Articles | Volume 8, issue 4
https://doi.org/10.5194/se-8-751-2017
https://doi.org/10.5194/se-8-751-2017
Method article
 | 
10 Jul 2017
Method article |  | 10 Jul 2017

Microscale and nanoscale strain mapping techniques applied to creep of rocks

Alejandra Quintanilla-Terminel, Mark E. Zimmerman, Brian Evans, and David L. Kohlstedt

Related subject area

Mineral and rock physics
Using internal standards in time-resolved X-ray micro-computed tomography to quantify grain-scale developments in solid-state mineral reactions
Roberto Emanuele Rizzo, Damien Freitas, James Gilgannon, Sohan Seth, Ian B. Butler, Gina Elizabeth McGill, and Florian Fusseis
Solid Earth, 15, 493–512, https://doi.org/10.5194/se-15-493-2024,https://doi.org/10.5194/se-15-493-2024, 2024
Short summary
Investigating rough single-fracture permeabilities with persistent homology
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024,https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Quartz under stress: Raman calibration and applications of metamorphic inclusions to geobarometry
Bruno Reynard and Xin Zhong
Solid Earth, 14, 591–602, https://doi.org/10.5194/se-14-591-2023,https://doi.org/10.5194/se-14-591-2023, 2023
Short summary
Development of multi-field rock resistivity test system for THMC
Jianwei Ren, Lei Song, Qirui Wang, Haipeng Li, Junqi Fan, Jianhua Yue, and Honglei Shen
Solid Earth, 14, 261–270, https://doi.org/10.5194/se-14-261-2023,https://doi.org/10.5194/se-14-261-2023, 2023
Short summary
Raman spectroscopy in thrust-stacked carbonates: an investigation of spectral parameters with implications for temperature calculations in strained samples
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022,https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary

Cited articles

Allais, L., Bornert, M., Bretheau, T., and Caldemaison, D.: Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metallurgica et Materialia, 42, 3865–3880, https://doi.org/10.1016/0956-7151(94)90452-9, 1994.
Ashby, M. F.: A First Report on Deformation-Mechanism Maps, Acta Metallurgica, 20, 887–897, https://doi.org/10.1016/0001-6160(72)90082-X, 1972.
Biery, N., De Graef, M., and Pollock, T. M.: A Method for Measuring Microstructural-Scale Strains Using a Scanning Electron Microscope: Applications to γ-Titanium Aluminides, Metall. Mater. Trans. A, 34, 2301–2313, 2003.
Bornert, M., Brémand, F., Doumalin, P., Dupré, J.-C., Fazzini, M., Grédiac, M., Hild, F., Mistou, S., Molimard, J., Orteu, J.-J., Robert, L., Surrel, Y., Vacher, P., and Wattrisse, B.: Assessment of Digital Image Correlation Measurement Errors: Methodology and Results, Exp. Mech., 49, 353–370, https://doi.org/10.1007/s11340-008-9204-7, 2008.
Bourcier, M., Bornert, M., Dimanov, A., Héripré, E., and Raphanel, J. L.: Multiscale Experimental Investigation of Crystal Plasticity and Grain Boundary Sliding in Synthetic Halite Using Digital Image Correlation, J. Geophys. Res.-Solid Earth, 118, 511–526, 2013.
Download
Short summary
Modeling natural deformation requires a good understanding of how the microscale and mesoscale properties of rocks affect bulk deformation. However, describing strain accommodation at a range of scales during rock deformation is an experimental challenge. We developed a novel technique that allows us to map strain down to the microscale. This technique was successfully applied to high-pressure, high-temperature deformation experiments and could be applied to a wide variety of geomaterials.