Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-779-2022
https://doi.org/10.5194/se-13-779-2022
Research article
 | 
01 Apr 2022
Research article |  | 01 Apr 2022

Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation

Nadaya Cubas, Philippe Agard, and Roxane Tissandier

Related authors

The topographic signature of temperature-controlled rheological transitions in an accretionary prism
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022,https://doi.org/10.5194/se-13-535-2022, 2022
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Selective inversion of rift basins in lithospheric-scale analogue experiments
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023,https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023,https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023,https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023,https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023,https://doi.org/10.5194/se-14-369-2023, 2023
Short summary

Cited articles

Adam, J. and Reuther, C.-D.: Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc, Tectonophysics, 321, 297–325, 2000. a, b
Agard, P., Plunder, A., Angiboust, S., Bonnet, G., and Ruh, J.: The subduction plate interface: rock record and mechanical coupling (from long to short timescales), Lithos, 320, 537–566, 2018. a, b, c, d, e, f, g, h, i
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, Boulder, Coloorado U.S., Deptartment of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, https://purl.fdlp.gov/GPO/gpo441 (last access: 15 February 2017), 2009. a
Bangs, N. L., Morgan, J., Tréhu, A., Contreras-Reyes, E., Arnulf, A., Han, S., Olsen, K., and Zhang, E.: Basal accretion along the south central Chilean margin and its relationship to great earthquakes, J. Geophys. Res.-Sol. Ea., 125, e2020JB019861, https://doi.org/10.1029/2020JB019861, 2020. a, b
Bassett, D. and Watts, A. B.: Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior, Geochem. Geophy. Geosy., 16, 1541–1576, 2015. a
Download
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.