.: Vertical versus horizontal motions in the
Alpine orogenic wedge: Stratigraphic response in the foreland basin, Basin
Res., 4, 215–232, https://doi.org/10.1111/j.1365-2117.1992.tb00046.x, 1992.
Sissingh, W.: Tertiary paleogeographic and tectonostratigraphic evolution of
the Rhenish Triple Junction, Palaeogeogr. Palaeocl., 196,
229–263, 2003.
Smeraglia, L., Looser, N., Fabbri, O., Choulet, F., Guillong, M., and Bernasconi, S. M.: U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland, Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, 2021.
Steininger, F. F., Berggren, W. A., Kent, D. V, Bernor, R. L., Sen, S., and
Agusti, J.: Circum-Mediterranean Neogene (Miocene and Pliocene)
marine-continental chronologic correlations of European mammal units, in:
The Evolution of Western Eurasian Neogene Mammal Faunas, edited by: Bernor,
R. L., Fahlbusch, V., Mittmann, H.-W., Columbia Univ. Press, New York, 7–46,
https://doi.org/10.7916/D86D63B1, 1996.
Suppe, J., Chou, G. T., and Hook, S. C.: Rates of folding and faulting
determined from growth strata, in: Thrust tectonics, edited by: McClay, K.
R., Springer, Dordrecht, 105–121, 1992.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and
revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and
calibration to the geomagnetic polarity and astronomical time scale,
Earth-Sci. Rev., 104, 111–142, 2011.
Watkins, H., Butler, R. W. H., and Bond, C. E.: Using laterally compatible
cross sections to infer fault growth and linkage models in foreland thrust
belts, J. Struct. Geol., 96, 102–117, 2017.
Young, J. R., Bown, P. R., and Lees, J. A.: Nannotax3 website, International
Nannoplankton Association, available at: http://www.mikrotax.org/Nannotax3 (last access: January 2021), 2017.
Ziegler, P. A.: Evolution of the Arctic-North Atlantic and the Western
Tethys: A visual presentation of a series of Paleogeographic-Paleotectonic
maps, AAPG Mem., 43, 164–196, 1988.
Ziegler, P. A.: Geological atlas of western and central Europe, Shell Iternationale Petroleum Maatschappij BV, Mijdrecht, the Netherlands, 1990.
Ziegler, P. A.: Cenozoic rift system of Western and Central-Europe – an
overview, Geol. en Mijnb., 73, 99–127, 1994.
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to...