Articles | Volume 7, issue 4
https://doi.org/10.5194/se-7-1109-2016
https://doi.org/10.5194/se-7-1109-2016
Method article
 | 
19 Jul 2016
Method article |  | 19 Jul 2016

Simulating stress-dependent fluid flow in a fractured core sample using real-time X-ray CT data

Tobias Kling, Da Huo, Jens-Oliver Schwarz, Frieder Enzmann, Sally Benson, and Philipp Blum

Related authors

Partial melting in polycrystalline ice: Pathways identified in 3D neutron tomographic images
Christopher Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas Hunter
EGUsphere, https://doi.org/10.5194/egusphere-2023-70,https://doi.org/10.5194/egusphere-2023-70, 2023
Short summary
RHEA v1.0: Enabling fully coupled simulations with hydro-geomechanical heterogeneity
José M. Bastías Espejo​​​​​​​, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021,https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Mechanical and hydraulic properties of the excavation damaged zone (EDZ) in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland
Sina Hale, Xavier Ries, David Jaeggi, and Philipp Blum
Solid Earth, 12, 1581–1600, https://doi.org/10.5194/se-12-1581-2021,https://doi.org/10.5194/se-12-1581-2021, 2021
Short summary
Groundwater fauna in an urban area – natural or affected?
Fabien Koch, Kathrin Menberg, Svenja Schweikert, Cornelia Spengler, Hans Jürgen Hahn, and Philipp Blum
Hydrol. Earth Syst. Sci., 25, 3053–3070, https://doi.org/10.5194/hess-25-3053-2021,https://doi.org/10.5194/hess-25-3053-2021, 2021
Short summary
Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021,https://doi.org/10.5194/se-12-1-2021, 2021
Short summary

Related subject area

Mineral and rock physics
Development of multi field rock resistivity test system for THMC
Jianwei Ren, Lei Song, Qirui Wang, Haipeng Li, Junqi Fan, Jianhua Yue, and Honglei Shen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1118,https://doi.org/10.5194/egusphere-2022-1118, 2022
Short summary
Raman spectroscopy in thrust-stacked carbonates: an investigation of spectral parameters with implications for temperature calculations in strained samples
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022,https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary
Reconstructing post-Jurassic overburden in central Europe: new insights from mudstone compaction and thermal history analyses of the Franconian Alb, SE Germany
Simon Freitag, Michael Drews, Wolfgang Bauer, Florian Duschl, David Misch, and Harald Stollhofen
Solid Earth, 13, 1003–1026, https://doi.org/10.5194/se-13-1003-2022,https://doi.org/10.5194/se-13-1003-2022, 2022
Short summary
Failure mode transition in Opalinus Clay: a hydro-mechanical and microstructural perspective
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022,https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Thermal equation of state of the main minerals of eclogite: Constraining the density evolution of eclogite during the delamination process in Tibet
Zhilin Ye, Dawei Fan, Bo Li, Qizhe Tang, Jingui Xu, Dongzhou Zhang, and Wenge Zhou
Solid Earth, 13, 745–759, https://doi.org/10.5194/se-13-745-2022,https://doi.org/10.5194/se-13-745-2022, 2022
Short summary

Cited articles

Akin, S. and Kovscek, A. R.: Computed tomography in petroleum engineering research, Geological Society, London, Special Publications, 215, 23–38, https://doi.org/10.1144/gsl.sp.2003.215.01.03, 2003.
Al-Yaarubi, A. H., Pain, C. C., Grattoni, C. A., and Zimmerman, R. W.: Navier-Stokes simulations of fluid flow through a rock fracture, in: Proceedings of the 2nd International Symposium on Dynamics of Fluids and Transport in Fractured Rock, edited by: Faybishenko, B. and Witherspoon, P. A., American Geophysical Union, 201–205, 2005.
Bernabe, Y.: The effective pressure law for permeability in Chelmsford granite and Barre granite, Int. J. Rock Mech. Min., 23, 267–275, https://doi.org/10.1016/0148-9062(86)90972-1, 1986.
Bertels, S. P., DiCarlo, D. A., and Blunt, M. J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning, Water Resour. Res., 37, 649–662, https://doi.org/10.1029/2000wr900316, 2001.
Boussinesq, J.: Mémoire sur l'influence des Frottements dans les Mouvements Réguliers des Fluids, Journal de Mathématiques Pures et Appliquées, 2, 377–424, 1868.
Download
Short summary
A method is introduced to implement medical CT data of a fractured sandstone under varying confining pressures into fluid flow simulations to reproduce experimental permeabilities. The simulation results reproduce plausible fracture flow features (e.g. flow channeling, fracture closing/opening) and approximate the actual permeabilities, which are affected by the CT resolution and compositional matrix heterogeneities. Additionally, some recommendations are presented concerning future studies.