Articles | Volume 13, issue 10
https://doi.org/10.5194/se-13-1541-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1541-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Common-mode signals and vertical velocities in the greater Alpine area from GNSS data
Francesco Pintori
CORRESPONDING AUTHOR
Osservatorio
Nazionale Terremoti, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, 00143, Italy
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, 40128,
Italy
Enrico Serpelloni
Osservatorio
Nazionale Terremoti, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, 00143, Italy
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, 40128,
Italy
Adriano Gualandi
Osservatorio
Nazionale Terremoti, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, 00143, Italy
Related authors
No articles found.
Lauro Chiaraluce, Richard Bennett, David Mencin, Wade Johnson, Massimiliano Rinaldo Barchi, Marco Bohnhoff, Paola Baccheschi, Antonio Caracausi, Carlo Calamita, Adriano Cavaliere, Adriano Gualandi, Eugenio Mandler, Maria Teresa Mariucci, Leonardo Martelli, Simone Marzorati, Paola Montone, Debora Pantaleo, Stefano Pucci, Enrico Serpelloni, Mariano Supino, Salvatore Stramondo, Catherine Hanagan, Liz Van Boskirk, Mike Gottlieb, Glen Mattioli, Marco Urbani, Francesco Mirabella, Assel Akimbekova, Simona Pierdominici, Thomas Wiersberg, Chris Marone, Luca Palmieri, and Luca Schenato
Sci. Dril., 33, 173–190, https://doi.org/10.5194/sd-33-173-2024, https://doi.org/10.5194/sd-33-173-2024, 2024
Short summary
Short summary
We built six observatory stations in central Italy to monitor a fault potentially capable of generating a strong earthquake. Each site has 80–160 m deep wells equipped with strainmeters and seismometers. At the surface, we placed GNSS antennas and seismic and meteorological sensors. All data, which are open access for the scientific community, will help us to better understand the complex physical and chemical processes that lead to the generation of the full range of slow and fast earthquakes.
Cited articles
Anderlini, L., Serpelloni, E., Tolomei, C., De Martini, P. M., Pezzo, G., Gualandi, A., and Spada, G.: New insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocities, Solid Earth, 11, 1681–1698, https://doi.org/10.5194/se-11-1681-2020, 2020.
Beck, I., Ludwig, R., Bernier, M., Strozzi, T., and Boike, J.: Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry, Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, 2015.
Bevis, M. and Brown, A.: Trajectory models and reference frames for crustal
motion geodesy, J. Geodesy, 88, 283–311,
https://doi.org/10.1007/s00190-013-0685-5, 2014.
Blewitt, G., Hammond, W., and Kreemer, C.: Harnessing the GPS data explosion
for interdisciplinary science, EOS, 99,
https://doi.org/10.1029/2018EO104623, 2018.
Bogusz, J. and Klos, A.: On the significance of periodic signals in noise
analysis of GPS station coordinates time series, GPS Solut., 20,
655–664, https://doi.org/10.1007/s10291-015-0478-9, 2016.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.: Fast
error analysis of continuous GNSS observations with missing data, J. Geodesy,
87, 351–360, https://doi.org/10.1007/s00190-012-0605-0, 2013.
Boy, J.-P.: Displacements due to hydrological and atmospheric loading, EOST [data set], http://loading.u-strasbg.fr/, last access: 1 December 2021.
Brunetti, M., Maugeri, M., Nanni, T., Auer, I., Böhm, R., and
Schöner, W.: Precipitation variability and changes in the greater Alpine
region over the 1800–2003 period, J. Geophys. Res., 111, D11107,
https://doi.org/10.1029/2005JD006674, 2006.
Capodaglio, P., Naldi, M., and Simonetto, F.: Hydrogeological
characterization throughout deep geophysical investigations in the
Verrès plain (Aosta Valley, north-western Italian Alps), Acque Sott.,
6, 35–45, https://doi.org/10.7343/as-2017-262, 2017.
Chanard, K., Métois, M., Rebischung, P., and Avouac, J. P.: A warning
against over-interpretation of seasonal signals measured by the Global
Navigation Satellite System, Nat. Commun. Mar., 13, 1375,
https://doi.org/10.1038/s41467-020-15100-7, 2020.
Chery, J., Genti, M., and Vernant, P.: Ice cap melting and low-viscosity
crustal root explain the narrow geodetic uplift of the Western Alps,
Geophys. Res. Lett., 43, 3193–3200,
https://doi.org/10.1002/2016GL067821, 2016.
Ching, K.-E., Hsieh, M.-L., Johnson, K. M., Chen, K.-H., Rau, R.-J., and
Yang, M.: Modern vertical deformation rates and mountain building in Taiwan
from precise leveling and continuous GPS observations, 2000–2008, J. Geophys. Res., 116, B08406, https://doi.org/10.1029/2011JB008242,
2011.
Choudrey, R. A.: Variational Methods for Bayesian Independent Component
Analysis. Pattern analysis and machine learning – robotics research group, PhD thesis,
University of Oxford, 2002.
Choudrey, R. A. and Roberts, S. J.: Variational mixture of Bayesian
independent component analyzers, Neural Comput., 15, 213–252,
https://doi.org/10.1162/089976603321043766, 2003.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets, J. Geophys. Res.-Atmos., 123, 9391–9409,
https://doi.org/10.1029/2017JD028200, 2018.
Dal Zilio, L., Hetényi, G., Hubbard, J., and Bollinger, L: Building the
Himalaya from tectonic to earthquake scales, Nat. Rev. Earth
Environ., 2, 251–268, https://doi.org/10.1038/s43017-021-00143-1, 2021.
Dill, R.: Hydrological model LSDM for operational Earth rotation and gravity
field variations, Deutsches GeoForschungsZentrum GFZ [data set],
https://doi.org/10.2312/gfz.b103-08095, 2008.
Dill, R. and Dobslaw, H.: Numerical simulations of global-scale
high-resolution hydrological crustal deformations, J. Geophys. Res.-Sol.
Ea., 118, 5008–5017, https://doi.org/10.1002/jgrb.50353, 2013.
Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., and
Jamason, P.: Spatiotemporal filtering using principal component analysis and
Karhunen-Loeve expansion approaches for regional GPS network analysis, J.
Geophys. Res., 111, B03405, https://doi.org/10.1029/2005JB003806, 2006.
E-OBS: Daily mean temperature, ECA&D [data set], https://www.ecad.eu/download/ensembles/download.php, last access: 21 December 2020.
Faccenna, C., Becker, T. W., Miller, M. S., Serpelloni, E., and Willett, S.
D.: Isostasy, dynamic topography, and the elevation of the Apennines of
Italy, Earth Planet. Sc. Lett., 407, 163–174,
https://doi.org/10.1016/j.epsl.2014.09.027, 2014a.
Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P.,
Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo,
C., Royden, L., Rossetti, F., and Serpelloni, E.: Mantle dynamics in the
Mediterranean, Rev. Geophys., 52, 283–332,
https://doi.org/10.1002/2013RG000444, 2014b.
Faranda, D., Sato, Y., Saint-Michel, B., Wiertel, C., Padilla, V., Dubrulle,
B., and Daviaud, F.: Stochastic chaos in a turbulent swirling flow, Phys.
Rev. Lett., 119, 014502, https://doi.org/10.1103/PhysRevLett.119.014502,
2017.
Fu, Y. and Freymueller, J. T.: Seasonal and long-term vertical deformation
in the Nepal Himalaya constrained by GPS and GRACE measurements, J. Geophys.
Res., 117, B03407, https://doi.org/10.1029/2011JB008925, 2012.
Fu, Y., Freymueller, J. T., and Jensen, T.: Seasonal hydrological loading in
southern Alaska observed by GPS and GRACE, Geophys. Res. Lett., 39, L15310,
https://doi.org/10.1029/2012GL052453, 2012.
Gegout, P., Boy, J. P., Hinderer, J., and Ferhat, G.: Modeling and
Observation of Loading Contribution to Time-Variable GPS Sites Positions, in
Gravity, Geoid and Earth Observation: IAG Commission 2: Gravity Field,
Chania, Crete, Greece, 23–27 June 2008, Vol. 135, edited by: Mertikas, S. P.,
651–659, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-10634-7_86, 2010.
Ghasemi Khalkhali, S. A., Ardalan, A., and Karimi, R.: A time series
analysis of permanent GNSS stations in the northwest network of Iran, Ann.
Geophys.-Italy, 64, GD218, https://doi.org/10.4401/ag-8450, 2021.
Gualandi, A. and Liu, Z.: Variational bayesian independent component
analysis for insar displacement time-series with application to central
california, USA, J. Geophys. Res.-Sol. Ea., 126, e2020JB020845,
https://doi.org/10.1029/2020JB020845, 2021.
Gualandi, A. and Pintori, F.: vbICA code, Mendeley [code], https://doi.org/10.17632/n92vwbg8zt.1, 2020.
Gualandi, A., Serpelloni, E., and Belardinelli, M. E.: Blind source
separation problem in GPS time series, J. Geodesy, 90, 323–341,
https://doi.org/10.1007/s00190-015-0875-4, 2016.
Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L.,
Latorre, D., Belardinelli, M. E., and Avouac, J. P.: Aseismic deformation
associated with an earthquake swarm in the northern Apennines (Italy),
Geophys. Res. Lett., 44, 7706–7714,
https://doi.org/10.1002/2017GL073687, 2017a.
Gualandi, A., Perfettini, H., Radiguet, M., Cotte, N., and Kostoglodov, V.:
GPS deformation related to the M 7.3, 2014, Papanoa earthquake (Mexico)
reveals the aseismic behavior of the Guerrero seismic gap, Geophys. Res.
Lett., 44, 6039–6047, https://doi.org/10.1002/2017GL072913, 2017b.
He, M., Shen, W., Pan, Y., Chen, R., Ding, H., and Guo, G.: Temporal-Spatial
Surface Seasonal Mass Changes and Vertical Crustal Deformation in South
China Block from GPS and GRACE Measurements, Sensors, 18, 99,
https://doi.org/10.3390/s18010099, 2017.
He, X., Yu, K., Montillet, J.-P., Xiong, C., Lu, T., Zhou, S., Ma, X., Cui,
H., and Ming, F.: GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series
Noise Reduction Software, Remote Sens. (Basel), 12, 3532,
https://doi.org/10.3390/rs12213532, 2020.
Henrion, E., Masson, F., Doubre, C., Ulrich, P., and Meghraoui, M.:
Present-day deformation in the Upper Rhine Graben from GNSS data,
Geophys. J. Int., 223, 599–611,
https://doi.org/10.1093/gji/ggaa320, 2020.
Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C.: Introduction
to GAMIT/GLOBK, Release 10.7, http://geoweb.mit.edu/gg/Intro_GG.pdf (last access: 1 September 2021), 2018.
Hou, Z., Guo, Z., and Du, J.: Analysis of the regional GNSS coordinate time
series by ICA-weighted spatio-temporal filtering, J. Earth Syst. Sci.,
128, 191, https://doi.org/10.1007/s12040-019-1214-6, 2019.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Jackson, T.:
GPM IMERG Final Precipitation L3 1 day 0.1 degree × 0.1 degree V06, edited
by: Savtchenko, A., Greenbelt, MD, Goddard Earth Sciences Data and
Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/GPM/IMERGDF/DAY/06, 2019.
Hyvärinen, A. and Oja, E.: A Fast Fixed-Point Algorithm for Independent
Component Analysis, Neural Comput., 9, 1483–1492,
https://doi.org/10.1162/neco.1997.9.7.1483, 1997.
Jiang, W., Ma, J., Li, Z., Zhou, X., and Zhou, B.: Effect of removing the
common mode errors on linear regression analysis of noise amplitudes in
position time series of a regional GPS network & a case study of GPS
stations in Southern California, Adv. Space Res., 61, 2521–2530,
https://doi.org/10.1016/j.asr.2018.02.031, 2018.
Klos, A., Olivares, G., Teferle, F. N., Hunegnaw, A., and Bogusz, J.: On the
combined effect of periodic signals and colored noise on velocity
uncertainties, GPS Solut., 22, 1,
https://doi.org/10.1007/s10291-017-0674-x, 2018.
Klos, A., Dobslaw, H., Dill, R., and Bogusz, J.: Identifying the sensitivity
of GPS to non-tidal loadings at various time resolutions: examining vertical
displacements from continental Eurasia, GPS Solut., 25, 89,
https://doi.org/10.1007/s10291-021-01135-w, 2021.
Kositsky, A. P. and Avouac, J. P.: Inverting geodetic time series with a
principal component analysis-based inversion method, J. Geophys. Res.,
115, B03401, https://doi.org/10.1029/2009JB006535, 2010.
Koulali, A. and Clarke, P. J.: Effect of antenna snow intrusion on vertical
GPS position time series in Antarctica, J. Geodesy, 94, 101,
https://doi.org/10.1007/s00190-020-01403-6, 2020.
Kreemer, C. and Blewitt, G.: Robust estimation of spatially varying
common-mode components in GPS time-series, J. Geodesy, 95, 13,
https://doi.org/10.1007/s00190-020-01466-5, 2021.
Kumar, U., Chao, B. F., and Chang, E. T. Y.: What causes the common-mode
error in array GPS displacement fields: case study for taiwan in relation to
atmospheric mass loading, Earth Space Sci., 7, e2020EA001159,
https://doi.org/10.1029/2020EA001159, 2020.
Larochelle, S., Gualandi, A., Chanard, K., and Avouac, J. P.: Identification
and extraction of seasonal geodetic signals due to surface load variations,
J. Geophys. Res.-Sol. Ea., 123., 11031–11047, https://doi.org/10.1029/2018JB016607, 2018.
Li, W., Li, F., Zhang, S., Lei, J., Zhang, Q., and Yuan, L.: Spatiotemporal
Filtering and Noise Analysis for Regional GNSS Network in Antarctica Using
Independent Component Analysis, Remote Sens (Basel), 11, 386,
https://doi.org/10.3390/rs11040386, 2019.
Lin, L. I.: A concordance correlation coefficient to evaluate
reproducibility, Biometrics, 45, 255–268,
https://doi.org/10.2307/2532051, 1989.
Liu, B., Dai, W., Peng, W., and Meng, X.: Spatiotemporal analysis of GPS time
series in vertical direction using independent component analysis, Earth
Planet. Sp., 67, 189, https://doi.org/10.1186/s40623-015-0357-1, 2015.
Liu, B., Dai, W., and Liu, N.: Extracting seasonal deformations of the Nepal
Himalaya region from vertical GPS position time series using Independent
Component Analysis, Adv. Space Res., 60, 2910–2917,
https://doi.org/10.1016/j.asr.2017.02.028, 2017.
Masson, C., Mazzotti, S., and Vernant, P.: Precision of continuous GPS velocities from statistical analysis of synthetic time series, Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, 2019.
Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M.,
Schildgen, T. F., and Strecker, M. R.: Glacial isostatic uplift of the
European Alps, Nat. Commun., 7, 13382,
https://doi.org/10.1038/ncomms13382, 2016.
Ming, F., Yang, Y., Zeng, A., and Zhao, B.: Spatiotemporal filtering for
regional GPS network in China using independent component analysis, J.
Geodesy, 91, 419–440, https://doi.org/10.1007/s00190-016-0973-y, 2017.
Morelli, A. and Barrier, E.: Geodynamic Map of the Mediterranean, coordinated by: Cadet, J.-P. and Funiciello, R., Commission for the Geological Map of the World, http://ccgm.org/en/maps/107-carte-geodynamique-de-la-mediterranee.html (last access: 27 September 2022), 2004.
NASA GES DISC: GPM IMERG Final Precipitation L3 1 day 0.1 degree × 0.1 degree (GPM_3IMERGDF), NASA GES DISC [data set], https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary, last access: 9 September 2020.
Nikolaidis, R.: Observation of geodetic and seismic deformation with the
Global Positioning System, PhD thesis, Univ. of Calif., San Diego, 2002.
Nocquet, J.-M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N.,
Vernant, P., Cushing, M., Jouanne, F., Masson, F., Baize, S., Chéry, J., and
van der Beek, P. A.: Present-day uplift of the western Alps, Sci.
Rep.-UK, 6, 28404, https://doi.org/10.1038/srep28404, 2016.
Palano, M., Pezzo, G., Serpelloni, E., Devoti, R., D'Agostino, N., Gandolfi,
S., Sparacino, F., Anderlini, L., Poluzzi, L., Tavasci, L., Macini, P.,
Pietrantonio, G., Riguzzi, F., Antoncecchi, I., Ciccone, F., Rossi, G.,
Avallone, A., and Selvaggi, G.: Geopositioning time series from offshore
platforms in the Adriatic Sea, Sci. Data, 7, 373,
https://doi.org/10.1038/s41597-020-00705-w, 2020.
Pan, Y., Chen, R., Ding, H., Xu, X., Zheng, G., Shen, W., Xiao, Y., and Li,
S.: Common Mode Component and Its Potential Effect on GPS-Inferred
Three-Dimensional Crustal Deformations in the Eastern Tibetan Plateau,
Remote Sens. (Basel), 11, 1975, https://doi.org/10.3390/rs11171975, 2019.
Pintori, F., Serpelloni, E., Longuevergne, L., Garcia, A., Faenza, L.,
D'Alberto, L., Gualandi, A., and Belardinelli, M. E.: Mechanical response of
shallow crust to groundwater storage variations: inferences from deformation
and seismic observations in the eastern southern alps, italy, J. Geophys.
Res.-Sol. Ea., 126, e2020JB020586, https://doi.org/10.1029/2020JB020586, 2021a.
Pintori, F., Serpelloni, E., and Gualandi, A.: Vertical displacement time series from GNSS stations in the great Alpine area, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.938422, 2021b.
Riddell, A. R., King, M. A., and Watson, C. S.: Present-day vertical land
motion of Australia from GPS observations and geophysical models, J.
Geophys. Res.-Sol. Ea., 125, e2019JB018034, https://doi.org/10.1029/2019JB018034, 2020.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Serpelloni, E., Faccenna, C., Spada, G., Dong, D., and Williams, S. D. P.:
Vertical GPS ground motion rates in the Euro-Mediterranean region: New
evidence of velocity gradients at different spatial scales along the
Nubia-Eurasia plate boundary, J. Geophys. Res.-Sol. Ea., 118,
6003–6024, https://doi.org/10.1002/2013JB010102, 2013.
Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R. A.: Kinematics,
seismotectonics and seismic potential of the eastern sector of the European
Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181,
https://doi.org/10.1016/j.tecto.2016.09.026, 2016.
Serpelloni, E., Pintori, F., Gualandi, A., Scoccimarro, E., Cavaliere, A.,
Anderlini, L., Belardinelli, M. E., and Todesco, M.: Hydrologically Induced
Karst Deformation: Insights From GPS Measurements in the Adria-Eurasia Plate
Boundary Zone, J. Geophys. Res.-Sol. Ea., 123, 4413–4430,
https://doi.org/10.1002/2017JB015252, 2018.
Serpelloni, E., Cavaliere, A., Martelli, L., Pintori, F., Anderlini, L., Borghi, A., Randazzo, D., Bruni, S., Devoti, R., Perfetti, P., and Cacciaguerra, S.: Surface velocities and strain-rates in the Euro-Mediterranean region from massive GPS data processing, Front. Earth Sci., 10, 1–21, https://doi.org/10.3389/feart.2022.907897, 2022.
Silverii, F., Pulvirenti, F., Montgomery-Brown, E. K., Borsa, A. A., and
Neely, W. R.: The 2011–2019 Long Valley Caldera inflation: New insights from
separation of superimposed geodetic signals and 3D modeling, Earth
Planet. Sc. Lett., 569, 117055,
https://doi.org/10.1016/j.epsl.2021.117055, 2021.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S.
D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit,
C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift
of the European Alps: Evaluating mechanisms and models of their relative
contributions, Earth-Sci. Rev., 190, 589–604,
https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Tan, W., Dong, D., and Chen, J.: Application of independent component
analysis to GPS position time series in Yunnan Province, southwest of China,
Adv. Space Res., 69, 4111–4122,
https://doi.org/10.1016/j.asr.2022.03.016, 2022.
Tape, C., Musé, P., Simons, M., Dong, D., and Webb, F.: Multiscale
estimation of GPS velocity fields, Geophys. J. Int., 179,
945–971, https://doi.org/10.1111/j.1365-246X.2009.04337.x, 2009.
Thomas, M., Dill, R., and Dobslaw, H.: Non-tidal Atmospheric Loading (CF) and Hydrological Loading (CF), GFZ [data set], http://rz-vm115.gfz-potsdam.de:8080/repository/entry/show?entryid=24aacdfe-f9b0-43b7-b4c4-bdbe51b6671b, 21 September 2021.
Tiampo, K. F., Rundle, J. B., Klein, W., Ben-Zion, Y., and McGinnis, S.:
Using eigenpattern analysis to constrain seasonal signals in southern
california, Pure Appl. Geophys., 161, 1991–2003,
https://doi.org/10.1007/s00024-004-2545-y, 2004.
Tian, Y. and Shen, Z.: Extracting the regional common-mode component of GPS
station position time series from dense continuous network, J. Geophys. Res.-Sol. Ea., 121, 1080–1096, https://doi.org/10.1002/2015JB012253, 2016.
van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., and Ray, J.: Nontidal
ocean loading: amplitudes and potential effects in GPS height time series,
J. Geodesy, 86, 1043–1057, https://doi.org/10.1007/s00190-012-0564-5,
2012.
Vicente-Serrano, S. M. and López-Moreno, J. I.: Nonstationary influence
of the North Atlantic Oscillation on European precipitation, J. Geophys.
Res., 113, D20120, https://doi.org/10.1029/2008JD010382, 2008.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., and Genrich, J.: Southern
California permanent GPS geodetic array: Spatial filtering of daily
positions for estimating coseismic and postseismic displacements induced by
the 1992 Landers earthquake, J. Geophys. Res., 102, 18057–18070,
https://doi.org/10.1029/97JB01378, 1997.
Yuan, P., Jiang, W., Wang, K., and Sneeuw, N.: Effects of spatiotemporal
filtering on the periodic signals and noise in the GPS position time series
of the crustal movement observation network of china, Remote Sens. (Basel),
10, 1472, https://doi.org/10.3390/rs10091472, 2018.
Zhang, K., Wang, Y., Gan, W., and Liang, S.: Impacts of local effects and
surface loads on the common mode error filtering in continuous GPS
measurements in the northwest of yunnan province, china, Sensors, 20, 5408,
https://doi.org/10.3390/s20185408, 2020.
Zhu, Z., Zhou, X., Deng, L., Wang, K., and Zhou, B.: Quantitative analysis of
geophysical sources of common mode component in CMONOC GPS coordinate time
series, Adv. Space Res., 60, 2896–2909,
https://doi.org/10.1016/j.asr.2017.05.002, 2017.
Short summary
We study time-varying vertical deformation signals in the European
Alps by analyzing GNSS position time series. We associate the deformation
signals to geophysical forcing processes, finding that atmospheric and
hydrological loading are by far the most important cause of seasonal
displacements. Recognizing and filtering out non-tectonic signals allows us
to improve the accuracy and precision of the vertical velocities.
We study time-varying vertical deformation signals in the European
Alps by analyzing GNSS...