Articles | Volume 7, issue 4
https://doi.org/10.5194/se-7-1109-2016
https://doi.org/10.5194/se-7-1109-2016
Method article
 | 
19 Jul 2016
Method article |  | 19 Jul 2016

Simulating stress-dependent fluid flow in a fractured core sample using real-time X-ray CT data

Tobias Kling, Da Huo, Jens-Oliver Schwarz, Frieder Enzmann, Sally Benson, and Philipp Blum

Related authors

Laboratory heat transport experiments reveal grain size and flow velocity dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949,https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary
Temporal shift of groundwater fauna in South-West Germany
Fabien Koch, Philipp Blum, Heide Stein, Andreas Fuchs, Hans Jürgen Hahn, and Kathrin Menberg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-29,https://doi.org/10.5194/hess-2024-29, 2024
Revised manuscript accepted for HESS
Short summary
Investigating rough single-fracture permeabilities with persistent homology
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024,https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024,https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023,https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary

Related subject area

Mineral and rock physics
Using internal standards in time-resolved X-ray micro-computed tomography to quantify grain-scale developments in solid-state mineral reactions
Roberto Emanuele Rizzo, Damien Freitas, James Gilgannon, Sohan Seth, Ian B. Butler, Gina Elizabeth McGill, and Florian Fusseis
Solid Earth, 15, 493–512, https://doi.org/10.5194/se-15-493-2024,https://doi.org/10.5194/se-15-493-2024, 2024
Short summary
Investigating rough single-fracture permeabilities with persistent homology
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024,https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Quartz under stress: Raman calibration and applications of metamorphic inclusions to geobarometry
Bruno Reynard and Xin Zhong
Solid Earth, 14, 591–602, https://doi.org/10.5194/se-14-591-2023,https://doi.org/10.5194/se-14-591-2023, 2023
Short summary
Development of multi-field rock resistivity test system for THMC
Jianwei Ren, Lei Song, Qirui Wang, Haipeng Li, Junqi Fan, Jianhua Yue, and Honglei Shen
Solid Earth, 14, 261–270, https://doi.org/10.5194/se-14-261-2023,https://doi.org/10.5194/se-14-261-2023, 2023
Short summary
Raman spectroscopy in thrust-stacked carbonates: an investigation of spectral parameters with implications for temperature calculations in strained samples
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022,https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary

Cited articles

Akin, S. and Kovscek, A. R.: Computed tomography in petroleum engineering research, Geological Society, London, Special Publications, 215, 23–38, https://doi.org/10.1144/gsl.sp.2003.215.01.03, 2003.
Al-Yaarubi, A. H., Pain, C. C., Grattoni, C. A., and Zimmerman, R. W.: Navier-Stokes simulations of fluid flow through a rock fracture, in: Proceedings of the 2nd International Symposium on Dynamics of Fluids and Transport in Fractured Rock, edited by: Faybishenko, B. and Witherspoon, P. A., American Geophysical Union, 201–205, 2005.
Bernabe, Y.: The effective pressure law for permeability in Chelmsford granite and Barre granite, Int. J. Rock Mech. Min., 23, 267–275, https://doi.org/10.1016/0148-9062(86)90972-1, 1986.
Bertels, S. P., DiCarlo, D. A., and Blunt, M. J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning, Water Resour. Res., 37, 649–662, https://doi.org/10.1029/2000wr900316, 2001.
Boussinesq, J.: Mémoire sur l'influence des Frottements dans les Mouvements Réguliers des Fluids, Journal de Mathématiques Pures et Appliquées, 2, 377–424, 1868.
Download
Short summary
A method is introduced to implement medical CT data of a fractured sandstone under varying confining pressures into fluid flow simulations to reproduce experimental permeabilities. The simulation results reproduce plausible fracture flow features (e.g. flow channeling, fracture closing/opening) and approximate the actual permeabilities, which are affected by the CT resolution and compositional matrix heterogeneities. Additionally, some recommendations are presented concerning future studies.