Articles | Volume 14, issue 7
https://doi.org/10.5194/se-14-683-2023
https://doi.org/10.5194/se-14-683-2023
Research article
 | 
11 Jul 2023
Research article |  | 11 Jul 2023

The effect of temperature-dependent material properties on simple thermal models of subduction zones

Iris van Zelst, Cedric Thieulot, and Timothy J. Craig

Related authors

101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022,https://doi.org/10.5194/se-13-583-2022, 2022
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024,https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
The influence of viscous slab rheology on numerical models of subduction
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024,https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Statistical appraisal of geothermal heat flow observations in the Arctic
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024,https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Thrusts control the thermal maturity of accreted sediments
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024,https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone
Mengxue Liu, Dinghui Yang, and Rui Qi
Solid Earth, 14, 1155–1168, https://doi.org/10.5194/se-14-1155-2023,https://doi.org/10.5194/se-14-1155-2023, 2023
Short summary

Cited articles

Abers, G., van Keken, P., and Hacker, B.: The cold and relatively dry nature of mantle forearcs in subduction zones, Nat. Geosci., 10, 333–337, 2017. a, b
Abers, G. A.: Hydrated subducted crust at 100–250 km depth, Earth Planet. Sc. Lett., 176, 323–330, 2000. a
Abers, G. A., van Keken, P. E., Kneller, E. A., Ferris, A., and Stachnik, J. C.: The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow, Earth Planet. Sc. Lett., 241, 387–397, 2006. a, b
Arcay, D.: Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting, Phys. Earth Planet. In., 269, 112–132, 2017. a
Beall, A., Fagereng, Å., Davies, J. H., Garel, F., and Davies, D. R.: Influence of subduction zone dynamics on interface shear stress and potential relationship with seismogenic behavior, Geochem. Geophy., Geosy., 22, e09267, https://doi.org/10.1029/2020GC009267, 2021. a
Download
Short summary
A common simplification in subduction zone models is the use of constant thermal parameters, while experiments have shown that they vary with temperature. We test various formulations of temperature-dependent thermal parameters and show that they change the thermal structure of the subducting slab. We recommend that modelling studies of the thermal structure of subduction zones take the temperature dependence of thermal parameters into account, especially when providing insights into seismicity.