Articles | Volume 8, issue 3
https://doi.org/10.5194/se-8-697-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-8-697-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador) in February 2014: pyroclastic deposits and hazard considerations
Jorge Eduardo Romero
Departamento de Geología, Universidad de Atacama, Copiapó, Chile
Guilhem Amin Douillet
CORRESPONDING AUTHOR
Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
Silvia Vallejo Vargas
Instituto Geofísico, Escuela Politécnica Nacional, Quito, Ecuador
Jorge Bustillos
Escuela de Geología, Facultad de Geología, Minas, Petróleos y Ambiental (FIGEMPA), Universidad Central del Ecuador, Quito, Ecuador
Liliana Troncoso
Escuela de Geología, Facultad de Geología, Minas, Petróleos y Ambiental (FIGEMPA), Universidad Central del Ecuador, Quito, Ecuador
Juan Díaz Alvarado
Departamento de Geología, Universidad de Atacama, Copiapó, Chile
Patricio Ramón
Instituto Geofísico, Escuela Politécnica Nacional, Quito, Ecuador
Related authors
No articles found.
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Cited articles
Arellano, S., Hall, M., Samaniego, P., Le Pennec, J.-L., Ruiz, A., Molina, I., and Yepes, H.: Degassing patterns of Tungurahua volcano (Ecuador) during the 1999–2006 eruptive period, inferred from remote spectroscopic measurements of SO2 emissions, J. Volcanol. Geoth. Res., 176, 151–162, 2008.
Bernard, B., Bustillos, J., Wade, B., and Hidalgo, S.: Influence of the wind direction variability on the quantification of tephra fallouts: December 2012 and March 2013 Tungurahua eruptions, Avances, 5, A14–A21, 2013.
Bernard, J., Kelfoun, K., Le Pennec, J.-L., and Vargas, S. V.: Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador, B. Volcanol., 76, 1–16, 2014.
Bernard, J., Eychenne, J., Le Pennec, J.-L., and Narváez, D.: Mass budget partitioning during explosive eruptions: insights from the 2006 paroxysm of Tungurahua volcano, Ecuador, Geochem. Geophy. Geosy., 17, 3224–3240, 2016.
Biass, S., Bagheri, G., Aeberhard, W., and Bonadonna, C.: TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits, Statistics in Volcanology, 1, 1–27, 2014.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, 2001.
Bonadonna, C. and Costa, A.: Estimating the volume of tephra deposits: a new simple strategy, Geology, G32769, https://doi.org/10.1130/G32769.1, 2012.
Bonadonna, C. and Houghton, B.: Total grain-size distribution and volume of tephra-fall deposits, B. Volcanol., 67, 441–456, 2005.
Brown, R. J. and Andrews, G.: Deposits Of Pyroclastic Density Currents, in: The encyclopedia of volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., chap. 35, 631–648, Elsevier, Academic Press, San Diego, CA, USA, 2015.
Bustillos, J.: Transition de style éruptif au cours des éruptions andésitiques en système ouvert: apport de l'étude des cendres avec application au volcan Tungurahua (Equateur), MSc. Thesis, Université Nice Sophia Antipolis, Nice, France, 2010.
Bustillos, J., Romero, J., and Guerrero, G.: New field data on the Guagua Pichincha (Ecuador) ∼ 900 AD Subplinian eruption and its eruptive parameters, Pyroclastic Flow, 4, 1–4, 2014.
Bustillos, J., Romero, J. E., and Troncoso, L.: Tephra fall at Tungurahua Volcano (Ecuador) – 1999–2014: An Example of Tephra Accumulation from a Long-lasting Eruptive Cycle, Geofís. Int., 55, 55–67, 2016.
Cas, R. and Wright, J.: Volcanic Successions, Modern and Ancient: A Geological Approach to Processes, Products and Successions, 528 pp., Allen & Unwin, London, UK, Chapman & Hall, Boston, USA, 1987.
Champenois, J., Pinel, V., Baize, S., Audin, L., Jomard, H., Hooper, A., Alvarado, A., and Yepes, H.: Large-scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry, Geophys. Res. Lett., 41, 5821–5828, 2014.
Cioni, R., Pistolesi, M., and Rosi, M.: Plinian and Subplinian eruptions, in: The encyclopedia of volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., chap. 29, 519–536, Elsevier, Academic Press, San Diego, CA, USA, 2015.
Clarke, A., Ongaro, T., and Belousov, A.: Vulcanian eruptions, in: The encyclopedia of volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., S., chap. 28, 505–518, Elsevier, Academic Press, San Diego, CA, USA, 2015.
Cole, P., Stinton, A., Odbert, H., Bonadonna, C., and Stewart, R.: An inclined Vulcanian explosion and associated products, J. Geol. Soc., 172, 287–293, 2015.
Crowe, B. M. and Fisher, R. V.: Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubehebe Craters, Death Valley, California, Geol. Soc. Am. Bull., 84, 663–682, 1973.
Douillet, G. A., Pacheco, D. A., Kueppers, U., Letort, J., Tsang-Hin-Sun, È., Bustillos, J., Hall, M., Ramón, P., and Dingwell, D. B.: Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador, B. Volcanol., 75, 1–20, 2013a.
Douillet, G. A., Tsang-Hin-Sun, È., Kueppers, U., Letort, J., Pacheco, D. A., Goldstein, F., Von Aulock, F., Lavallée, Y., Hanson, J. B., Bustillos, J., Robin, C., Ramón, P., Hall, M., and Dingwell, D. B.: Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador, B. Volcanol., 75, 1–21, 2013b.
Engwell, S., Sparks, R., and Aspinall, W.: Quantifying uncertainties in the measurement of tephra fall thickness, J. Appl. Volcanol., 2, 5, https://doi.org/10.1186/2191-5040-2-5, 2013.
Eychenne, J., Le Pennec, J.-L., Troncoso, L., Gouhier, M., and Nedelec, J.-M.: Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador), B. Volcanol., 74, 187–205, 2012.
Eychenne, J., Le Pennec, J.-L., Ramón, P., and Yepes, H.: Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador), Earth Planet. Sci. Lett., 361, 343–355, 2013.
Fierstein, J. and Nathenson, M.: Another look at the calculation of fallout tephra volumes, B. Volcanol., 54, 156–167, 1992.
Folk, R. L. and Ward, W. C.: Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Res., 27, 3–26, 1957.
Hall, M. L., Robin, C., Beate, B., Mothes, P., and Monzier, M.: Tungurahua Volcano, Ecuador: structure, eruptive history and hazards, J. Volcanol. Geoth. Res., 91, 1–21, 1999.
Hall, M. L., Steele, A. L., Mothes, P. A., and Ruiz, M. C.: Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: Geophysical registry and characteristics, J. Volcanol. Geoth. Res., 265, 78–93, 2013.
Hall, M. L., Steele, A. L., Bernard, B., Mothes, P. A., Vallejo, S. X., Douillet, G. A., Ramón, P. A., Aguaiza, S. X., and Ruiz, M. C.: Sequential plug formation, disintegration by Vulcanian explosions, and the generation of granular Pyroclastic Density Currents at Tungurahua volcano (2013–2014), Ecuador, J. Volcanol. Geoth. Res., 306, 90–103, 2015.
Hidalgo, S., Battaglia, J., Arellano, S., Steele, A., Bernard, B., Bourquin, J., Galle, B., Arrais, S., and Vásconez, F.: SO2 degassing at Tungurahua volcano (Ecuador) between 2007 and 2013: transition from continuous to episodic activity, J. Volcanol. Geoth. Res., 298, 1–14, 2015.
Inman, D. L.: Measures for describing the size distribution of sediments, J. Sediment. Res., 22, 125–145, 1952.
Instituto Geofísico, E. P. N.: Informe especial del volcán Tungurahua no. 01, available at: http://www.igepn.edu.ec/, last access: 9 February 2014a.
Instituto Geofísico, E. P. N.: Informe especial del volcán Tungurahua no. 02, available at: http://www.igepn.edu.ec/, last access: 9 February 2014b.
Instituto Geofísico, E. P. N.: Informe especial del volcán Tungurahua no. 04, available at: http://www.igepn.edu.ec/, last access: 9 February 2014c.
Instituto Geofísico, E. P. N.: Informe especial del volcán Tungurahua no. 05, http://www.igepn.edu.ec/, last access: 9 February 2014d.
Jaya, D.: El colapso del volcán Tungurahua en el Holoceno Superior: Análisis de estabilidad y dinamismos explosivos asociados, PhD thesis, Tesis de grado, Escuela Politecnica Nacional, Quito, Ecuador, 2004.
Kelfoun, K., Samaniego, P., Palacios, P., and Barba, D.: Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador), B. Volcanol., 71, 1057–1075, 2009.
Klawonn, M., Houghton, B. F., Swanson, D. A., Fagents, S. A., Wessel, P., and Wolfe, C. J.: From field data to volumes: constraining uncertainties in pyroclastic eruption parameters, B. Volcanol., 76, 1–16, 2014.
Le Maitre, R., Bateman, P., Dudek, A., Keller, J., Lameyre, L., Sabine, P., Schmid, R., Sorensen, H., Streckeisen, A., Wooley, A., and Zanettin, B.: A classification of igneous rocks and glossary of terms, Recommendations of the IUGS Commission on the Systematics of Igneous Rocks, Blackwell Scientific Publications, Oxford, UK, 1989.
Le Pennec, J.-L., Jaya, D., Samaniego, P., Ramón, P., Yánez, S. M., Egred, J., and Van Der Plicht, J.: The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating, J. Volcanol. Geoth. Res., 176, 70–81, 2008.
Le Pennec, J.-L., Ruiz, G. A., Ramón, P., Palacios, E., Mothes, P., and Yepes, H.: Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador, J. Volcanol. Geoth. Res., 217, 91–103, 2012.
Maeno, F., Nakada, S., Nagai, M., and Kozono, T.: Ballistic ejecta and eruption condition of the vulcanian explosion of Shinmoedake volcano, Kyushu, Japan on 1 February, 2011, Earth Planets Space, 65, 609–621, 2013.
Morrissey, M. and Mastin, L.: Vulcanian eruptions, in: The encyclopedia of volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., 463–475, Elsevier, Academic Press, San Diego, CA, USA, 2000.
Murcia, H. F., Borrero, C. A., Pardo, N., Alvarado, G. E., Arnosio, M., and Scolamacchia, T.: Depósitos volcaniclásticos: Términos y conceptos para una clasificación en español, Revista Geológica de América Central, 48, 15–39, 2013.
Myers, M. L., Geist, D. J., Rowe, M. C., Harpp, K. S., Wallace, P. J., and Dufek, J.: Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano, B. Volcanol., 76, 1–17, 2014.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism, J. Geophys. Res.-Oceans, 87, 1231–1238, 1982.
Otto, G. H.: A modified logarithmic probability graph for the interpretation of mechanical analyses of sediments, J. Sediment. Res., 9, 62–76, https://doi.org/10.1306/D4269044-2B26-11D7-8648000102C1865D, 1939.
Palma, J.: Wind Reanalysis, available at: https://vhub.org/resources/windre (last access: 30 June 2015), 2013.
Parra, R., Bernard, B., Narváez, D., Le Pennec, J.-L., Hasselle, N., and Folch, A.: Eruption Source Parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: Insights from field data from the July 2013 eruption, . Volcanol. Geoth. Res., 309, 1–13, 2016.
Polacci, M.: Constraining the dynamics of volcanic eruptions by characterization of pumice textures, Ann. Geophys.-Italy, 48, 731–738, https://doi.org/10.4401/ag-3229, 2005.
Pyle, D. M.: The thickness, volume and grainsize of tephra fall deposits, B. Volcanol., 51, 1–15, 1989.
Pyle, D. M.: Sizes of volcanic eruptions, Encyclopedia of Volcanoes, 1, 263–269, 2000.
Pyle, D. M.: Assessment of the minimum volume of tephra fall deposits, J. Volcanol. Geoth. Res., 69, 379–382, 1995.
Rose, W., Self, S., Murrow, P., Bonadonna, C., Durant, A., and Ernst, G.: Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala, B. Volcanol., 70, 1043–1067, 2008.
Samaniego, P., Le Pennec, J., Barba, D., Hall, M., Robin, C., Mothes, P., Yepes, H., Troncoso, L., and Jaya, D.: Mapa de los peligros potenciales del volcán Tungurahua, Escale 1 : 50.000, 3rd version, Departamento de Geofísica de la Escuela Politécnica de Ecuador, Quito, Ecuador, 2008.
Samaniego, P., Le Pennec, J.-L., Robin, C., and Hidalgo, S.: Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador), J. Volcanol. Geoth. Res., 199, 69–84, 2011.
Shand, S. J.: Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore Deposits, with a Chapter on Meteorites, J. Geol., 56, 593–593, 1948.
Sparks, R. S. J., Bursik, M., Carey, S., Gilbert, J., Glaze, L., Sigurdsson, H., and Woods, A.: Volcanic plumes, Wiley, Chichester, UK, 1997.
Steffke, A. M., Fee, D., Garces, M., and Harris, A.: Eruption chronologies, plume heights and eruption styles at Tungurahua Volcano: Integrating remote sensing techniques and infrasound, J. Volcanol. Geoth. Res., 193, 143–160, 2010.
Troncoso, L., Le Pennec, J.-L., Jaya, D., Vallée, A., Mothes, P., and Arrais, S.: Depósitos de caída de ceniza producidos durante las erupciones del volcán Tungurahua, 14 de julio y 16 de agosto de 2006, in: Abstract book, 6tas Jornadas en Ciencias de la Tierra of the Escuela Politécnica Nacional, Escuela Politécnica Nacional, Quito, Ecuador, 2006.
Vallejo, S., Naranjo, F., Ramón, P., Yépez, H., Hidalgo, S., Anzieta, J., Bernard, B., Narváez, D., Mothes, P., and Douillet, G.: The vulcanian eruption of February 1st, 2014 at Tungurahua Volcano, Ecuador, in: Abstract book, Cities on Volcanoes 8, International Association of Volcanology and Chemistry of the Earth's Interior, Jogjakarta, Indonesia, 2014.
Walker, G. P.: Grain-size characteristics of pyroclastic deposits, J. Geol., 69, 696–714, 1971.
Wright, H. M., Cashman, K. V., Rosi, M., and Cioni, R.: Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador, B. Volcanol., 69, 281–300, 2007.
Zobin, V. M., Carrasco-Núñez, G., and Vargas-Gutiérrez, V. R.: Field and seismic evaluation of the block-and-ash flows emplaced from eruption columns of the 2005 Vulcanian explosions at Volcán de Colima, Mexico, B. Volcanol., 78, 1–9, 2016.
Short summary
The 1 February 2014 eruption of the Tungurahua volcano (Ecuador) was the second largest one since the re-awakening in 1999. The eruption showed precursory signs only 48 h before the eruption. The main explosions produced a 13 km eruptive column and pyroclastic density currents that reached the base of the volcano.
Here we document the deposits related to the eruption and infer eruption mechanisms and transport processes.
The 1 February 2014 eruption of the Tungurahua volcano (Ecuador) was the second largest one...