Articles | Volume 12, issue 2
https://doi.org/10.5194/se-12-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock
Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway
Wenlu Zhu
Department of Geology, University of Maryland, College Park, USA
François Renard
Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway
University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
Related authors
No articles found.
Andreas Aspaas, Gregory Bievre, Pascal Lacroix, Nadège Langet, Juditha Aga, Ingrid Skrede, Lene Kristensen, Bernd Etzelmuller, and François Renard
EGUsphere, https://doi.org/10.5194/egusphere-2026-62, https://doi.org/10.5194/egusphere-2026-62, 2026
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Climate change increases landslide risk in cold regions. We analyzed 12 years of GPS, borehole, water, and seismic data from two landslides in Arctic Norway, one with permafrost and one without. Both accelerate in spring and autumn due to water infiltration. One slip zone shows increasing snowmelt sensitivity while seismic data reveal seasonal stiffness changes. Results advance understanding of water-driven landslide dynamics in Arctic climates.
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024, https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Short summary
We explore the interplay between surface runoff and subglacial conditions. We focus on Kongsvegen glacier in Svalbard. We drilled 350 m down to the glacier base to measure water pressure, till strength, seismic noise, and glacier surface velocity. In the low-melt season, the drainage system adapted gradually, while the high-melt season led to a transient response, exceeding drainage capacity and enhancing sliding. Our findings contribute to discussions on subglacial hydro-mechanical processes.
Cited articles
Aben, F. M., Doan, M.-L., and Mitchell, T. M.: Variation of hydraulic
properties due to dynamic fracture damage: Implications for fault zones,
J. Geophys. Res.-Sol. Ea., 125, e2019JB018919, https://doi.org/10.1029/2019JB018919, 2020.
Aben, F. M., Doan, M. L., Mitchell, T. M., Toussaint, R., Reuschlé, T.,
Fondriest, M., Gratier J-P., and Renard, F.: Dynamic fracturing by
successive coseismic loadings leads to pulverization in active fault zones.
J. Geophys. Res.-Sol. Ea., 121, 2338–2360, 2016.
Anderson, O. L. and Grew, P. C.: Stress corrosion theory of crack
propagation with applications to geophysics, Rev. Geophys. Space Phys., 15,
77–104, 1977.
Atkinson, B. K.: Subcritical crack growth in geological materials, J. Geophys. Res.-Sol. Ea., 89, 4077–4114, 1984.
Atkinson, B. K.: Fracture Mechanics of Rock, 534, Academic, London, 1987.
Baud, P., Zhu, W., Wong, T.-F.: Failure mode and weakening effect of water
on sandstone, J. Geophys. Res., 105, 16371–16389, 2000.
Blanpied, M. L., Marone, C. J., Lockner, D. A., Byerlee, J. D., and King, D.
P.: Quantitative measure of the variation in fault rheology due to
fluid-rock interactions, J. Geophys. Res.-Sol. Ea.,
103, 9691–9712, 1998.
Brace, W. F. and Bombolakis, E. G.: A note on brittle crack growth in
compression, J. Geophys. Res., 68, 3709–3713,
https://doi.org/10.1029/JZ068i012p03709, 1963.
Brantut, N.: Dilatancy-induced fluid pressure drop during dynamic rupture:
Direct experimental evidence and consequences for earthquake dynamics, Earth
Planet. Sci. Lett., 538, 116179, https://doi.org/10.1016/j.epsl.2020.116179, 2020.
Cartwright-Taylor, A., Main, I. G., Butler, I. B., Fusseis, F., Flynn, M.,
and King, A.: Catastrophic Failure: How and When? Insights From 4-D In Situ
X-ray Microtomography, J. Geophys. Res.-Sol. Ea., 125,
e2020JB019642, https://doi.org/10.1029/2020JB019642, 2020.
Chinnery, M. A. and Petrak, J. A.: The dislocation fault model with a
variable discontinuity, Tectonophysics, 5, 513–529,
https://doi.org/10.1016/0040-1951(68)90008-5, 1968.
Cooke, M. L. and Underwood, C. A.: Fracture termination and step-over at
bedding interfaces due to frictional slip and interface opening, J.
Struct. Geol., 23, 223–238, 2001.
Cui, G., Wang, Y., Rui, Z., Chen, B., Ren, S., and Zhang, L.: Assessing the
combined influence of fluid-rock interactions on reservoir properties and
injectivity during CO2 storage in saline aquifers, Energy, 155, 281–296,
2018.
Crider, J. G. and Peacock, D. C.: Initiation of brittle faults in the upper
crust: a review of field observations, J. Struct. Geol., 26,
691–707, 2004.
Davy, P., Goc, R., Darcel, C., Bour, O., Dreuzy, J., and Munier, R.: A
likely universal model of fracture scaling and its consequence for crustal
hydromechanics, J. Geophys. Res.-Sol. Ea., 115, 1–13, https://doi.org/10.1029/2009jb007043, 2010.
Davy, P., Le Goc, R., and Darcel, C.: A model of fracture nucleation, growth
and arrest, and consequences for fracture density and scaling, J. Geophys. Res.-Sol. Ea., 118, 1393–1407, https://doi.org/10.1002/jgrb.50120,
2013.
Del Castello, M. and Cooke, M. L.: Underthrusting-accretion cycle: Work
budget as revealed by the boundary element method, J. Geophys. Res.-Sol. Ea., 112, B12404, https://doi.org/10.1029/2007JB004997, 2007.
Du, Y. and Aydin, A.: The maximum distortional strain energy density
criterion for shear fracture propagation with applications to the growth
paths of en echelon faults, Geophys. Res. Lett., 20, 1091–1094,
1993.
Fattaruso, L. A., Cooke, M. L., Dorsey, R. J., and Housen, B. A.: Response
of deformation patterns to reorganization of the southern San Andreas fault
system since ca. 1.5 Ma, Tectonophysics, 693, 474–488, 2016.
French, M. E. and Zhu, W.: Slow fault propagation in serpentinite under
conditions of high pore fluid pressure, Earth Planet. Sci.
Lett., 473, 131–140, 2017.
Frery, E., Gratier, J. P., Ellouz-Zimmerman, N., Loiselet, C., Braun, J.,
Deschamps, P., Blamart, D., Hamelin, B., and Swennen, R., Evolution of fault
permeability during episodic fluid circulation: Evidence for the effects of
fluid–rock interactions from travertine studies (Utah–USA),
Tectonophysics, 651, 121–137, 2015.
Griffith, A. A.: VI. The phenomena of rupture and flow in
solids, Philos. T. R. Soc. S. A, containing papers of a mathematical or physical character, 221, 163–198, 1921.
Herbert, J. W., Cooke, M. L., Souloumiac, P., Madden, E. H., Mary, B. C.,
and Maillot, B.: The work of fault growth in laboratory sandbox
experiments, Earth Planet. Sci. Lett., 432, 95–102, 2015.
Hickman, S., Sibson, R., and Bruhn, R.: Introduction to special section:
Mechanical involvement of fluids in faulting, J. Geophys. Res.-Sol. Ea., 100, 12831–12840, 1995.
Ikari, M. J., Saffer, D. M., and Marone, C.: Frictional and hydrologic
properties of clay-rich fault gouge, J. Geophys. Res.-Sol. Ea., 114, B05409, https://doi.org/10.1029/2008JB006089, 2009.
Irwin, G.: Analysis of stresses and strains near the end of a crack
traversing a plate, J. Appl. Mech., 24, 361–364, 1957.
Isida, M.: Effect of width and length on stress intensity factors of
internally cracked plates under various boundary conditions, Int.
J. Fract. Mech., 7, 301–316, 1971.
Jackson, C. A. L. and Rotevatn, A.: 3D seismic analysis of the structure
and evolution of a salt-influenced normal fault zone: a test of competing
fault growth models, Journal of Structural Geology, 54, 215–234, 2013.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R.: Rock
mechanics, Fundamentals of Rock Mechanics, Chapman and Hall, London, 1979.
Kandula, N., Cordonnier, B., Boller, E., Weiss, J., Dysthe, D. K., and
Renard, F.: Dynamics of microscale precursors establish brittle-compressive
failure as a critical phenomenon in Carrara marble, J. Geophys.
Res., 124, 6121–6139, https://doi.org/10.1029/2019JB017381, 2019.
Kawakata, H., Cho, A., Yanagidani, T., and Shimada, M.: The observations of
faulting in Westerly granite under triaxial compression by X-ray CT
scan, Int. J. Rock Mech. Min. Sci., 34, 151-e1–151-e12, 1997.
Lamy-Chappuis, B., Angus, D., Fisher, Q., Grattoni, C., and Yardley, B. W.:
Rapid porosity and permeability changes of calcareous sandstone due to
CO2-enriched brine injection, Geophys. Res. Lett., 41, 399–406,
2014.
Lin, P., Wong, R. H., and Tang, C. A.: Experimental study of coalescence
mechanisms and failure under uniaxial compression of granite containing
multiple holes, Int. J. Rock Mech. Min. Sci., 77, 313–327, 2015.
Lockner, D., Byerlee, J. D., Kuksenko, V., Ponomarev, A., and Sidorin, A.:
Quasi-static fault growth and shear fracture energy in granite, Nature,
350, 39–42, 1991.
Madden, E. H., Cooke, M. L., and McBeck, J.: Energy budget and propagation
of faults via shearing and opening using work optimization, J. Geophys. Res.-Sol. Ea., 122, 6757–6772, 2017.
Mair, K., Elphick, S., and Main, I.: Influence of confining pressure on the
mechanical and structural evolution of laboratory deformation
bands, Geophys. Res. Lett., 29, 49-51, 2002.
Mansfield, C. and Cartwright, J.: Fault growth by linkage: observations and
implications from analogue models. J. Struct. Geol., 23, 745–763, 2001.
Martin III, R. J.: Pore pressure stabilization of failure in Westerly
granite, Geophys. Res. Lett., 7, 404–406, 1980.
Martin, C. D. and Chandler, N. A.: The progressive fracture of Lac du
Bonnet granite, Int. J. Rocj. Mech. Min., 31, 643–659, 1994.
Mary, B. C. L., Maillot, B., and Leroy, Y. M.: Deterministic chaos in
frictional wedges revealed by convergence analysis, Int. J.
Num. Anal. Met., 37, 3036–3051, 2013.
McBeck, J., Cooke, M., and Fattaruso, L.: Predicting the propagation and
interaction of frontal accretionary thrust faults with work
optimization, Tectonophysics, 228461, https://doi.org/10.1016/j.tecto.2020.228461, 2020b.
McBeck, J., Cooke, M., and Madden, E.: Work optimization predicts the
evolution of extensional step overs within anisotropic host rock:
Implications for the San Pablo Bay, CA, Tectonics, 36, 2630–2646, 2017.
McBeck, J., Kandula, N., Aiken, J. M., Cordonnier, B., and Renard, F.:
Isolating the Factors That Govern Fracture Development in Rocks Throughout
Dynamic In Situ X-Ray Tomography Experiments, Geophys. Res.
Lett., 46, 11127–11135, 2019a.
McBeck, J., Mair, K., and Renard, F.: How porosity controls macroscopic
failure via propagating fractures and percolating force chains in porous
granular rocks, J. Geophys. Res.-Sol. Ea., 124, 9920–9939, 2019b.
Müller, G.: Starch columns: Analog model for basalt columns, J.
Geophys. Res.-Sol. Ea., 103, 15239–15253, 1998.
Nemat-Nasser, S. and Horii, H.: Compression-induced nonplanar crack
extension with application to splitting, exfoliation, and rockburst, J.
Geophys. Res.-Sol. Ea., 87, 6805–6821, 1982.
Okubo, C. H., and Schultz, R. A.: Evolution of damage zone geometry and
intensity in porous sandstone: insight gained from strain energy
density, J. Geol. Soc. London, 162, 939–949, 2005.
Olson, J. E.: Joint pattern development: Effects of subcritical crack growth
and mechanical crack interactionm J. Geophys. Res.-Sol. Ea., 98, 12251–12265, 1993.
Olson, E. L. and Cooke, M. L.: Application of three fault growth criteria
to the Puente Hills thrust system, Los Angeles, California, USA, J.
Struct. Geol., 27, 1765–1777, 2005.
Ougier-Simonin, A. and Zhu, W.: Effect of pore pressure build-up on slowness
of rupture propagation, J. Geophys. Res., 120, 7966–7985,
https://doi.org/10.1002/2015JB012047, 2015.
Ougier-Simonin, A. and Zhu, W.: Effects of pore fluid pressure on slip
behaviors: an experimental study, Geophys. Res. Lett., 40,
2619–2624, https://doi.org/10.1002/grl.50543, 2013.
Paterson, M. S. and Wong, T. F.: Experimental rock deformation-the brittle
field, Springer Science and Business Media, New York, 2005.
Peng, S. and Johnson, A. M.: Crack growth and faulting in cylindrical
specimens of Chelmsford granite, Int. J. Rock Mech.
Min. Sci., 9, 37–86, 1972.
Pollard, D. D. and Aydin, A.: Progress in understanding jointing over the
past century, Geol. Soc. Am. Bull., 100, 1181–1204, 1988.
Reches, Z. E., and Lockner, D. A.: Nucleation and growth of faults in
brittle rocks, J. Geophys. Res.-Sol. Ea., 99, 18159–18173, 1994.
Renard, F.: Critical evolution of damage towards system size failure in a
crystalline rock [Data set], Norstore, https://doi.org/10.11582/2017.00025, 2017.
Renard, F.: Volumetric and shear processes in crystalline rock during the
approach to faulting [Data set], Norstore, https://doi.org/10.11582/2018.00023, 2018.
Renard, F., Cordonnier, B., Dysthe, D. K., Boller, E., Tafforeau, P., and
Rack, A.: A deformation rig for synchrotron microtomography studies of
geomaterials under conditions down to 10 km depth in the Earth, J.
Synchrotron Radiat., 23, 1030–1034, 2016.
Renard, F., Gratier, J. P., and Jamtveit, B.: Kinetics of crack-sealing,
intergranular pressure solution, and compaction around active faults,
J. Struct. Geol., 22, 1395–1407, 2000.
Renard, F., McBeck, J., Cordonnier, B., Zheng, X., Kandula, N., Sanchez, J.
R., Kobchenko, M., Noiriel, C., Zhu, W., Meaken, P., and Fusseis, F.:
Dynamic in situ three-dimensional imaging and digital volume correlation
analysis to quantify strain localization and fracture coalescence in
sandstone, Pure Appl. Geophys., 176, 1083–1115, 2019a.
Renard, F., McBeck, J., Kandula, N., Cordonnier, B., Meakin, P., and Ben-Zion, Y.: Volumetric and shear processes in crystalline rock approaching faulting, P. Natl. Acad. Sci. USA, 116, 16234–16239, https://doi.org/10.1073/pnas.1902994116, 2019b.
Renard, F., Weiss, J., Mathiesen, J., Ben-Zion, Y., Kandula, N., and
Cordonnier, B.: Critical evolution of damage toward system-size failure in
crystalline rock, J. Geophys. Res.-Sol. Ea., 123, 1969–1986, 2018.
Rice, J. R.: On the stability of dilatant hardening for saturated rock
masses, J. Geophys. Res., 80, 1531–1536. https://doi.org/10.1029/JB080i011p01531, 1975.
Rudnicki, J. W. and Chen, C. H.: Stabilization of rapid frictional slip on
a weakening fault by dilatant hardening, J. Geophys. Res.,
93, 4745–4757, https://doi.org/10.1029/JB093iB05p04745, 1988.
Saeedi, A., Delle Piane, C., Esteban, L., and Xie, Q.: Flood characteristic
and fluid rock interactions of a supercritical CO2, brine, rock system:
South West Hub, Western Australia, Int. J. Green. Gas Cont., 54, 309–321, 2016.
Sausse, J., Jacquot, E., Fritz, B., Leroy, J., and Lespinasse, M.: Evolution
of crack permeability during fluid–rock interaction, Example of the
Brezouard granite (Vosges, France), Tectonophysics, 336, 199–214, 2001.
Scholz, C. H., Dawers, N. H., Yu, J. Z., Anders, M. H., and Cowie, P. A.:
Fault growth and fault scaling laws: preliminary results. J.
Geophys. Res.-Sol. Ea., 98, 21951–21961, 1993.
Segall, P. and Pollard, D. D.: Mechanics of discontinuous faults, J.
Geophys. Res., 85, 4337–4350, https://doi.org/10.1029/JB085iB08p04337, 1980.
Stanchits, S. Vinciguerra, S., and Dresen, G.: Ultrasonic velocities,
acoustic emission characteristics and crack damage of basalt and
granite, Pure Appl. Geophys., 163, 975–994, 2006.
Tapponnier, P. and Brace, W. F.: Development of stress-induced microcracks
in Westerly granite, Int. J. Rock Mech. Min., 13, 103–112, 1976.
Tenthorey, E., Cox, S. F., and Todd, H. F.: Evolution of strength recovery
and permeability during fluid–rock reaction in experimental fault zones,
Earth Planet. Sci. Lett., 206, 161–172, 2003.
Wesnousky, S. G.: Predicting the endpoints of earthquake
ruptures, Nature, 444, 358–360, 2006.
Xing, T., Zhu, W., French, M., and Belzer, B.: Stabilizing Effect of High
Pore Fluid Pressure on Slip Behaviors of Gouge-bearing Faults, J.
Geophys. Res.-Sol. Ea., 124, 9526–9545, 2019.
Xing, T., Zhu, W., Fusseis, F., and Lisabeth, H.: Generating porosity during olivine carbonation via dissolution channels and expansion cracks, Solid Earth, 9, 879–896, https://doi.org/10.5194/se-9-879-2018, 2018.
Zheng, X., Cordonnier, B., McBeck, J., Boller, E., Jamtveit, B., Zhu, W.,
and Renard, F.: Mixed-mode strain localization generated by hydration
reaction at crustal conditions, J. Geophys. Res.-Sol. Ea., 124, 2019.
Short summary
The competing modes of fault network development, including nucleation, propagation, and coalescence, influence the localization and connectivity of fracture networks and are thus critical influences on permeability. We distinguish between these modes of fracture development using in situ X-ray tomography triaxial compression experiments on crystalline rocks. The results underscore the importance of confining stress (burial depth) and fluids on fault network development.
The competing modes of fault network development, including nucleation, propagation, and...