Articles | Volume 12, issue 1
https://doi.org/10.5194/se-12-79-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-79-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of basal drag on subduction dynamics from 2D numerical models
Department of Earth Science and Engineering, Imperial College of
London, South Kensington Campus, London, UK
Saskia Goes
Department of Earth Science and Engineering, Imperial College of
London, South Kensington Campus, London, UK
Benjamin Maunder
Department of Earth Science and Engineering, Imperial College of
London, South Kensington Campus, London, UK
Fanny Garel
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, France
Rhodri Davies
Research School of Earth Sciences, Australian National University,
Canberra, Australian Capital Territory, Australia
Related authors
No articles found.
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168, https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Melting ice sheets drive solid Earth deformation and sea-level change on timescales of decades to thousands of years. Here, we present G-ADOPT, which models movement of the solid Earth in response to surface loads. It has flexibility in domain geometry, deformation mechanism parameterisation, and is scalable on high performance computers. Automatic derivation of adjoint sensitivity kernels also provides a means to assimilate historical and modern observations into future sea-level forecasts.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Cited articles
Agrusta, R., Goes, S., and van Hunen, J.: Subducting-slab transition-zone
interaction: Stagnation, penetration and mode switches, Earth Planet. Sci.
Lett., 464, 10–23, https://doi.org/10.1016/j.epsl.2017.02.005, 2017.
Alsaif, M., Garel, F., Gueydan, F., and Davies, D. R.: Upper plate
deformation and trench retreat modulated by subduction-driven shallow
asthenospheric flows, Earth Planet. Sci. Lett., 532, 116013, https://doi.org/10.1016/j.epsl.2019.116013, 2020.
Becker, T. W. and Faccenna, C.: Mantle conveyor beneath the Tethyan
collisional belt, Earth Planet. Sci. Lett., 310, 453–461, https://doi.org/10.1016/j.epsl.2011.08.021, 2011.
Becker, T. W. and Kawakatsu, H.: On the role of anisotropic viscosity for
plate-scale flow, Geophys. Res. Lett., 38, L17307, https://doi.org/10.1029/2011GL048584, 2011.
Becker, T. W. and O'Connell, R. J.: Predicting plate velocities with mantle circulation models, Geochem. Geophys. Geosys., 2, 1060, https://doi.org/10.1029/2001GC000171, 2001.
Bellahsen, N., Faccenna, C., and Funiciello, F.: Dynamics of subduction and
plate motion in laboratory experiments: Insights into the “plate
tectonics” behavior of the Earth, J. Geophys. Res.-Sol. Ea., 110,
1–15, https://doi.org/10.1029/2004JB002999, 2005.
Billen, M. I. and Arredondo, K. M.: Decoupling of plate-asthenosphere motion
caused by non-linear viscosity during slab folding in the transition zone,
Phys. Earth Planet. Inter., 281, 17–30, https://doi.org/10.1016/j.pepi.2018.04.011,
2018.
Billen, M. I. and Hirth, G.: Rheologic controls on slab dynamics,
Geochem. Geophys. Geosys., 8, Q08012, https://doi.org/10.1029/2007GC001597, 2007.
Bokelmann, G. H. R. and Silver, P. G.: Shear stress at the base of shield
lithosphere, Geophys. Res. Lett., 29, 6-1–6-4, https://doi.org/10.1029/2002GL015925, 2002.
Buffett, B. A. and Rowley, D. B.: Plate bending at subduction zones: Consequences for the direction of plate motions, Earth Planet. Sci. Lett., 245, 359–364, https://doi.org/10.1016/j.epsl.2006.03.011, 2006.
Burov, E. B.: Rheology and strength of the lithosphere, Mar. Pet. Geol.,
28, 1402–1443, https://doi.org/10.1016/j.marpetgeo.2011.05.008, 2011.
Capitanio, F. A.: Lithospheric-age control on the migrations of oceanic
convergent margins, Tectonophysics, 593, 193–200, https://doi.org/10.1016/j.tecto.2013.03.003, 2013.
Capitanio, F. A., Morra, G., and Goes, S.: Dynamic models of downgoing
plate-buoyancy driven subduction: Subduction motions and energy dissipation,
Earth Planet. Sci. Lett., 262, 284–297, https://doi.org/10.1016/j.epsl.2007.07.039, 2007.
Capitanio, F. A., Morra, G., and Goes, S.: Dynamics of plate bending at the
trench and slab-plate coupling, Geochem. Geophys. Geosys., 10, Q04002, https://doi.org/10.1029/2008GC002348, 2009.
Carlson, R. L., Hilde, T. W. C., and Uyeda, S.: The driving mechanism of
plate tectonics: Relation to age of the lithosphere at trenches, Geophys.
Res. Lett., 10, 297–300, https://doi.org/10.1029/GL010i004p00297, 1983.
Čížková, H., and Bina, C. R.: Effects of mantle and
subduction-interface rheologies on slab stagnation and trench rollback,
Earth Planet. Sci. Lett., 379, 95–103, https://doi.org/10.1016/j.epsl.2013.08.011,
2013.
Čížková, H., Van Hunen, J., Van den Berg, A. P., and Vlaar, N. J.: The influence of rheological weakening and yield stress on the
interaction of slabs with the 670 km discontinuity, Earth Planet. Sci.
Lett., 199, 447–457, https://doi.org/10.1016/S0012-821X(02)00586-1, 2002.
Clark, S. R., Stegman, D., and Müller, R. D.: Episodicity in back-arc
tectonic regimes, Phys. Earth Planet. Inter., 171, 265–279, https://doi.org/10.1016/j.pepi.2008.04.012, 2008.
Colli, L., Stotz, I., Bunge, H. P., Smethurst, M., Clark, S., Iaffaldano,
G., Tassara, A., Guillocheau, F., and Bianchi, M. C.: Rapid South Atlantic
spreading changes and coeval vertical motion in surrounding continents:
Evidence for temporal changes of pressure-driven upper mantle flow,
Tectonics, 33, 1304–1321, https://doi.org/10.1002/2014TC003612, 2014.
Coltice, N., Husson, L., Faccenna, C., and Arnould, M.: What drives tectonic
plates?, Sci. Adv., 5, eaax4295, https://doi.org/10.1126/sciadv.aax4295, 2019.
Conrad, C. P. and Hager, B. H.: Effects of plate bending and fault strength
at subduction zones on plate dynamics, J. Geophys. Res.-Sol. Ea.,
104, 17551–17571, https://doi.org/10.1029/1999jb900149, 1999.
Conrad, C. P. and Lithgow-Bertelloni, C.: How mantle slabs drive plate
tectonics, Science, 298, 207–209, https://doi.org/10.1126/science.1074161, 2002.
Conrad, C. P. and Lithgow-Bertelloni, C.: Influence of continental roots and
asthenosphere on plate-mantle coupling, Geophys. Res. Lett., 33, L05312, https://doi.org/10.1029/2005GL025621, 2006.
Conrad, C. P., Bilek, S., and Lithgow-Bertelloni, C.: Great earthquakes and
slab pull: Interaction between seismic coupling and plate-slab coupling,
Earth Planet. Sci. Lett., 218, 109–122, https://doi.org/10.1016/S0012-821X(03)00643-5, 2004.
Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity: A fully
unstructured anisotropic adaptive mesh computational modeling framework for
geodynamics, Geochem. Geophys. Geosys., 12, Q06001, https://doi.org/10.1029/2011GC003551, 2011.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. Inter., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Forsyth, D. and Uyeda, S.: On the Relative Importance of the Driving Forces
of Plate Motion, Geophys. J. R. Astron. Soc., 43, 163–200, https://doi.org/10.1111/j.1365-246X.1975.tb00631.x, 1975.
French, S., Lekic, V., and Romanowicz, B.: Waveform tomography reveals
channeled flow at the base of the oceanic asthenosphere, Science,
342, 227–230, https://doi.org/10.1126/science.1241514, 2013.
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson,
C. R.: Interaction of subducted slabs with the mantle transition-zone: A
regime diagram from 2-D thermo-mechanical models with a mobile trench and an
overriding plate, Geochem. Geophys. Geosys., 15, 1739–1765, https://doi.org/10.1002/2014GC005257, 2014.
Garel, F., Thoraval, C., Tommasi, A., Demouchy, S., and Davies, D. R.: Using
thermo-mechanical models of subduction to constrain effective mantle
viscosity, Earth Planet. Sci. Lett., 539, 116243, https://doi.org/10.1016/j.epsl.2020.116243, 2020.
Di Giuseppe, E., Faccenna, C., Funiciello, F., van Hunen, J., and Giardini,
D.: On the relation between trench migration, seafloor age, and the strength
of the subducting lithosphere, Lithosphere, 1, 121–128, https://doi.org/10.1130/L26.1, 2009.
Goes, S., Capitanio, F. A., Morra, G., Seton, M. and Giardini, D.:
Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate
motions, Phys. Earth Planet. Inter., 184, 1–13, https://doi.org/10.1016/j.pepi.2010.10.007, 2011.
Goes, S., Agrusta, R., van Hunen, J., and Garel, F.: Subduction-transition
zone interaction: A review, Geosphere, 13, 644–664, https://doi.org/10.1130/GES01476.1, 2017.
Hirth, G. and Kohlstedt, D. L.: Experimental constraints on the dynamics of
the partially molten upper mantle: Deformation in the diffusion creep
regime, J. Geophys. Res., 100, 1981–2001, https://doi.org/10.1029/94JB02128, 1995.
Hirth, G. and Kohlstedt, D. L.: Rheology of the Upper Mantle and the Mantle
Wedge: A View from the Experimentalists, Geophys. Monogr. Ser., 138,
83–106, https://doi.org/10.1029/138GM06, 2003.
Höink, T. and Lenardic, A.: Three-dimensional mantle convection
simulations with a low-viscosity asthenosphere and the relationship between
heat flow and the horizontal length scale of convection, Geophys. Res.
Lett., 35, L10304, https://doi.org/10.1029/2008GL033854, 2008.
Höink, T. and Lenardic, A.: Long wavelength convection,
Poiseuille-Couette flow in the low-viscosity asthenosphere and the strength
of plate margins, Geophys. J. Int., 180, 23–33, https://doi.org/10.1111/j.1365-246X.2009.04404.x, 2010.
Husson, L., Guillaume, B., Funiciello, F., Faccenna, C., and Royden, L. H.:
Unraveling topography around subduction zones from laboratory models,
Tectonophysics, 526–529, 5–15, https://doi.org/10.1016/j.tecto.2011.09.001, 2012.
Kameyama, M., Yuen, D. A., and Karato, S.-I.: Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone, Earth Planet. Sci. Lett., 168, 159–172, https://doi.org/10.1016/S0012-821X(99)00040-0, 1999.
Korenaga, J. and Karato, S. I.: A new analysis of experimental data on
olivine rheology, J. Geophys. Res.-Sol. Ea., 113, B02403, https://doi.org/10.1029/2007JB005100, 2008.
Kramer, S. C., Wilson, C. R., and Davies, D. R.: An implicit free surface
algorithm for geodynamical simulations, Phys. Earth Planet. Inter.,
194–195, 25–37, https://doi.org/10.1016/j.pepi.2012.01.001, 2012.
Lallemand, S., Heuret, A., and Boutelier, D.: On the relationships between
slab dip, back-arc stress, upper plate absolute motion, and crustal nature
in subduction zones, Geochem. Geophys. Geosys., 6, Q09006, https://doi.org/10.1029/2005GC000917, 2005.
Lee, C. and King, S. D.: Dynamic buckling of subducting slabs reconciles
geological and geophysical observations, Earth Planet. Sci. Lett.,
312, 360–370, https://doi.org/10.1016/j.epsl.2011.10.033, 2011.
Lithgow-Bertelloni, C. and Richards, M. A.: The dynamics of cenozoic and
mesozoic plate motions, Rev. Geophys., 36, 27–78, https://doi.org/10.1029/97RG02282, 1998.
Mallard, C., Coltice, N., Seton, M., Dietmar Müller, R., and Tackley, P.
J.: Subduction controls the distribution and fragmentation of Earth's
tectonic plates, Nature 535, 140–143, https://doi.org/10.1038/nature17992, 2016.
Maunder, B., van Hunen, J., Magni, V., and Bouilhol, P.: Relamination of mafic subducting crust throughout Earth's history, Earth Planet. Sci. Lett., 449, 206–216, https://doi.org/10.1016/j.epsl.2016.05.042, 2016.
Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K.
J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N.,
Hosseinpour, M., Bower, D. J., and Cannon, J.: Ocean Basin Evolution and
Global-Scale Plate Reorganization Events Since Pangea Breakup, Annu. Rev.
Earth Planet. Sci., 44, 107–138, https://doi.org/10.1146/annurev-earth-060115-012211, 2016.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams,
S., Pfaffelmoser, T., Seton, M., Russell, S. H. J.. and Zahirovic, S.:
GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophys.
Geosys., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
O'Neill, C., Müller, D., and Steinberger, B.: On the uncertainties in hot
spot reconstructions and the significance of moving hot spot reference
frames, Geochem. Geophys. Geosys., 6, Q04003, https://doi.org/10.1029/2004GC000784, 2005.
Paulson, A. and Richards, M. A.: On the resolution of radial viscosity
structure in modelling long-wavelength postglacial rebound data, Geophys. J.
Int., 179, 1516–1526, https://doi.org/10.1111/j.1365-246X.2009.04362.x, 2009.
Ranalli, G.: Rheology of the earth, Chapman and Hall, London, ISBN 0-412-54670-1, 1995.
Ribe, N. M.: Bending mechanics and mode selection in free subduction: A
thin-sheet analysis, Geophys. J. Int., 180, 559–576, https://doi.org/10.1111/j.1365-246X.2009.04460.x, 2010.
Schellart, W. P.: Quantifying the net slab pull force as a driving mechanism
for plate tectonics, Geophys. Res. Lett., 31, L07611, https://doi.org/10.1029/2004GL019528, 2004.
Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L., and May, D.:
Evolution and diversity of subduction zones controlled by slab width,
Nature, 446, 308–311, https://doi.org/10.1038/nature05615, 2007.
Sdrolias, M. and Müller, R. D.: Controls on back-arc basin formation,
Geochem. Geophys. Geosys., 7, Q04016, https://doi.org/10.1029/2005GC001090, 2006.
Stegman, D. R., Farrington, R., Capitanio, F. A., and Schellart, W. P.: A
regime diagram for subduction styles from 3-D numerical models of free
subduction, Tectonophysics, 483, 29–45, https://doi.org/10.1016/j.tecto.2009.08.041, 2010.
Stotz, I. L., Iaffaldano, G., and Davies, D. R.: Pressure-Driven Poiseuille
Flow: A Major Component of the Torque-Balance Governing Pacific Plate
Motion, Geophys. Res. Lett., 45, 117–125, https://doi.org/10.1002/2017GL075697,
2018.
Suchoy, L. and Goes, S.: Initiation files for Fluidity numerical modelling code, used in the paper Suchoy et al., 2020, British Geological Survey (Dataset), https://doi.org/10.5285/b3a75382-31db-428c-90bb-458fdf66d77a, 2020.
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511807442, 2002.
Le Voci, G., Davies, D. R., Goes, S., Kramer, S. C., and Wilson, C. R.: A
systematic 2-D investigation into the mantle wedge's transient flow regime
and thermal structure: Complexities arising from a hydrated rheology and
thermal buoyancy, Geochem. Geophys. Geosys., 15, 28–51, https://doi.org/10.1002/2013GC005022, 2014.
Williams, S., Flament, N., Dietmar Müller, R., and Butterworth, N.: Absolute plate motions since 130 Ma constrained by subduction zone kinematics, Earth Planet. Sci. Lett., 418, 66–77, https://doi.org/10.1016/j.epsl.2015.02.026, 2015.
Wolf, S. G. and Huismans, R. S.: Mountain Building or Backarc Extension in Ocean-Continent Subduction Systems: A Function of Backarc Lithospheric Strength and Absolute Plate Velocities, J. Geophys. Res.-Sol. Ea., 124, 7461–7482, https://doi.org/10.1029/2018JB017171, 2019.
Zhong, S. and Davies, G. F.: Effects of plate and slab viscosities on the
geoid, Earth Planet. Sci. Lett., 170, 487–496, https://doi.org/10.1016/S0012-821X(99)00124-7, 1999.
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We...