Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-535-2022
https://doi.org/10.5194/se-13-535-2022
Research article
 | 
15 Mar 2022
Research article |  | 15 Mar 2022

The topographic signature of temperature-controlled rheological transitions in an accretionary prism

Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas

Related authors

Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022,https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021,https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif)
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018,https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling
L. Le Pourhiet, B. Huet, L. Labrousse, K. Yao, P. Agard, and L. Jolivet
Solid Earth, 4, 135–152, https://doi.org/10.5194/se-4-135-2013,https://doi.org/10.5194/se-4-135-2013, 2013

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Tectonics
Tectonic interactions during rift linkage: insights from analog and numerical experiments
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023,https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
Mousumi Roy
Solid Earth, 13, 1415–1430, https://doi.org/10.5194/se-13-1415-2022,https://doi.org/10.5194/se-13-1415-2022, 2022
Short summary
Numerical simulation of contemporary kinematics at the northeastern Tibetan Plateau and its implications for seismic hazard assessment
Liming Li, Xianrui Li, Fanyan Yang, Lili Pan, and Jingxiong Tian
Solid Earth, 13, 1371–1391, https://doi.org/10.5194/se-13-1371-2022,https://doi.org/10.5194/se-13-1371-2022, 2022
Short summary
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022,https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
3D crustal stress state of Germany according to a data-calibrated geomechanical model
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021,https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary

Cited articles

Barnes, P. M. and Nicol, A.: Formation of an active thrust triangle zone associated with structural inversion in a subduction setting, eastern New Zealand, Tectonics, 23, TC1015, https://doi.org/10.1029/2002TC001449, 2004. a
Beaumont, C., Fullsack, P., and Hamilton, J.: Erosional control of active compressional orogens, in: Thrust tectonics, edited by: McClay, K. R., 1–18, Chapman and Hall, New York, Springer, Dordrecht, https://doi.org/10.1007/978-94-011-3066-0_1, 1992. a
Bekins, B., McCaffrey, A. M., and Dreiss, S. J.: Influence of kinetics on the smectite to illite transition in the Barbados accretionary prism, J. Geophys. Res.-Sol. Ea., 99, 18147–18158, 1994. a, b
Bonnet, C., Malavieille, J., and Mosar, J.: Interactions between tectonics, erosion, and sedimentation during the recent evolution of the Alpine orogen: Analogue modeling insights, Tectonics, 26, TC6016, https://doi.org/10.1029/2006TC002048, 2007. a
Borderie, S., Graveleau, F., Witt, C., and Vendeville, B. C.: Impact of an interbedded viscous décollement on the structural and kinematic coupling in fold-and-thrust belts: Insights from analogue modeling, Tectonophysics, 722, 118–137, 2018. a
Download
Short summary
The local topographic slope of an accretionary prism is often used to determine the effective friction on subduction megathrust. We investigate how the brittle–ductile and the smectite–illite transitions affect the topographic slope of an accretionary prism and its internal deformation to provide clues to determine the origin of observed low topographic slopes in subduction zones. We finally discuss their implications in terms of the forearc basin and forearc high genesis and nature.