Articles | Volume 13, issue 11
https://doi.org/10.5194/se-13-1721-2022
https://doi.org/10.5194/se-13-1721-2022
Method article
 | 
10 Nov 2022
Method article |  | 10 Nov 2022

A study on the effect of input data length on a deep-learning-based magnitude classifier

Megha Chakraborty, Wei Li, Johannes Faber, Georg Rümpker, Horst Stoecker, and Nishtha Srivastava

Related authors

Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence
Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, and Nishtha Srivastava
Solid Earth, 15, 197–213, https://doi.org/10.5194/se-15-197-2024,https://doi.org/10.5194/se-15-197-2024, 2024
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North Iceland
Fabian Kutschera, Alice-Agnes Gabriel, Sara Aniko Wirp, Bo Li, Thomas Ulrich, Claudia Abril, and Benedikt Halldórsson
Solid Earth, 15, 251–280, https://doi.org/10.5194/se-15-251-2024,https://doi.org/10.5194/se-15-251-2024, 2024
Short summary
Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence
Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, and Nishtha Srivastava
Solid Earth, 15, 197–213, https://doi.org/10.5194/se-15-197-2024,https://doi.org/10.5194/se-15-197-2024, 2024
Short summary
A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023,https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023,https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Towards real-time seismic monitoring of a geothermal plant using Distributed Acoustic Sensing
Jerome Azzola, Katja Thiemann, and Emmanuel Gaucher
EGUsphere, https://doi.org/10.5194/egusphere-2022-1417,https://doi.org/10.5194/egusphere-2022-1417, 2022
Preprint archived
Short summary

Cited articles

Allen, R., Gasparini, P., Kamigaichi, O., and Böse, M.: The Status of Earthquake Early Warning around the World: An Introductory Overview, Seismol. Res. Lett. 80, 682–693, https://doi.org/10.1785/gssrl.80.5.682, 2009. 
Allen, R. and Kanamori, H.: The Potential for Earthquake Early Warning in Southern California, Science, 300, 786–789, https://doi.org/10.1126/science.1080912, 2003. 
Allen, R. M. and Melgar, D.: Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs, Annu. Rev. Earth Planet Sc., 47, 361–388, https://doi.org/10.1146/annurev-earth-053018-060457, 2019. 
Aly, M.: Survey on multiclass classification methods, Neural Netw., 19, 1–9, 2005. 
Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data, SIGKDD Explorations Newsletter, 6, 20–29, https://doi.org/10.1145/1007730.1007735, 2004. 
Download
Short summary
Earthquake magnitude is a crucial parameter in defining its damage potential, and hence its speedy determination is essential to issue an early warning in regions close to the epicentre. This study summarises our findings in an attempt to apply deep-learning-based classifiers to earthquake waveforms, particularly with respect to finding an optimum length of input data. We conclude that the input length has no significant effect on the model accuracy, which varies between 90 %–94 %.