Articles | Volume 12, issue 2
https://doi.org/10.5194/se-12-503-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-503-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network
Alexandr Smirnov
CORRESPONDING AUTHOR
Institute of Geophysical Research, National Nuclear Center, Almaty, 050020, Kazakhstan
Institut de Physique du Globe de Paris, Sorbonne Paris Cité,
75005 Paris, France
Marine De Carlo
CEA, DAM, DIF, 91297 Arpajon, France
Alexis Le Pichon
CEA, DAM, DIF, 91297 Arpajon, France
Nikolai M. Shapiro
Institut de Sciences de la Terre, Université Grenoble Alpes, CNRS
(UMR5275), Grenoble, France
Schmidt Institute of Physics of the Earth, Russian Academy of
Sciences, Moscow, 123242, Russia
Sergey Kulichkov
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, 119017, Russia
Related authors
No articles found.
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data, 14, 4201–4230, https://doi.org/10.5194/essd-14-4201-2022, https://doi.org/10.5194/essd-14-4201-2022, 2022
Short summary
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Ekaterina Vorobeva, Marine De Carlo, Alexis Le Pichon, Patrick Joseph Espy, and Sven Peter Näsholm
Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021, https://doi.org/10.5194/angeo-39-515-2021, 2021
Short summary
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Cited articles
Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A.: Ocean wave
sources of seismic noise, J. Geophys. Res., 116, C09004,
https://doi.org/10.1029/2011jc006952, 2011.
Ardhuin, F., Lavanant, T., and Obrebski,
M.: A numerical model for ocean ultra-low frequency noise: wave-generated
acousticgravity and Rayleigh modes, J. Acoust. Soc. Am., 134, 3242–3259,
https://doi.org/10.1121/1.4818840, 2013a.
Ardhuin, F. and Herbers, T. H. C.: Noise generation in the solid Earth,
oceans and atmosphere, from nonlinear interacting surface gravity waves in
finite depth, J. Fluid Mech., 716, 316–348, https://doi.org/10.1017/jfm.2012.548,
2013b.
Assink, J. D., Waxler, R., Smets, P., and Evers, L. G.: Bidirectional
infrasonic ducts associated with sudden stratospheric warming events, J.
Geophys. Res.-Atmos., 119, 1140–1153, https://doi.org/10.1002/2013jd021062, 2014.
Belyashov, A., Dontsov, V., Dubrovin, V., Kunakov, V., and Smirnov, A.: New
infrasound array “Kurchatov”, NNC RK Bull., 2, 24–30, 2013.
Bertelli, T.: Osservazioni sui piccoli movimenti dei pendoli in relazione ad
alcuni fenomeni meteorologiche, Boll. Meteorol.
Osserv. Coll. Roma, 9, 1872.
Brekhovskikh, L. M.: Waves in Layered Media, Applied Mathematics and
Mechanics, Academic
Press, London, UK, https://doi.org/10.1002/zamm.19620420308, 1960.
Cansi, Y.: An automatic seismic event processing for detection and location:
The P.M.C.C. Method, Geophys. Res. Lett., 22, 1021–1024,
https://doi.org/10.1029/95gl00468, 1995.
Cansi, Y. and Klinger, Y.: An Automated Data Processing Method for
Mini-Arrays, Newsl. Eur. Seismol. Cent., 11, 1021–1024, 1997.
Capon, J.: Long-Period Signal Processing Results for LASA, NORSAR and ALPA,
Geophys. J. Int., 31, 279–296,
https://doi.org/10.1111/j.1365-246x.1972.tb02370.x, 1972.
Ceranna, L., Matoza, R., Hupe, P., Le Pichon, A., and Landès, M.:
Systematic array processing of a decade of global IMS infrasound data, in:
Infrasound monitoring for
atmospheric studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., Springer, Dordrecht, The Netherlands,
471–484, 2019.
De Carlo, M., Le Pichon, A., Ardhuin, F., and Näsholm, S.: Characterizing
and modelling ocean ambient noise using infrasound network and middle
atmospheric models, NNC RK Bull., 2, 144–151, 2018.
De Carlo, M., Ardhuin, F., and Le Pichon, A.: Atmospheric infrasound
generation by ocean waves in finite depth: unified theory and application to
radiation patterns, Geophys. J. Int., 21, 569–585,
https://doi.org/10.1093/gji/ggaa015, 2020.
den Ouden, O.,
Assink, J. D., Smets, P., Shani-Kadmiel, S., Averbuch, G., and Evers, L.:
CLEAN beamforming for the enhanced detection of multiple infrasonic sources,
Geophys. J. Int., 221, 305–317, https://doi.org/10.1093/gji/ggaa010,
2020.
Donn, W. L. and Naini, B.: Sea wave origin of microbaroms and microseisms,
J. Geophys. Res., 78, 4482–4488, https://doi.org/10.1029/JC078i021p04482,
1973.
Evers, L. G. and Haak, H. W.: Listening to sounds from an exploding meteor
and oceanic waves, Geophys. Res. Lett., 28, 41–44,
https://doi.org/10.1029/2000gl011859, 2001.
Evers, L. G. and Siegmund, P.: Infrasonic signature of the 2009 major sudden
stratospheric warming, Geophys. Res. Lett., 36, L23808,
https://doi.org/10.1029/2009gl041323, 2009.
Garcés, M.: On using ocean swells for continuous infrasonic measurements
of winds and temperature in the lower, middle, and upper atmosphere,
Geophys. Res. Lett., 31, L19304, https://doi.org/10.1029/2004gl020696, 2004.
Gerstoft, P., Shearer, P. M., Harmon, N., and Zhang, J.: Global P, PP, and
PKP wave microseisms observed from distant storms, Geophys. Res. Lett.,
35, L23306, https://doi.org/10.1029/2008gl036111, 2008.
Gutenberg, B.: Microseisms, microbaroms, storms, and waves in western North
America, Eos Trans. AGU, 34, 161–173, https://doi.org/10.1029/TR034i002p00161, 1953.
Hasselmann, K.: A statistical analysis of the generation of microseisms,
Rev. Geophys., 1, 177, https://doi.org/10.1029/rg001i002p00177, 1963.
Hasselmann, K.: Feynman diagrams and interaction rules of wave-wave
scattering processes, Rev. Geophys., 4, 1, https://doi.org/10.1029/rg004i001p00001,
1966.
Haubrich, R. A. and McCamy, K.: Microseisms: Coastal and pelagic sources,
Rev. Geophys., 7, 539, https://doi.org/10.1029/rg007i003p00539, 1969.
Hupe, P., Ceranna, L., Pilger, C., De Carlo, M., Le Pichon, A., Kaifler, B.,
and Rapp, M.: Assessing middle atmosphere weather models using infrasound
detections from microbaroms, Geophys. J. Int., 216, 1761–1767,
https://doi.org/10.1093/gji/ggy520, 2018.
IFREMER: Wave Watch 3, available at:
ftp://ftp.ifremer.fr/ifremer/ww3/ (last access: 3 October 2018), 2018.
Kanamori,
H. and Given, J. W.: Use of long-period surface waves for rapid
determination of earthquake-source parameters, Phys. Earth Planet. Inter.,
27, 8–31, https://doi.org/10.1016/0031-9201(81)90083-2, 1981.
Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., and Jones,
C.: The origin of deep ocean microseisms in the North Atlantic Ocean, Proc.
R. Soc. A, 464, 777–793,
https://doi.org/10.1098/rspa.2007.0277, 2008.
KNDC: Observation network of the Institute
of Geophysical Research of the National Nuclear Centre of the Republic of
Kazakhstan, available at:
http://www.kndc.kz/index.php?option=com_content&view=article&id=45&Itemid=147&lang=en (last access:
3 October 2019), 2019.
Kolínský, P. and Bokelmann, G.: Arrival angles of teleseismic
fundamental mode Rayleigh waves across the AlpArray, Geophys. J. Int.,
218, 115–144, https://doi.org/10.1093/gji/ggz081, 2019.
Landès, M., Ceranna, L., Le Pichon, A., and Matoza, R. S.: Localization
of microbarom sources using the IMS infrasound network, J. Geophys. Res.-Atmos., 117, D06102, https://doi.org/10.1029/2011jd016684, 2012.
Landès, M., Le Pichon, A., Shapiro, N. M., Hillers, G., and Campillo, M.:
Explaining global patterns of microbarom observations with wave action
models, Geophys. J. Int., 199, 1328–1337, https://doi.org/10.1093/gji/ggu324, 2014.
Le Pichon, A., Ceranna, L., and Vergoz, J.: Incorporating numerical modeling
into estimates of the detection capability of the IMS infrasound network, J.
Geophys. Res.-Atmos., 117, D05121, https://doi.org/10.1029/2011jd016670, 2012.
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A.,
Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer,
N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C.,
Ross, O., and Claud, C.: Comparison of co-located independent ground-based
middle atmospheric wind and temperature measurements with numerical weather
prediction models, J. Geophys. Res.-Atmos., 120, 8318–8331,
https://doi.org/10.1002/2015jd023273, 2015.
Longuet-Higgins, M. S.: A Theory of the origin of microseisms, Philos.
T. R. Soc. A, 243, 1–35,
https://doi.org/10.1098/rsta.1950.0012, 1950.
Marty, J.: The IMS Infrasound Network: Current Status and Technological
Developments, in: Infrasound Monitoring for Atmospheric Studies,
edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., Springer, Cham,
3–62, https://doi.org/10.1007/978-3-319-75140-5, 2019.
Matoza, R. S., Landès, M., Le Pichon, A., Ceranna, L., and Brown, D.:
Coherent ambient infrasound recorded by the International Monitoring System,
Geophys. Res. Lett., 40, 429–433, https://doi.org/10.1029/2012gl054329, 2013.
Obrebski, M., Ardhuin, F., Stutzmann, E., and Schimmel, M.:
Detection of microseismic compressional (P)body waves aided by numerical
modelling of oceanic noise sources, J. Geophys. Res.-Sol. Ea., 118,
4312–4324, https://doi.org/10.1002/jgrb.50233, 2013.
Olson, J. V. and Szuberla, C. A. L.: Distribution of wave packet sizes in
microbarom wave trains observed in Alaska, J. Acoust. Soc. Am., 117,
1032–1037, https://doi.org/10.1121/1.1854651, 2005.
Posmentier, E. S.: A Theory of Microbaroms, Geophys. J. Int., 13,
487–501, https://doi.org/10.1111/j.1365-246x.1967.tb02301.x, 1967.
Shapiro, N. M.: High-Resolution Surface-Wave Tomography from Ambient
Seismic Noise, Science, 307, 1615–1618,
https://doi.org/10.1126/science.1108339, 2005.
Shapiro, N. M. and Campillo, M.: Emergence of broadband Rayleigh waves from
correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614,
https://doi.org/10.1029/2004gl019491, 2004.
Smets, P. S. M. and Evers, L. G.: The life cycle of a sudden stratospheric
warming from infrasonic ambient noise observations, J. Geophys. Res.-Atmos.,
119, 84–99, https://doi.org/10.1002/2014jd021905, 2014.
Smirnov, A.: The variety of infrasound sources recorded by Kazakhstani
stations, in: CTBT: Science and Technology, Vienna, available at:
https://www.ctbto.org/fileadmin/user_upload/SnT2015/SnT2015_Posters/T2.3-P20.pdf (last access: 27 October 2015), 2015.
Smirnov, A., Dubrovin, V., and Evers, L. G.: Explanation of the nature of coherent low-frequency signal sources recorded by monitoring station network of the NNC RK, NNC RK Bull, 3, 76–81, 2010.
Smirnov, A., De Carlo, M., Le Pichon, A., and Shapiro, N. M.: Signals from
severe ocean storms in North Atlantic as it detected in Kazakhstan:
observations and modelling, NNC RK Bull., 2, 152–160, 2018.
Smirnov, A., De Carlo, M., Le Pichon, A., Shapiro, N., and Kulichkov, S.: Results of the microseism and microbarom detections by the seismo-acoustic Kazakh network and of the microbarom simulation for the infrasound arrays of the network, ISC Seismological Dataset Repository, https://doi.org/10.31905/DSW7L5BV, 2020.
Stehly, L., Campillo, M., and Shapiro, N. M.: A study of the seismic noise
from its long-range correlation properties, J. Geophys. Res., 111, B10306,
https://doi.org/10.1029/2005jb004237, 2006.
Stutzmann, E., Ardhuin, F., Schimmel, M., Mangeney, A., and Patau, G.:
Modelling long-term seismic noise in various environments, Geophys. J. Int.,
191, 707–722, https://doi.org/10.1111/j.1365-246x.2012.05638.x, 2012.
Szuberla, C. A. L. and Olson, J. V: Uncertainties associated with parameter
estimation in atmospheric infrasound arrays, J. Acoust. Soc. Am., 115, 253–258, https://doi.org/10.1121/1.1635407, 2004.
Toksöz, M. N. and Lacoss, R. T.: Microseisms: mode structure and sources,
Science, 159, 872–873, https://doi.org/10.1126/science.159.3817.872, 1968.
WAVEWATCH III Development Group: User manual and system documentation of
WAVEWATCH III version 5.16, NOAA/NWS/NCEP/MMAB Technical Note 329,
College Park, MD, 326 pp. + Appendices,
2016.
Waxler, R. and Assink, J.: Propagation modeling through realistic
atmosphere and benchmarking, in: Infrasound monitoring for atmospheric
studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., Springer, Cham,
pringer Nature, Dordrecht, the Netherlands,
509–550, 2019.
Waxler, R. and Gilbert, K. E.: The radiation of atmospheric microbaroms by
ocean waves, J. Acoust. Soc. Am., 119, 2651–2664, https://doi.org/10.1121/1.2191607,
2006.
Waxler, R., Gilbert, K., Talmadge, C., and Hetzer, C.: The effects of finite
depth of the ocean on microbarom signals, in: 8th International Conference on Theoretical
and Computational Acoustics (ICTCA), 2–6 July 2007, Crete, Greece, 2007.
Weaver, R. L.: GEOPHYSICS: Information from Seismic Noise, Science,
307, 1568–1569, https://doi.org/10.1126/science.1109834, 2005.
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At...