Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-779-2022
https://doi.org/10.5194/se-13-779-2022
Research article
 | 
01 Apr 2022
Research article |  | 01 Apr 2022

Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation

Nadaya Cubas, Philippe Agard, and Roxane Tissandier

Related authors

The topographic signature of temperature-controlled rheological transitions in an accretionary prism
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022,https://doi.org/10.5194/se-13-535-2022, 2022
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023,https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023,https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Analogue modelling of basin inversion: a review and future perspectives
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022,https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Insights into the interaction of a shale with CO2
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022,https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Magnetic Fabric Analyses of Basin Inversion: A Sandbox Modelling Approach
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
EGUsphere, https://doi.org/10.5194/egusphere-2022-1258,https://doi.org/10.5194/egusphere-2022-1258, 2022
Short summary

Cited articles

Adam, J. and Reuther, C.-D.: Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc, Tectonophysics, 321, 297–325, 2000. a, b
Agard, P., Plunder, A., Angiboust, S., Bonnet, G., and Ruh, J.: The subduction plate interface: rock record and mechanical coupling (from long to short timescales), Lithos, 320, 537–566, 2018. a, b, c, d, e, f, g, h, i
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, Boulder, Coloorado U.S., Deptartment of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, https://purl.fdlp.gov/GPO/gpo441 (last access: 15 February 2017), 2009. a
Bangs, N. L., Morgan, J., Tréhu, A., Contreras-Reyes, E., Arnulf, A., Han, S., Olsen, K., and Zhang, E.: Basal accretion along the south central Chilean margin and its relationship to great earthquakes, J. Geophys. Res.-Sol. Ea., 125, e2020JB019861, https://doi.org/10.1029/2020JB019861, 2020. a, b
Bassett, D. and Watts, A. B.: Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior, Geochem. Geophy. Geosy., 16, 1541–1576, 2015. a
Download
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.