Braun, J. and Yamato, P.: Structural evolution of a three-dimensional,
finite-width crustal wedge, Tectonophysics, 484, 181–192, 2010. a
Buiter, S. J., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry, W.,
Le Pourhiet, L., Mishin, Y., Egholm, D. L., Cooke, M., Maillot B., Thieulot, C., Crook, T., May, D., Souloumiac, P., and Beaumont, C.: Benchmarking
numerical models of brittle thrust wedges, J. Struct. Geol., 92,
140–177, 2016.
a,
b,
c,
d
Burbidge, D. R. and Braun, J.: Numerical models of the evolution of
accretionary wedges and fold-and-thrust belts using the distinct-element
method, Geophys. J. Int., 148, 542–561, 2002.
a,
b
Byerlee, J.: Friction of rocks, in: Rock friction and earthquake prediction,
615–626, Springer, 1978. a
Chauhan, A. P., Singh, S. C., Hananto, N. D., Carton, H., Klingelhoefer, F.,
Dessa, J.-X., Permana, H., White, N., Graindorge, D., and SumatraOBS Scientific Team:
Seismic imaging of forearc backthrusts at northern Sumatra subduction zone,
Geophys. J. Int., 179, 1772–1780, 2009.
a,
b
Chen, C.-T., Chan, Y.-C., Lo, C.-H., Malavieille, J., Lu, C.-Y., Tang, J.-T.,
and Lee, Y.-H.: Basal accretion, a major mechanism for mountain building in
Taiwan revealed in rock thermal history, J. Asian Earth Sci.,
152, 80–90, 2018. a
Chlieh, M., Avouac, J.-P., Sieh, K., Natawidjaja, D. H., and Galetzka, J.:
Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and
paleogeodetic measurements, J. Geophys. Res.-Sol. Ea.,
113, B05305,
https://doi.org/10.1029/2007JB004981, 2008.
a,
b
Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., and Balé, P.:
Computerized X-ray tomography analysis of sandbox models: Examples of
thin-skinned thrust systems, Geology, 19, 1063–1067, 1991. a
Costa, E. and Vendeville, B.: Experimental insights on the geometry and
kinematics of fold-and-thrust belts above weak, viscous evaporitic
décollement, J. Struct. Geol., 24, 1729–1739, 2002. a
Cubas, N., Leroy, Y., and Maillot, B.: Prediction of thrusting sequences in
accretionary wedges, J. Geophys. Res.-Sol. Ea., 113, B12412,
https://doi.org/10.1029/2008JB005717, 2008.
a
Cubas, N., Avouac, J.-P., Souloumiac, P., and Leroy, Y.: Megathrust friction
determined from mechanical analysis of the forearc in the Maule earthquake
area, Earth Planet. Sc. Lett., 381, 92–103, 2013.
a,
b,
c,
d
Dahlen, F., Suppe, J., and Davis, D.: Mechanics of fold-and-thrust belts and
accretionary wedges: Cohesive Coulomb theory, J. Geophys.
Res.-Sol. Ea., 89, 10087–10101, 1984.
a,
b,
c
Davis, D., Suppe, J., and Dahlen, F.: Mechanics of fold-and-thrust belts and
accretionary wedges, J. Geophys. Res.-Sol. Ea., 88,
1153–1172, 1983.
a,
b,
c,
d
Fuller, C., Willett, S., Fisher, D., and Lu, C.: A thermomechanical wedge model
of Taiwan constrained by fission-track thermochronometry, Tectonophysics,
425, 1–24, 2006.
a,
b
Gao, X. and Wang, K.: Strength of stick-slip and creeping subduction
megathrusts from heat flow observations, Science, 345, 1038–1041, 2014.
a,
b
Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of
orogenic wedges: A review, Tectonophysics, 538, 1–66, 2012.
a,
b
Hyndman, R., Wang, K., and Yamano, M.: Thermal constraints on the seismogenic
portion of the southwestern Japan subduction thrust, J. Geophys.
Res.-Sol. Ea., 100, 15373–15392, 1995.
a,
b,
c
Jeffreys, H.: The Thermal Effects of Blanketing by Sediments, Geophys.
J. Int., 2, 323–329, 1931. a
Jourdon, A., Le Pourhiet, L., Petit, C., and Rolland, Y.: Impact of
range-parallel sediment transport on 2D thermo-mechanical models of mountain
belts: Application to the Kyrgyz Tien Shan, Terra Nova, 30, 279–288, 2018.
a,
b
Laigle, M., Becel, A., De Voogd, B., Sachpazi, M., Bayrakci, G., Lebrun, J.-F.,
Evain, M., Daignières, M., Gailler, A., Gesret, A., Hirn, A.,
Klaeschen, D., Kopp, H., Marthelot, J.-M., Mazabraux, Y., Roux, E., and Weinzierl, W.: Along-arc segmentation and interaction of subducting
ridges with the Lesser Antilles Subduction forearc crust revealed by MCS
imaging, Tectonophysics, 603, 32–54, 2013.
a,
b
Lanson, B., Sakharov, B. A., Claret, F., and Drits, V. A.: Diagenetic
smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray
diffraction results using the multi-specimen method, Am. J.
Sci., 309, 476–516, 2009.
a,
b
Lo, C.-H. and Onstott, T. C.: Rejuvenation of KAr systems for minerals in the
Taiwan Mountain Belt, Earth Planet. Sc. Lett., 131, 71–98, 1995. a
Mase, C. W. and Smith, L.: Pore-fluid pressures and frictional heating on a
fault surface, Pure Appl. Geophys., 122, 583–607, 1984. a
Mase, C. W. and Smith, L.: Effects of frictional heating on the thermal,
hydrologic, and mechanical response of a fault, J. Geophys.
Res.-Sol. Ea., 92, 6249–6272, 1987. a
May, D. A. and Le Pourhiet, L.: pTatin2d (
https://bitbucket.org/ptatin/ptatin2d/commits/991118fb4cdae93cf75859a9b1b96ba43e9bc999?at=restart, last access: 8 June 2021), Zenodo [code, data set],
https://doi.org/10.5281/zenodo.4911354, 2021.
a,
b
May, D. A., Brown, J., and Le Pourhiet, L.: pTatin3D: High-performance methods for long-term lithospheric dynamics, in: SC'14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, 274–284, IEEE, 2014. a
May, D. A., Brown, J., and Le Pourhiet, L.: A scalable, matrix-free multigrid
preconditioner for finite element discretizations of heterogeneous Stokes
flow, Comput. Method. Appl. M., 290, 496–523,
2015. a
Miyakawa, A., Yamada, Y., and Matsuoka, T.: Effect of increased shear stress
along a plate boundary fault on the formation of an out-of-sequence thrust
and a break in surface slope within an accretionary wedge, based on numerical
simulations, Tectonophysics, 484, 127–138, 2010. a
Moore, J. C. and Saffer, D.: Updip limit of the seismogenic zone beneath the
accretionary prism of southwest Japan: An effect of diagenetic to low-grade
metamorphic processes and increasing effective stress, Geology, 29, 183–186,
2001. a
Nieuwland, D., Leutscher, J., and Gast, J.: Wedge equilibrium in
fold-and-thrust belts: prediction of out-of-sequence thrusting based on
sandbox experiments and natural examples, Neth. J. Geosci.,
79, 81–91, 2000. a
Noda, A.: Forearc basins: Types, geometries, and relationships to subduction
zone dynamics, Bulletin, 128, 879–895, 2016.
a,
b
Oleskevich, D., Hyndman, R., and Wang, K.: The updip and downdip limits to
great subduction earthquakes: Thermal and structural models of Cascadia,
south Alaska, SW Japan, and Chile, J. Geophys. Res.-Sol.
Ea., 104, 14965–14991, 1999.
a,
b,
c,
d
Pajang, S., Cubas, N., Letouzey, J., Le Pourhiet, L., Seyedali, S., Fournier,
M., Agard, P., Khatib, M. M., Heyhat, M., and Mokhtari, M.: Seismic hazard of
the western Makran subduction zone: insight from mechanical modelling and
inferred frictional properties, Earth Planet. Sc. Lett., 562,
116789,
https://doi.org/10.1016/j.epsl.2021.116789, 2021a.
a,
b,
c
Pajang, S., Le Pourhiet, L., and Cubas, N.: The topographic signature of temperature controlled rheological transitions in accretionary prism, Zenodo [video],
https://doi.org/10.5281/zenodo.5599365, 2021b.
a
Perfettini, H., Avouac, J.-P., Tavera, H., Kositsky, A., Nocquet, J.-M.,
Bondoux, F., Chlieh, M., Sladen, A., Audin, L., Farber, D. L., and Soler, P.:
Seismic and aseismic slip on the Central Peru megathrust, Nature, 465,
78–81, 2010. a
Perron, P., Le Pourhiet, L., Guiraud, M., Vennin, E., Moretti, I., Portier,
É., and Konaté, M.: Control of inherited accreted lithospheric
heterogeneity on the architecture and the low, long-term subsidence rate of
intracratonic basins, BSGF-Earth Sciences Bulletin, 192, 15,
https://doi.org/10.1051/bsgf/2020038, 2021.
a
Pichot, T. and Nalpas, T.: Influence of synkinematic sedimentation in a thrust
system with two decollement levels; analogue modelling, Tectonophysics, 473,
466–475, 2009. a
Pytte, A. and Reynolds, R.: The thermal transformation of smectite to illite, in: Thermal History of Sedimentary Basins, edited by: Naeser, N. D. and
McCulloh, T. H., Springer, 133–140,
https://doi.org/10.1007/978-1-4612-3492-0_8, 1988.
a,
b
Raimbourg, H., Augier, R., Famin, V., Gadenne, L., Palazzin, G., Yamaguchi, A.,
and Kimura, G.: Long-term evolution of an accretionary prism: The case study
of the Shimanto Belt, Kyushu, Japan, Tectonics, 33, 936–959, 2014.
a,
b
Ruh, J. B.: Submarine landslides caused by seamounts entering accretionary
wedge systems, Terra Nova, 28, 163–170, 2016. a
Ruh, J. B.: Numerical modeling of tectonic underplating in accretionary wedge
systems, Geosphere, 16, 1385–1407, 2020.
a,
b
Ruh, J. B., Kaus, B. J., and Burg, J.-P.: Numerical investigation of
deformation mechanics in fold-and-thrust belts: Influence of rheology of
single and multiple décollements, Tectonics, 31, TC3005,
https://doi.org/10.1029/2011TC003047, 2012.
a,
b,
c,
d
Ruh, J. B., Gerya, T., and Burg, J.-P.: High-resolution 3D numerical modeling
of thrust wedges: Influence of décollement strength on transfer zones,
Geochem. Geophy. Geosy., 14, 1131–1155, 2013. a
Ruh, J. B., Gerya, T., and Burg, J.-P.: 3D effects of strain vs. velocity
weakening on deformation patterns in accretionary wedges, Tectonophysics,
615, 122–141, 2014.
a,
b
Ruh, J. B., Sallarès, V., Ranero, C. R., and Gerya, T.: Crustal deformation
dynamics and stress evolution during seamount subduction: High-resolution 3-D
numerical modeling, J. Geophys. Res.-Sol. Ea., 121,
6880–6902, 2016. a
Saffer, D. M. and Marone, C.: Comparison of smectite-and illite-rich gouge
frictional properties: application to the updip limit of the seismogenic zone
along subduction megathrusts, Earth Planet. Sc. Lett., 215,
219–235, 2003. a
Sibson, R.: Interactions between temperature and pore-fluid pressure during
earthquake faulting and a mechanism for partial or total stress relief,
Nature Physical Science, 243, 66–68, 1973. a
Silver, E. A. and Reed, D. L.: Backthrusting in accretionary wedges, J.
Geophys. Res.-Sol. Ea., 93, 3116–3126, 1988.
a,
b
Simpson, G.: Mechanics of non-critical fold–thrust belts based on finite
element models, Tectonophysics, 499, 142–155, 2011. a
Simpson, G.: Modelling interactions between fold–thrust belt deformation,
foreland flexure and surface mass transport, Basin Res., 18, 125–143,
2006. a
Simpson, M. J., Landman, K. A., and Hughes, B. D.: Cell invasion with
proliferation mechanisms motivated by time-lapse data, Physica A, 389, 3779–3790, 2010.
a,
b,
c
Singh, S. C., Hananto, N. D., Chauhan, A. P., Permana, H., Denolle, M.,
Hendriyana, A., and Natawidjaja, D.: Evidence of active backthrusting at the
NE Margin of Mentawai Islands, SW Sumatra, Geophys. J. Int.,
180, 703–714, 2010. a
Singh, S. C., Hananto, N., Mukti, M., Robinson, D. P., Das, S., Chauhan, A.,
Carton, H., Gratacos, B., Midnet, S., Djajadihardja, Y., and Harjono, H.: Aseismic
zone and earthquake segmentation associated with a deep subducted seamount in
Sumatra, Nat. Geosci., 4, 308–311, 2011. a
Smit, J., Brun, J., and Sokoutis, D.: Deformation of brittle-ductile thrust
wedges in experiments and nature, J. Geophys. Res.-Sol.
Ea., 108, 2480,
https://doi.org/10.1029/2002JB002190, 2003.
a,
b
Song, T.-R. A. and Simons, M.: Large trench-parallel gravity variations predict
seismogenic behavior in subduction zones, Science, 301, 630–633, 2003.
a,
b,
c,
d
Stockmal, G. S., Beaumont, C., Nguyen, M., Lee, B., and Sears, J.: Mechanics of
thin-skinned fold-and-thrust belts: Insights from numerical models, Geol. S. Am. S., 433, 63,
https://doi.org/10.1130/2007.2433(04), 2007.
a
Storti, F. and McClay, K.: Influence of syntectonic sedimentation on thrust
wedges in analogue models, Geology, 23, 999–1002, 1995.
a,
b,
c
Suppe, J.: Mechanics of mountain building and metamorphism in Taiwan,
Mem. Geol. Soc. China, 4, 67–89, 1981. a
Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage, Leipzig u. Wien, Franz Deuticke,
399 pp.,
1925. a
Verati, C., Lardeaux, J.-M., Favier, A., Corsini, M., Philippon, M., and
Legendre, L.: Arc-related metamorphism in the Guadeloupe archipelago (Lesser
Antilles active island arc): First report and consequences, Lithos, 320,
592–598, 2018. a
Vrolijk, P.: On the mechanical role of smectite in subduction zones, Geology,
18, 703–707, 1990. a
Wangen, M.: The blanketing effect in sedimentary basins, Basin Res., 7,
283–298, 1994. a
Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., and Dinterman,
P. A.: Basin-centered asperities in great subduction zone earthquakes: A link
between slip, subsidence, and subduction erosion?, J. Geophys.
Res.-Sol. Ea., 108, 2507,
https://doi.org/10.1029/2002JB002072, 2003.
a,
b,
c,
d
Willett, S. D.: Rheological dependence of extension in wedge models of
convergent orogens, Tectonophysics, 305, 419–435, 1999. a