Articles | Volume 13, issue 11
https://doi.org/10.5194/se-13-1721-2022
https://doi.org/10.5194/se-13-1721-2022
Method article
 | 
10 Nov 2022
Method article |  | 10 Nov 2022

A study on the effect of input data length on a deep-learning-based magnitude classifier

Megha Chakraborty, Wei Li, Johannes Faber, Georg Rümpker, Horst Stoecker, and Nishtha Srivastava

Related authors

The impact of seismic noise produced by wind turbines on seismic borehole measurements
Fabian Limberger, Georg Rümpker, Michael Lindenfeld, and Hagen Deckert
EGUsphere, https://doi.org/10.5194/egusphere-2023-45,https://doi.org/10.5194/egusphere-2023-45, 2023
Short summary
Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde
Carola Leva, Georg Rümpker, and Ingo Wölbern
Solid Earth, 13, 1243–1258, https://doi.org/10.5194/se-13-1243-2022,https://doi.org/10.5194/se-13-1243-2022, 2022
Short summary
Seismic radiation from wind turbines: observations and analytical modeling of frequency-dependent amplitude decays
Fabian Limberger, Michael Lindenfeld, Hagen Deckert, and Georg Rümpker
Solid Earth, 12, 1851–1864, https://doi.org/10.5194/se-12-1851-2021,https://doi.org/10.5194/se-12-1851-2021, 2021
Short summary
Seismic gaps and intraplate seismicity around Rodrigues Ridge (Indian Ocean) from time domain array analysis
Manvendra Singh and Georg Rümpker
Solid Earth, 11, 2557–2568, https://doi.org/10.5194/se-11-2557-2020,https://doi.org/10.5194/se-11-2557-2020, 2020
Short summary
Remote monitoring of seismic swarms and the August 2016 seismic crisis of Brava, Cabo Verde, using array methods
Carola Leva, Georg Rümpker, and Ingo Wölbern
Nat. Hazards Earth Syst. Sci., 20, 3627–3638, https://doi.org/10.5194/nhess-20-3627-2020,https://doi.org/10.5194/nhess-20-3627-2020, 2020
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023,https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Towards real-time seismic monitoring of a geothermal plant using Distributed Acoustic Sensing
Jerome Azzola, Katja Thiemann, and Emmanuel Gaucher
EGUsphere, https://doi.org/10.5194/egusphere-2022-1417,https://doi.org/10.5194/egusphere-2022-1417, 2022
Short summary
Upper-lithospheric structure of northeastern Venezuela from joint inversion of surface-wave dispersion and receiver functions
Roberto Cabieces, Mariano S. Arnaiz-Rodríguez, Antonio Villaseñor, Elizabeth Berg, Andrés Olivar-Castaño, Sergi Ventosa, and Ana M. G. Ferreira
Solid Earth, 13, 1781–1801, https://doi.org/10.5194/se-13-1781-2022,https://doi.org/10.5194/se-13-1781-2022, 2022
Short summary
Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde
Carola Leva, Georg Rümpker, and Ingo Wölbern
Solid Earth, 13, 1243–1258, https://doi.org/10.5194/se-13-1243-2022,https://doi.org/10.5194/se-13-1243-2022, 2022
Short summary
Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022,https://doi.org/10.5194/se-13-705-2022, 2022
Short summary

Cited articles

Allen, R., Gasparini, P., Kamigaichi, O., and Böse, M.: The Status of Earthquake Early Warning around the World: An Introductory Overview, Seismol. Res. Lett. 80, 682–693, https://doi.org/10.1785/gssrl.80.5.682, 2009. 
Allen, R. and Kanamori, H.: The Potential for Earthquake Early Warning in Southern California, Science, 300, 786–789, https://doi.org/10.1126/science.1080912, 2003. 
Allen, R. M. and Melgar, D.: Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs, Annu. Rev. Earth Planet Sc., 47, 361–388, https://doi.org/10.1146/annurev-earth-053018-060457, 2019. 
Aly, M.: Survey on multiclass classification methods, Neural Netw., 19, 1–9, 2005. 
Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data, SIGKDD Explorations Newsletter, 6, 20–29, https://doi.org/10.1145/1007730.1007735, 2004. 
Download
Short summary
Earthquake magnitude is a crucial parameter in defining its damage potential, and hence its speedy determination is essential to issue an early warning in regions close to the epicentre. This study summarises our findings in an attempt to apply deep-learning-based classifiers to earthquake waveforms, particularly with respect to finding an optimum length of input data. We conclude that the input length has no significant effect on the model accuracy, which varies between 90 %–94 %.