Articles | Volume 12, issue 2
Solid Earth, 12, 503–520, 2021
https://doi.org/10.5194/se-12-503-2021
Solid Earth, 12, 503–520, 2021
https://doi.org/10.5194/se-12-503-2021
Research article
25 Feb 2021
Research article | 25 Feb 2021

Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network

Alexandr Smirnov et al.

Related authors

International Monitoring System infrasound data products for atmospheric studies and civilian applications
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-441,https://doi.org/10.5194/essd-2021-441, 2022
Revised manuscript under review for ESSD
Short summary
Benchmarking microbarom radiation and propagation model against infrasound recordings: a vespagram-based approach
Ekaterina Vorobeva, Marine De Carlo, Alexis Le Pichon, Patrick Joseph Espy, and Sven Peter Näsholm
Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021,https://doi.org/10.5194/angeo-39-515-2021, 2021
Short summary
Infrasound and seismoacoustic signatures of the 28 September 2018 Sulawesi super-shear earthquake
Christoph Pilger, Peter Gaebler, Lars Ceranna, Alexis Le Pichon, Julien Vergoz, Anna Perttu, Dorianne Tailpied, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 19, 2811–2825, https://doi.org/10.5194/nhess-19-2811-2019,https://doi.org/10.5194/nhess-19-2811-2019, 2019
Short summary
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019,https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Correct boundary conditions for DNS models of nonlinear acoustic-gravity waves forced by atmospheric pressure variations
Yuliya Kurdyaeva, Sergey Kshevetskii, Nikolay Gavrilov, and Sergey Kulichkov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-76,https://doi.org/10.5194/gmd-2017-76, 2017
Revised manuscript not accepted
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, geoelectrics, and electromagnetics | Discipline: Seismology
Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022,https://doi.org/10.5194/se-13-705-2022, 2022
Short summary
The damaging character of shallow 20th century earthquakes in the Hainaut coal area (Belgium)
Thierry Camelbeeck, Koen Van Noten, Thomas Lecocq, and Marc Hendrickx
Solid Earth, 13, 469–495, https://doi.org/10.5194/se-13-469-2022,https://doi.org/10.5194/se-13-469-2022, 2022
Short summary
The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania
Bogdan Grecu, Felix Borleanu, Alexandru Tiganescu, Natalia Poiata, Raluca Dinescu, and Dragos Tataru
Solid Earth, 12, 2351–2368, https://doi.org/10.5194/se-12-2351-2021,https://doi.org/10.5194/se-12-2351-2021, 2021
Short summary
Accelerating Bayesian microseismic event location with deep learning
Alessio Spurio Mancini, Davide Piras, Ana Margarida Godinho Ferreira, Michael Paul Hobson, and Benjamin Joachimi
Solid Earth, 12, 1683–1705, https://doi.org/10.5194/se-12-1683-2021,https://doi.org/10.5194/se-12-1683-2021, 2021
Short summary
Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination
Itzhak Lior, Anthony Sladen, Diego Mercerat, Jean-Paul Ampuero, Diane Rivet, and Serge Sambolian
Solid Earth, 12, 1421–1442, https://doi.org/10.5194/se-12-1421-2021,https://doi.org/10.5194/se-12-1421-2021, 2021
Short summary

Cited articles

Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A.: Ocean wave sources of seismic noise, J. Geophys. Res., 116, C09004, https://doi.org/10.1029/2011jc006952, 2011. 
Ardhuin, F., Lavanant, T., and Obrebski, M.: A numerical model for ocean ultra-low frequency noise: wave-generated acousticgravity and Rayleigh modes, J. Acoust. Soc. Am., 134, 3242–3259, https://doi.org/10.1121/1.4818840, 2013a. 
Ardhuin, F. and Herbers, T. H. C.: Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth, J. Fluid Mech., 716, 316–348, https://doi.org/10.1017/jfm.2012.548, 2013b. 
Assink, J. D., Waxler, R., Smets, P., and Evers, L. G.: Bidirectional infrasonic ducts associated with sudden stratospheric warming events, J. Geophys. Res.-Atmos., 119, 1140–1153, https://doi.org/10.1002/2013jd021062, 2014. 
Belyashov, A., Dontsov, V., Dubrovin, V., Kunakov, V., and Smirnov, A.: New infrasound array “Kurchatov”, NNC RK Bull., 2, 24–30, 2013. 
Download
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.