Articles | Volume 13, issue 6
https://doi.org/10.5194/se-13-1087-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1087-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The analysis of slip tendency of major tectonic faults in Germany
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt,
Germany
Steffen Ahlers
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Birgit Müller
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt,
Germany
Karsten Reiter
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Oliver Heidbach
Helmholtz Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, 14473 Potsdam, Germany
Institute of Applied Geosciences, TU Berlin, 10587 Berlin, Germany
Andreas Henk
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Tobias Hergert
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Frank Schilling
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt,
Germany
Related authors
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Steffen Ahlers and Andreas Henk
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-320, https://doi.org/10.5194/essd-2025-320, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The paper presents a 3D geological underground model of Germany and some neigbouring countries combining 27 individual models. It has been set up for the prediction of the recent crustal stress state of Germany by geomechanical-numerical modelling. It contains 146 units and is provided as a point data set with a resolution of 1x1 km2. It enables to create 3D finite element models within very short times A comprehensive supplement and 157 figures documents the results and assumptions made.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Sarah Diekmeier, Karsten Reiter, Andreas Henk, and Colin Friebe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-489, https://doi.org/10.5194/essd-2024-489, 2025
Manuscript not accepted for further review
Short summary
Short summary
The study explores the potential for storing carbon-rich products in Germany to support climate goals. Using geological data, we identified old mining sites suitable for storing products like graphite and oxalate from negative emissions technologies. Results show significant storage potential, both above and below ground, offering a sustainable solution. By reusing existing mining areas, Germany can advance towards carbon neutrality, reducing costs and environmental impact.
Antonio J. Olaiz, José A. Álvarez Gómez, Gerardo de Vicente, Alfonso Muñoz-Martín, Juan V. Cantavella, Susana Custódio, Dina Vales, and Oliver Heidbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-4126, https://doi.org/10.5194/egusphere-2024-4126, 2025
Short summary
Short summary
Understanding the stress and strain conditions in the Earth crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for the Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Michal Kruszewski, Alessandro Verdecchia, Oliver Heidbach, Rebecca M. Harrington, and David Healy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1889, https://doi.org/10.5194/egusphere-2023-1889, 2023
Preprint archived
Short summary
Short summary
In this study, we investigate the evolution of fault reactivation potential in the greater Ruhr region (Germany) in respect to a future utilization of deep geothermal resources. We use analytical and numerical approaches to understand the initial stress conditions on faults as well as their evolution in space and time during geothermal fluid production. Using results from our analyses, we can localize areas more favorable for geothermal energy use based on fault reactivation potential.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Simon Breuer and Frank R. Schilling
Eur. J. Mineral., 33, 23–38, https://doi.org/10.5194/ejm-33-23-2021, https://doi.org/10.5194/ejm-33-23-2021, 2021
Short summary
Short summary
The knowledge of physical properties of quartz as an abundant rock-forming mineral in the Earth’s crust allows for a better understanding of its dynamic processes. The thermal transport properties of single-crystal quartz are studied between –120 °C and 800 °C using a laser flash method. First, low-temperature data as well as the role of the low-to-high quartz phase transition (e.g. a transition-related non-ballistic radiative transfer) and size effects on thermal diffusivity are discussed.
Cited articles
Agemar, T., Alten, J.-A., Gorling, L., Gramenz, J., Kuder, J., Suchi, E.,
Moeck, I., Weber, J., V. Hartmann, H., Stober, I., Hese, F., and Thomsen,
C.: Verbundsvorhaben “StörTief”: Die Rolle von tiefreichenden
Störungszonen bei der geothermischen Energienutzung, Endbericht, 2016.
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: 3D crustal stress state of Germany according to a data-calibrated geomechanical model, Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, 2021a.
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel,
L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: The
Crustal stress state of Germany – Results of a 3D geomechnical model,
TUdatalib [data set], https://doi.org/10.48328/tudatalib-437, 2021b.
Aleksandrowski, P., Kryza, R., Mazur, S., and Zaba, J.: Kinematic data on
major Variscan strike-slip faults and shear zones in the Polish Sudetes,
northeast Bohemian Massif, Geol. Mag., 134, 727–739,
https://doi.org/10.1017/S0016756897007590, 1997.
Badura, J., Zuchiewicz, W., Stepancikova, P., Przybylski, B., Kontny, B., and
Cacon, S.: The Sudetic Marginal Fault: a young morphophotectonic feature at
the ne margin of the Bohemian Massif, Central Europe, Acta Geodyn.
Geomater., 148, 7–29, 2007.
Behr, H. J., Duerbaum, H. J., Bankwitz, P., Bankwitz, E., Benek, R., Berger,
H. J., Brause, H., Conrad, W., Foerste, K., Frischbutter, A., Gebrande, H.,
Giese, P., Goethe, W., Guertler, J., Haenig, D., Haupt, M., Heinrichs, T.,
Horst, W., Hurtig, E., and Kaempf, H.: Crustal structure of the
Saxothuringian Zone; results of the deep seismic profile MVE-90(East), Z.
Geol. Wissenschaft., 22, 647–770, 1994.
Bönnemann, C., Schmidt, B., Ritter, J., Gestermann, N., Plenefisch, T.,
and Wegler, U.: Das seismische Ereignis bei Landau vom 15. August 2009 –
Abschlussbericht der Expertengruppe Seismisches Risiko bei hydrothermaler
Geothermie, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 2010.
Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A.,
Hrubcová, P., Keller, G. R., Majdański, M., Šumanovac, F.,
Tiira, T., Yliniemi, J., Hegedűs, E., and Thybo, H.: Crustal structure
due to collisional and escape tectonics in the Eastern Alps region based on
profiles Alp01 and Alp02 from the ALP 2002 seismic experiment, J. Geophys. Res.-Sol. Ea., 112, 1109,
https://doi.org/10.1029/2006JB004687, 2007.
Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., and Baumgärtner, J.:
Estimation of the complete stress tensor to 8 km depth in the KTB scientific
drill holes: Implications for crustal strength, J. Geophys. Res., 102,
18453–18475, https://doi.org/10.1029/96JB02942, 1997.
Brun, J. P., Gutscher, M.-A., and dekorp-ecors teams: Deep crustal structure
of the Rhine Graben from dekorp-ecors seismic reflection data: A summary,
Tectonophysics, 208, 139–147, https://doi.org/10.1016/0040-1951(92)90340-C, 1992.
Buchmann, T. J. and Connolly, P. T.: Contemporary kinematics of the Upper
Rhine Graben: A 3D finite element approach, Global Planet. Change, 58,
287–309, https://doi.org/10.1016/j.gloplacha.2007.02.012, 2007.
BGR, LAGB, LBEG, LBGR, LLUR, and LUNG: 3D-Modell des geologischen Untergrundes des Norddeutschen Beckens (Projekt TUNB): Erstveröffentlichung 2021, Version 2022, https://gst.bgr.de (last access: 15 June 2022), 2021, Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB (last access: 27 June 2022), General terms and conditions, see https://www.bgr.bund.de/AGB_en (last access: 27 June 2022), 2021.
Cazes, M., Torreilles, G., Bois, C., Damotte, B., Galdeano, A., Hirn, A.,
Mascle, A., Matte, P., van Ngoc, P., and Raoult, J. F.: Structure de la
croute hercynienne du Nord de la France; premiers resultats du profil ECORS,
B. Soc. Geol. Fr., 8, 925–941,
https://doi.org/10.2113/gssgfbull.I.6.925, 1985.
Conder, J.: focalmech James Conder, focalmech (fm, centerX, centerY,
diam, varargin), MATLAB Central File Exchange [code], https://de.mathworks.com/matlabcentral/fileexchange/61227-focalmech-fm-centerx-centery-diam-varargin, last access: 27 June 2022.
Cornet, F. H. and Röckel, T.: Vertical stress profiles and the
significance of “stress decoupling”, Tectonophysics, 581, 193–205,
https://doi.org/10.1016/j.tecto.2012.01.020, 2012.
Drews, M. C., Seithel, R., Savvatis, A., Kohl, T., and Stollhofen, H.: A
normal-faulting stress regime in the Bavarian Foreland Molasse Basin? New
evidence from detailed analysis of leak-off and formation integrity tests in
the greater Munich area, SE-Germany, Tectonophysics, 755, 1–9,
https://doi.org/10.1016/j.tecto.2019.02.011, 2019.
Drews, M., Bauer, W., and Stollhofen, H.: Porenüberdruck im Bayrischen
Molassebecken, Overpressure in the Bavarian Molasse Basin, Erdöl-Erdgas-Kohle, 12, 308–310, https://doi.org/10.19225/180703, 2018.
Drozdzewski, G. and Dölling, M.: Elemente der Osning-Störungszone
(NW-Deutschland): Leitstrukturen einer Blattverschiebungszone, scriptum
online, 2018.
Duin, E. J. T., Doornenbal, J. C., Rijkers, R. H. B., Verbeek, J. W., and Wong,
T. E.: Subsurface structure of the Netherlands – results of recent onshore
and offshore mapping, Neth. J. Geosci., 85, 245–276,
https://doi.org/10.1017/S0016774600023064, 2006.
Evans, K. F., Zappone, A., Kraft, T., Deichmann, N., and Moia, F.: A survey
of the induced seismic responses to fluid injection in geothermal and CO2
reservoirs in Europe, Geothermics, 41, 30–54,
https://doi.org/10.1016/j.geothermics.2011.08.002, 2012.
Ferrill, D. A., Morris, A. P., McGinnis, R. N., Smart, K. J., Wigginton, S.
S., and Hill, N. J.: Mechanical stratigraphy and normal faulting, J.
Struct. Geol., 94, 275–302, https://doi.org/10.1016/j.jsg.2016.11.010,
2017.
Ferrill, D. A., Smart, K. J., and Morris, A. P.: Resolved stress analysis, failure mode, and fault-controlled fluid conduits, Solid Earth, 11, 899–908, https://doi.org/10.5194/se-11-899-2020, 2020.
Franzke, H.-J. and Wetzel, H.-U.: Geologische Interpretation eines ERS-1
Radarmosaiks von Deutschland, Publikationen der Deutschen Gesellschaft
für Photogrammetrie und Fernerkundung, 10, 503–510, https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_228436 (last access: 15 June 2022), 2001.
Franke, W., Bortfeld, R. K., Brix, M., Drozdzewski, G., Dürbaum, H. J.,
Giese, P., Janoth, W., Jödicke, H., Reichert, C., Scherp, A., Schmoll,
J., Thomas, R., Thünker, M., Weber, K., Wiesner, M. G., and Wong, H. K.:
Crustal structure of the Rhenish Massif: results of deep seismic reflection
lines Dekorp 2-North and 2-North-Q, Geol. Rundsch., 79, 523–566,
https://doi.org/10.1007/BF01879201, 1990.
Geißler, V., Gauer, A., and Görne, S.: Innovative digitale Geomodelle 2020 – Teil 1 Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie,, Dresden, 2014, https://publikationen.sachsen.de/bdb/artikel/22475, (last access 15 June 2022), 2014.
Geluk, M. C., Duin, E. J. T., Dusar, M., Rijkers, R. H. B., van den Berg, M. W.,
and van Rooijen, P.: Stratigraphy and tectonics of the Roer Valley Graben,
Geologie en Mijnbouw, 73, 129–141, 1994.
GeoMol Team: GeoMol – Assessing subsurface potentials of the Alpine
Foreland Basins for sustainable planning and use of natural resources –
Project Report, LfU, 192 pp., 2015.
GeORG-Projektteam: Geopotentiale des tieferen Untergrundes im
Oberrheingraben: Fachlich-Technischer Abschlussbericht des INTERREG-Projekts
GeORG, Teil 4, Freiburg i. Br., 104 pp., 2013.
German Research Centre For Geosciences: Seismicity in Germany in global
context,
https://www.gfz-potsdam.de/en/section/seismic-hazard-and-risk-dynamics/topics/where-in-germany-does-the-earth-quake/seismicity-in-germany-in-global-context,
last access: 11 May 2022.
Grünthal, G. and Minkley, W.: Bergbauinduzierte seismische Aktivität
als Quelle seismischer Belastungen – Zur Notwendigkeit der Ergänzung der
Karte der Erdbebenzonen der DIN 4149: 2005-04, Bautechnik, 82, 508–513,
https://doi.org/10.1002/bate.200590167, 2005.
Grünthal, G. and Wahlström, R.: The European-Mediterranean
Earthquake Catalogue (EMEC) for the last millennium, J. Seismol., 16,
535–570, https://doi.org/10.1007/s10950-012-9302-y, 2012.
Grzempowski, P., Badura, J., Cacoń, S., Kaplon, J., Rohm, W., and
Przybylski, B.: Geodynamics of south-eastern part of the Central European
Subsidence Zone, Acta Geodyn. Geomater., 9, 359–369, 2012.
Haines, S., Marone, C., and Saffer, D.: Frictional properties of low-angle
normal fault gouges and implications for low-angle normal fault slip, Earth Planet. Sci. Lett., 408, 57–65,
https://doi.org/10.1016/j.epsl.2014.09.034, 2014.
Healy, D. and Hicks, S. P.: De-risking the energy transition by quantifying the uncertainties in fault stability, Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, 2022.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Team: World Stress Map Database Release 2016 v1.1, GFZ Data Services [data set], https://doi.org/10.5880/WSM.2016.001, 2016.
Heidbach, O., Ziegler, M., and Stromeyer, D.: Manual of the Tecplot 360
Add-on GeoStress v2.0, World Stress Map Technical Report, 20-02, 62 pp., https://doi.org/10.2312/wsm.2020.001, 2020.
Henk, A.: Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland),
Geol. Rundsch., 82, 3–19, https://doi.org/10.1007/BF00563266, 1993.
Homuth, B., Rümpker, G., Deckert, H., and Kracht, M.: Seismicity of the
northern Upper Rhine Graben – Constraints on the present-day stress field
from focal mechanisms, Tectonophysics, 632, 8–20,
https://doi.org/10.1016/j.tecto.2014.05.037, 2014.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. W.: Fundamentals of rock
mechanics, 4 edn., Blackwell Publishing, Malden, MA, 475 pp., ISBN: 978-0-632-05759-7, 2011.
Kachlík, V.: The evidence for late Variscan nappe thrusting of the
Marianske Lazne Complex over the Saxothuringian terrane (west Bohemia),
Journal of the Czech Geological Society, 38, 43–58, 1993.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Konon, A.: Strike-slip faulting in the Kielce Unit, Holy Cross Mountains,
central Poland, Acta Geol. Pol., 57, 415–441, 2007.
Lee, J. B. and Chang, C.: Slip tendency of Quaternary faults in southeast
Korea under current state of stress, Geosci. J., 13, 353–361,
https://doi.org/10.1007/s12303-009-0033-1, 2009.
Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S. (Eds.): Dynamics of
complex intracontinental basins: The Central European Basin System,
Springer, Berlin Heidelberg, https://doi.org/10.1007/978-3-540-85085-4, 2008.
McFarland, J. M., Morris, A. P., and Ferrill, D. A.: Stress inversion using
slip tendency, Comput. Geosci., 41, 40–46,
https://doi.org/10.1016/j.cageo.2011.08.004, 2012.
Meschede, M. and Warr, L. N.: The Geology of Germany, Springer, 304 pp., https://doi.org/10.1007/978-3-319-76102-2, 2019.
Moeck, I., Kwiatek, G., and Zimmermann, G.: Slip tendency analysis, fault
reactivation potential and induced seismicity in a deep geothermal
reservoir, J. Struct. Geol., 31, 1174–1182,
https://doi.org/10.1016/j.jsg.2009.06.012, 2009.
Morawietz, S. and Reiter, K.: Stress Magnitude Database Germany v1.0, GFZ
Data Services [data set], https://doi.org/10.5880/wsm.2020.004, 2020.
Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M., Rajabi, M.,
Zimmermann, G., Müller, B., and Tingay, M.: An open-access stress
magnitude database for Germany and adjacent regions, Geothermal Energy, 8, 25, https://doi.org/10.1186/s40517-020-00178-5, 2020.
Morris, A., Ferrill, D. A., and Henderson, D. B.: Slip-tendency analysis and
fault reactivation, Geology, 24, 275,
https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2, 1996.
Morris, A. P., Hennings, P. H., Horne, E. A., and Smye, K. M.: Stability of
basement-rooted faults in the Delaware Basin of Texas and New Mexico, USA,
J. Struct. Geol., 149, 104360,
https://doi.org/10.1016/j.jsg.2021.104360, 2021.
Müller, B., Scheffzük, C., Schilling, F., Westerhaus, M., Zippelt,
K., Wampach, M., Röckel, T., Lempp, C., and Schöner, A.:
Reservoir-management and seismicity: Strategies to reduce induced seismicity
= Reservoir-Managemant und Seismizität Strategien zur Verringerung der
induzierten Seismizität, Als Manuskript gedruckt, DGMK-research report,
776, DGMK e.V, Hamburg, 88 p., ISBN: 978-3-947716-09-8, 2020.
Müller, M., Nieberding, F., and Wanninger, A.: Tectonic style and
pressure distribution at the northern margin of the Alps between Lake
Constance and the River Inn, Geol. Rundsch., 77, 787–796,
https://doi.org/10.1007/BF01830185, 1988.
Narkiewicz, M., Maksym, A., Malinowski, M., Grad, M., Guterch, A., Petecki,
Z., Probulski, J., Janik, T., Majdański, M., Środa, P., Czuba, W.,
Gaczyński, E., and Jankowski, L.: Transcurrent nature of the
Teisseyre–Tornquist Zone in Central Europe: results of the POLCRUST-01 deep
reflection seismic profile, Int. J. Earth. Sci., 104, 775–796,
https://doi.org/10.1007/s00531-014-1116-4, 2015.
Neves, M. C., Paiva, L. T., and Luis, J.: Software for slip-tendency
analysis in 3D: A plug-in for Coulomb, Comput. Geosci., 35,
2345–2352, https://doi.org/10.1016/j.cageo.2009.03.008, 2009.
Numelin, T., Marone, C., and Kirby, E.: Frictional properties of natural
fault gouge from a low-angle normal fault, Panamint Valley, California,
Tectonics, 26, TC2004, https://doi.org/10.1029/2005TC001916, 2007.
Peters, G.: Active tectonics in the Upper Rhine Graben: Integration of
paleoseismology, geomorphology and geomechanical modeling, Zugl.: Amsterdam,
Vrije Univ., Diss, 2007, Logos-Verl., Berlin, 270 pp., 2007.
Pfiffner, O. A.: Thick-skinned and thin-skinned tectonics: A global
perspective, Geosciences, 7, 71, https://doi.org/10.3390/geosciences7030071, 2017.
Porpaczy, C.: Tectonic Evolution of the Budějovice Basin (Czech
Republic), with special focus on the Hluboká-Fault, Master thesis at Universität Wien, https://doi.org/10.25365/THESIS.16892, 2011.
Quinteros, J., Strollo, A., Evans, P. L., Hanka, W., Heinloo, A., Hemmleb,
S., Hillmann, L., Jaeckel, K.-H., Kind, R., Saul, J., Zieke, T., and
Tilmann, F.: The GEOFON Program in 2020, Seismol. Res. Lett., 92,
1610–1622, https://doi.org/10.1785/0220200415, 2021.
Reinecker, J. and Schneider, G.: Zur Neotektonik der Zollernalb: Der
Hohenzollerngraben und die Albstadt-Erdbeben, Jahresberichte und
Mitteilungen des Oberrheinischen Geologischen Vereins, 84, 391–417,
https://doi.org/10.1127/jmogv/84/2002/391, 2002.
Reinecker, J., Tingay, M., Müller, B., and Heidbach, O.: Present-day
stress orientation in the Molasse Basin, Tectonophysics, 482, 129–138,
https://doi.org/10.1016/j.tecto.2009.07.021, 2010.
Reinhold, K.: Tiefenlage der “Kristallin-Oberfläche” in Deutschland –
Abschlussbericht, Bundesanstalt für Geowissenschaften und Rohstoffe,
Hannover, 89 pp., 2005.
Ribbert, K.-H. and Wrede, V.: Stratigrafische und tektonische Ergebnisse der
Grundgebirgsbohrungen im Umfeld des Braunkohle-Tagebaus Hambach, in: Der
tiefere Untergrund der Niederrheinischen Bucht: Ergebnisse eines
Tiefbohrprogramms im Rheinischen Braunkohlenrevier, edited by: Geologischer
Dienst Krefeld, Obermann GmbH & Co KG, Krefeld, 33–66, 2005.
Röckel, T. and Lempp, C.: Der Spannungszustand im Norddeutschen Becken,
Erdöl-Erdgas-Kohle, 119, 73–80, 2003.
Röckel, L., Müller, B. I. R., Ahlers, S., Reiter, K., Hergert, T., Henk, A., Heidbach, O., and Schilling, F.: 3D fault sets of Germany and adjacent areas, KITopen [data set], https://doi.org/10.5445/IR/1000143465, 2022.
Suchi, E., Dittmann, J., Knopf, S., Müller, C., and Schulz, R.: Geothermie-Atlas zur
Darstellung möglicher Nutzungskonkurrenzen zwischen CCS und Tiefer
Geothermie, report, 439–453, 2013.
Schwarz, M. and Henk, A.: Evolution and structure of the Upper Rhine Graben:
insights from three-dimensional thermomechanical modelling, Geol. Rundsch.,
94, 732–750, https://doi.org/10.1007/s00531-004-0451-2, 2005.
Seithel, R., Steiner, U., Müller, B., Hecht, C., and Kohl, T.: Local
stress anomaly in the Bavarian Molasse Basin, Geotherm Energy, 3, 5,
https://doi.org/10.1186/s40517-014-0023-z, 2015.
Sibson, R. H.: Frictional constraints on thrust, wrench and normal faults,
Nature, 249, 542–544, https://doi.org/10.1038/249542a0, 1974.
Sibson, R. H.: A note on fault reactivation, J. Struct. Geol.,
7, 751–754, https://doi.org/10.1016/0191-8141(85)90150-6, 1985.
Stober, I. and Bucher, K.: Potentielle Umweltauswirkungen bei der Tiefen
Geothermie, in: Geothermie, 3 edn., 2020, edited by: Stober, I. and Bucher,
K., Springer Berlin Heidelberg, Berlin, Heidelberg, 243–274,
https://doi.org/10.1007/978-3-662-60940-8_11, 2020.
Suchi, E., Dittmann, J., Knopf, S., Müller, C., and Schulz, R.:
Geothermal Atlas to visualise potential conflicts of interest between CO2
storage (CCS) and deep geothermal energy in Germany, Z. Dtsch. Ges. Geowiss., 165, 439–453,
https://doi.org/10.1127/1860-1804/2014/0070, 2014.
Vadacca, L., Rossi, D., Scotti, A., and Buttinelli, M.: Slip Tendency
Analysis, Fault Reactivation Potential and Induced Seismicity in the Val
d'Agri Oilfield (Italy), J. Geophys. Res., 126, e2019JB019185, https://doi.org/10.1029/2019JB019185, 2021.
Valenta, J., Stejskal, V., and Stepancikova, P.: Tectonic pattern of the
Hronov-Porici trough as seen from pole-dipole geoelectrical measurements,
Acta Geodyn. Geomater., 5, 185–195, https://www.researchgate.net/publication/259746058_Tectonic_pattern_of_the_Hronov-Porici_trough_as_seen_from_pole-dipole_geoelectrical_measurements (last access: 17 June 2022), 2008.
van Hoorn, B.: Structural evolution, timing and tectonic style of the Sole
Pit inversion, Tectonophysics, 137, 239–284,
https://doi.org/10.1016/0040-1951(87)90322-2, 1987.
van Wees, J.-D., Stephenson, R. A., Ziegler, P. A., Bayer, U., McCann, T.,
Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F., and Scheck, M.: On the
origin of the Southern Permian Basin, Central Europe, Marine and Petroleum
Geology, 17, 43–59, https://doi.org/10.1016/S0264-8172(99)00052-5, 2000.
Walter, R.: Geologie von Mitteleuropa, 7 edn., Schweizerbart, Stuttgart, 511 pp., ISBN: 9783510654451, 2007.
Wells, D. L. and Coppersmith, K. J.: New Empirical Relationships among
Magnitude, Rupture Length, Rupture width, Rupture Area, and Surface
Displacement, B. Seismol. Soc. Am., 84, 974–1002,
1994.
Worum, G., van Wees, J.-D., Bada, G., van Balen, R. T., Cloetingh, S., and
Pagnier, H.: Slip tendency analysis as a tool to constrain fault
reactivation: A numerical approach applied to three-dimensional fault models
in the Roer Valley rift system (southeast Netherlands), J. Geophys. Res.-Sol. Ea., 109, 233,
https://doi.org/10.1029/2003JB002586, 2004.
Yukutake, Y., Takeda, T., and Yoshida, A.: The applicability of frictional
reactivation theory to active faults in Japan based on slip tendency
analysis, Earth Planet. Sc. Lett., 411, 188–198,
https://doi.org/10.1016/j.epsl.2014.12.005, 2015.
Zoback, M. D. and Healy, J. H.: Friction, faulting, and “in situ” stress,
Int. J. Rock Mech. Min., 22, 119,
https://doi.org/10.1016/0148-9062(85)93053-0, 1985.
Zoback, M. D. and Healy, J. H.: In situ stress measurements to 3.5 km depth
in the Cajon Pass Scientific Research Borehole: Implications for the
mechanics of crustal faulting, J. Geophys. Res., 97, 5039,
https://doi.org/10.1029/91JB02175, 1992.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7256 KB) - Full-text XML
- Corrigendum
-
Supplement
(2089 KB) - BibTeX
- EndNote
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations....