Articles | Volume 9, issue 2
https://doi.org/10.5194/se-9-531-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-9-531-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A review of laboratory and numerical modelling in volcanology
Janine L. Kavanagh
CORRESPONDING AUTHOR
Department of Earth, Ocean and Ecological Sciences, University of
Liverpool, Liverpool L69 3GP, UK
Samantha L. Engwell
British Geological Survey, The Lyell Centre, Research Avenue South,
Edinburgh EH14 4AP, UK
Simon A. Martin
Department of Earth, Ocean and Ecological Sciences, University of
Liverpool, Liverpool L69 3GP, UK
Related authors
Annique van der Boon, Andrew J. Biggin, Greig A. Paterson, and Janine L. Kavanagh
Geosci. Commun., 5, 55–66, https://doi.org/10.5194/gc-5-55-2022, https://doi.org/10.5194/gc-5-55-2022, 2022
Short summary
Short summary
We present the Magnetic to the Core project, which communicated palaeomagnetism to members of the general public through hands-on experiments. The impact of the project was tested with an interactive quiz, which shows that this outreach event was successful in impacting visitors’ learning. We hope our Magnetic to the Core project can serve as an inspiration for other Earth science laboratories looking to engage a wide audience and measure the success and impact of their outreach activities.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Annique van der Boon, Andrew J. Biggin, Greig A. Paterson, and Janine L. Kavanagh
Geosci. Commun., 5, 55–66, https://doi.org/10.5194/gc-5-55-2022, https://doi.org/10.5194/gc-5-55-2022, 2022
Short summary
Short summary
We present the Magnetic to the Core project, which communicated palaeomagnetism to members of the general public through hands-on experiments. The impact of the project was tested with an interactive quiz, which shows that this outreach event was successful in impacting visitors’ learning. We hope our Magnetic to the Core project can serve as an inspiration for other Earth science laboratories looking to engage a wide audience and measure the success and impact of their outreach activities.
Related subject area
Volcanology
Lahar events in the last 2000 years from Vesuvius eruptions – Part 2: Formulation and validation of a computational model based on a shallow layer approach
Lahar events in the last 2000 years from Vesuvius eruptions – Part 3: Hazard assessment over the Campanian Plain
Lahar events in the last 2000 years from Vesuvius eruptions – Part 1: Distribution and impact on densely inhabited territory estimated from field data analysis
Impact of permeability evolution in igneous sills on hydrothermal flow and hydrocarbon transport in volcanic sedimentary basins
Anatomy of a high-silica eruption as observed by a local seismic network: the June 2011 Puyehue–Cordón Caulle event (southern Andes, Chile)
Transient conduit permeability controlled by a shift between compactant shear and dilatant rupture at Unzen volcano (Japan)
Physical and mechanical rock properties of a heterogeneous volcano: the case of Mount Unzen, Japan
Reproducing pyroclastic density current deposits of the 79 CE eruption of the Somma–Vesuvius volcano using the box-model approach
Analysing stress field conditions of the Colima Volcanic Complex (Mexico) by integrating finite-element modelling (FEM) simulations and geological data
Comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Cyclic activity of the Fuego de Colima volcano (Mexico): insights from satellite thermal data and nonlinear models
Extrusion dynamics of deepwater volcanoes revealed by 3-D seismic data
A revised map of volcanic units in the Oman ophiolite: insights into the architecture of an oceanic proto-arc volcanic sequence
On the link between Earth tides and volcanic degassing
Failure criteria for porous dome rocks and lavas: a study of Mt. Unzen, Japan
Integrating field, textural, and geochemical monitoring to track eruption triggers and dynamics: a case study from Piton de la Fournaise
Periodicity in the BrO∕SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015
Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy
Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador) in February 2014: pyroclastic deposits and hazard considerations
Inelastic compaction and permeability evolution in volcanic rock
Eruptive shearing of tube pumice: pure and simple
Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera
Repetitive fracturing during spine extrusion at Unzen volcano, Japan
Poroelastic responses of confined aquifers to subsurface strain and their use for volcano monitoring
Revisiting the statistical analysis of pyroclast density and porosity data
Volcanological aspects of the northwest region of Paraná continental flood basalts (Brazil)
Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica
BrO/SO2 molar ratios from scanning DOAS measurements in the NOVAC network
Morphology and surface features of olivine in kimberlite: implications for ascent processes
Seismogenic frictional melting in the magmatic column
The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model
New insights on the occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic Province, Brazil
The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling
Can vesicle size distributions assess eruption intensity during volcanic activity?
Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico
Bromine monoxide / sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006–2009
New developments in the analysis of column-collapse pyroclastic density currents through numerical simulations of multiphase flows
Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption
First observational evidence for the CO2-driven origin of Stromboli's major explosions
Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna
The stochastic quantization method and its application to the numerical simulation of volcanic conduit dynamics under random conditions
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Ole Rabbel, Jörg Hasenclever, Christophe Y. Galerne, Olivier Galland, Karen Mair, and Octavio Palma
Solid Earth, 14, 625–646, https://doi.org/10.5194/se-14-625-2023, https://doi.org/10.5194/se-14-625-2023, 2023
Short summary
Short summary
This work investigates the interaction between magma in the subsurface and the rocks and fluids that surround it. The study investigates how fluids containing hydrocarbons like methane are moving in the rocks surrounding the magma. We show that the generation of fractures in the cooling magma has a significant impact on the flow paths of the fluid and that some of the hydrocabons may be converted to graphite and stored in the fractures within the intrusions.
Daniel Basualto, Andrés Tassara, Jonathan Lazo-Gil, Luis Franco-Marin, Carlos Cardona, Juan San Martín, Fernando Gil-Cruz, Marcela Calabi-Floddy, and Cristian Farías
Solid Earth, 14, 69–87, https://doi.org/10.5194/se-14-69-2023, https://doi.org/10.5194/se-14-69-2023, 2023
Short summary
Short summary
Infrequent eruptions of acidic magma are one of the most dangerous natural phenomena, but almost none of them have been witnessed by modern science. We present the first systematic characterization of seismicity recorded near an erupting acidic volcano (Cordón Caulle 2011). We define different phases of unrest and eruption, which combined with previous findings allows us to discuss the main processes associated with this type of violent eruption, with implications for their volcanic hazard.
Yan Lavallée, Takahiro Miwa, James D. Ashworth, Paul A. Wallace, Jackie E. Kendrick, Rebecca Coats, Anthony Lamur, Adrian Hornby, Kai-Uwe Hess, Takeshi Matsushima, Setsuya Nakada, Hiroshi Shimizu, Bernhard Ruthensteiner, and Hugh Tuffen
Solid Earth, 13, 875–900, https://doi.org/10.5194/se-13-875-2022, https://doi.org/10.5194/se-13-875-2022, 2022
Short summary
Short summary
Volcanic eruptions are controlled by the presence of gas bubbles in magma, which, in excess, can cause explosions. Eruption models lack an understanding of how gas percolates in magma flowing in a conduit. Here we study gas percolation in magma associated with the 1994–1995 eruption at Mt. Unzen, Japan. The results show that the pathways for gas escape depend on the depth and ascent rate of magma. Pathways closed at depth but opened along fractures when magma ascended rapidly near the surface.
Jackie E. Kendrick, Lauren N. Schaefer, Jenny Schauroth, Andrew F. Bell, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Rebecca Coats, Yan Lavallée, and Ben M. Kennedy
Solid Earth, 12, 633–664, https://doi.org/10.5194/se-12-633-2021, https://doi.org/10.5194/se-12-633-2021, 2021
Short summary
Short summary
The last lava dome eruption of Mount Unzen (Japan) ended in 1995, but ongoing instability means much of the area remains an exclusion zone. The rocks in the lava dome impact its stability; heterogeneity (contrasting properties) and anisotropy (orientation-specific properties) can channel fluids and localise deformation, enhancing the risk of lava dome collapse. We recommend using measured material properties to interpret geophysical signals and to model volcanic systems.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Gianluca Norini and Gianluca Groppelli
Solid Earth, 11, 2549–2556, https://doi.org/10.5194/se-11-2549-2020, https://doi.org/10.5194/se-11-2549-2020, 2020
Short summary
Short summary
We identified several problems in Urbani et al. (2020), showing that their model does not conform to the age and location of faulting, identification and delimitation of uplifted areas and apical depressions, temperature and lithological well log, and stratigraphic and radiometric data. Published data indicate that the pressurization of the Los Humeros volcanic complex (LHVC) magmatic–hydrothermal system driving resurgence faulting occurs at a greater depth.
Silvia Massaro, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra
Solid Earth, 10, 1429–1450, https://doi.org/10.5194/se-10-1429-2019, https://doi.org/10.5194/se-10-1429-2019, 2019
Short summary
Short summary
The Fuego de Colima volcano (Mexico) shows a complex eruptive history, with periods of rapid and slow lava dome growth punctuated by explosive activity. Here we reconstructed the 1998–2018 average discharge rate by means of satellite thermal data and the literature. Using spectral and wavelet analysis, we found a multi-term cyclic behavior that is in good agreement with numerical modeling, accounting for a variable magmatic feeding system composed of a single or double magma chamber system.
Qiliang Sun, Christopher A.-L. Jackson, Craig Magee, Samuel J. Mitchell, and Xinong Xie
Solid Earth, 10, 1269–1282, https://doi.org/10.5194/se-10-1269-2019, https://doi.org/10.5194/se-10-1269-2019, 2019
Short summary
Short summary
3-D seismic reflection data reveal that deepwater volcanoes have rugged basal contacts, which truncate underlying strata, and erupted lava flows that feed lobate lava fans. The lava flows (> 9 km long) account for 50–97 % of the total erupted volume. This indicates that deepwater volcanic edifices may thus form a minor component (~ 3–50 %) of the extrusive system and that accurate estimates of erupted volume require knowledge of the basal surface of genetically related lava flows.
Thomas M. Belgrano, Larryn W. Diamond, Yves Vogt, Andrea R. Biedermann, Samuel A. Gilgen, and Khalid Al-Tobi
Solid Earth, 10, 1181–1217, https://doi.org/10.5194/se-10-1181-2019, https://doi.org/10.5194/se-10-1181-2019, 2019
Short summary
Short summary
We present an updated geological map of the volcanic rocks present in the north-east Oman mountains. These volcanic rocks erupted at the seafloor, probably above a young subduction zone, and have since been tectonically transported into their accessible position. The updated map allows us to examine the spatial relationships between the different volcanic and geological features, including copper, gold, and chrome deposits. The new map will aid further study in Oman and other similar settings.
Florian Dinger, Stefan Bredemeyer, Santiago Arellano, Nicole Bobrowski, Ulrich Platt, and Thomas Wagner
Solid Earth, 10, 725–740, https://doi.org/10.5194/se-10-725-2019, https://doi.org/10.5194/se-10-725-2019, 2019
Short summary
Short summary
Evidence for tidal impacts on volcanism have been gathered by numerous empirical studies. This paper elucidates whether a causal link from the tidal forces to a variation in the volcanic degassing can be traced analytically. We model the response of a simplified magmatic system to the local tidal gravity variations, find that the tide-induced dynamics may significantly alter the bubble coalescence rate, and discuss the consequences for volcanic degassing behaviour.
Rebecca Coats, Jackie E. Kendrick, Paul A. Wallace, Takahiro Miwa, Adrian J. Hornby, James D. Ashworth, Takeshi Matsushima, and Yan Lavallée
Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, https://doi.org/10.5194/se-9-1299-2018, 2018
Short summary
Short summary
Lava domes are mounds of viscous lava and their collapse can cause deadly pyroclastic flows. This paper looks at the example of Mt. Unzen in Japan. Using novel experimental techniques, we discovered that crystals and bubbles in the lava make it behave differently to what was previously thought and that it becomes weaker and more susceptible to collapse as it cools. This calls for a review of current models, allowing for better failure prediction of lava domes in the future.
Lucia Gurioli, Andrea Di Muro, Ivan Vlastélic, Séverine Moune, Simon Thivet, Marina Valer, Nicolas Villeneuve, Guillaume Boudoire, Aline Peltier, Patrick Bachèlery, Valérie Ferrazzini, Nicole Métrich, Mhammed Benbakkar, Nicolas Cluzel, Christophe Constantin, Jean-Luc Devidal, Claire Fonquernie, and Jean-Marc Hénot
Solid Earth, 9, 431–455, https://doi.org/10.5194/se-9-431-2018, https://doi.org/10.5194/se-9-431-2018, 2018
Short summary
Short summary
We prove here that macroscopic and microscopic studies of emitted pyroclastic and effusive products provide valuable information to track and understand small explosive eruptions for hazard and risk assessment. This is especially true for Piton de La Fournaise, La Réunion, whose activity has recently been characterized by effusive and mild explosive activity in highly visited areas. We confirm that petrological monitoring is essential to forecast changes in the magmatic system.
Florian Dinger, Nicole Bobrowski, Simon Warnach, Stefan Bredemeyer, Silvana Hidalgo, Santiago Arellano, Bo Galle, Ulrich Platt, and Thomas Wagner
Solid Earth, 9, 247–266, https://doi.org/10.5194/se-9-247-2018, https://doi.org/10.5194/se-9-247-2018, 2018
Short summary
Short summary
We monitored the bromine monoxide-to-sulfur dioxide molar ratio in the effusive gas plume of Cotopaxi volcano in order to gain insight into the geological processes which control the pressure regime of the volcanic system. We observed a conspicuous periodic pattern with a periodicity of about 2 weeks, which significantly correlates with the Earth tidal forcing. Our results support a possible Earth tidal impact on volcanic activity, in particular for the Cotopaxi eruption 2015.
Manuel Queißer, Domenico Granieri, Mike Burton, Fabio Arzilli, Rosario Avino, and Antonio Carandente
Solid Earth, 8, 1017–1024, https://doi.org/10.5194/se-8-1017-2017, https://doi.org/10.5194/se-8-1017-2017, 2017
Short summary
Short summary
Campi Flegrei is a volcanic caldera that is currently in a state of increased unrest. We used a novel remote-sensing approach to measure CO2 fluxes at the Campi Flegrei. Thanks to its comprehensive spatial coverage, the instrument used gives more representative measurements from large regions containing different CO2 sources. We find an increase in CO2 degassing strength. This suggests a greater contribution of the magmatic source to the degassing.
Jorge Eduardo Romero, Guilhem Amin Douillet, Silvia Vallejo Vargas, Jorge Bustillos, Liliana Troncoso, Juan Díaz Alvarado, and Patricio Ramón
Solid Earth, 8, 697–719, https://doi.org/10.5194/se-8-697-2017, https://doi.org/10.5194/se-8-697-2017, 2017
Short summary
Short summary
The 1 February 2014 eruption of the Tungurahua volcano (Ecuador) was the second largest one since the re-awakening in 1999. The eruption showed precursory signs only 48 h before the eruption. The main explosions produced a 13 km eruptive column and pyroclastic density currents that reached the base of the volcano.
Here we document the deposits related to the eruption and infer eruption mechanisms and transport processes.
Jamie I. Farquharson, Patrick Baud, and Michael J. Heap
Solid Earth, 8, 561–581, https://doi.org/10.5194/se-8-561-2017, https://doi.org/10.5194/se-8-561-2017, 2017
Short summary
Short summary
In volcanic rock, permeability is the property that tells us how efficiently fluids such as gas or water can travel through cracks and frozen bubbles in the rock (its porosity) and is important in the context of volcanic activity. This study addresses how permeability evolves under a range of mechanical experimental conditions. We show that with a small amount of porosity loss (compaction), permeability can increase. However, with more compaction, permeability can decrease significantly.
Donald B. Dingwell, Yan Lavallée, Kai-Uwe Hess, Asher Flaws, Joan Marti, Alexander R. L. Nichols, H. Albert Gilg, and Burkhard Schillinger
Solid Earth, 7, 1383–1393, https://doi.org/10.5194/se-7-1383-2016, https://doi.org/10.5194/se-7-1383-2016, 2016
Short summary
Short summary
Here, we use tomography to reconstructed the pores of erupted pumice and understand the evolution of gas bubbles in magma. Analysis of the pore geometry is used to describe whether the pores where aligned by stretching as ascending magma is pulled apart (pure shear) or sheared like a deck of card (simple shear). We conclude that the latter, simple shear, dominates during magma ascent up to the points where magma fragments to cause an explosion.
A. Coco, J. Gottsmann, F. Whitaker, A. Rust, G. Currenti, A. Jasim, and S. Bunney
Solid Earth, 7, 557–577, https://doi.org/10.5194/se-7-557-2016, https://doi.org/10.5194/se-7-557-2016, 2016
Short summary
Short summary
We present a numerical model to evaluate ground deformation and gravity changes as a response of the hydrothermal system perturbation (unrest) in a volcanic area. Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years, of the unrest, but increases in time and becomes dominant after a long period of the simulation.
O. D. Lamb, S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée
Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, https://doi.org/10.5194/se-6-1277-2015, 2015
Short summary
Short summary
In this paper we analyse the seismic record during the extrusion of a lava spine at Unzen volcano, Japan, in 1994. We find two strong groups of similar volcanic earthquakes which, combined with previously published field and experimental observations, we interpret as repetitive fracturing along the margin of the lava spine. This work demonstrates the potential of combining these different approaches for achieving a greater understanding of shallow volcanic processes.
K. Strehlow, J. H. Gottsmann, and A. C. Rust
Solid Earth, 6, 1207–1229, https://doi.org/10.5194/se-6-1207-2015, https://doi.org/10.5194/se-6-1207-2015, 2015
Short summary
Short summary
When magma chambers inflate, they deform the surrounding Earth’s crust. This deformation affects the pore space available for the water in local aquifers, which in turn leads to pressure variations and water table changes. We can observe these changes in wells, and this study investigates if and how we can utilize them for volcano monitoring. Results show that the hydrological response to deformation helps unravelling subsurface magmatic processes, valuable information for eruption forecasting.
B. Bernard, U. Kueppers, and H. Ortiz
Solid Earth, 6, 869–879, https://doi.org/10.5194/se-6-869-2015, https://doi.org/10.5194/se-6-869-2015, 2015
Short summary
Short summary
This paper presents a new methodology to treat statistically pyroclast density and porosity data sets introducing a weighting parameter. It also proposes a stability analysis to check if the sample set is large enough for statistical reliability. Finally we introduce graphical statistics to improve distinction between pyroclastic deposits and understanding of eruptive dynamics. An open source R code is supplied that includes all these features in order to facilitate data processing.
F. Braz Machado, E. Reis Viana Rocha-Júnior, L. Soares Marques, and A. J. Ranalli Nardy
Solid Earth, 6, 227–241, https://doi.org/10.5194/se-6-227-2015, https://doi.org/10.5194/se-6-227-2015, 2015
Short summary
Short summary
This study describes for the first time morphological aspects of lava flows and structural characteristics caused by lava-sediment interaction in the northwestern Paraná continental flood basalts in the southeast of the South American Plate (Brazil). Early Cretaceous (134 to 132Ma) tholeiitic rocks were emplaced on a large intracratonic Paleozoic sedimentary basin (Paraná Basin), mainly covering dry eolian sandstones (Botucatu Formation).
Y. Moussallam, N. Peters, C. Ramírez, C. Oppenheimer, A. Aiuppa, and G. Giudice
Solid Earth, 5, 1341–1350, https://doi.org/10.5194/se-5-1341-2014, https://doi.org/10.5194/se-5-1341-2014, 2014
Short summary
Short summary
In this paper we characterise the flux and composition of the gas emissions from Turrialba Volcano. We show that the measured gas signature provides evidence that Turrialba Volcano has entered an open-vent configuration with magmatic gases being emitted. This suggests that the hydrothermal system at the summit is quickly drying up and that the system is moving from a hydrothermal to a magmatic end member with implications for short-term monitoring and possible evolution of the state of unrest.
P. Lübcke, N. Bobrowski, S. Arellano, B. Galle, G. Garzón, L. Vogel, and U. Platt
Solid Earth, 5, 409–424, https://doi.org/10.5194/se-5-409-2014, https://doi.org/10.5194/se-5-409-2014, 2014
T. J. Jones, J. K. Russell, L. A. Porritt, and R. J. Brown
Solid Earth, 5, 313–326, https://doi.org/10.5194/se-5-313-2014, https://doi.org/10.5194/se-5-313-2014, 2014
J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt
Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014, https://doi.org/10.5194/se-5-199-2014, 2014
M. Pantaleo and T. R. Walter
Solid Earth, 5, 183–198, https://doi.org/10.5194/se-5-183-2014, https://doi.org/10.5194/se-5-183-2014, 2014
A. C. F. Luchetti, A. J. R. Nardy, F. B. Machado, J. E. O. Madeira, and J. M. Arnosio
Solid Earth, 5, 121–130, https://doi.org/10.5194/se-5-121-2014, https://doi.org/10.5194/se-5-121-2014, 2014
M. J. Heap, P. Baud, P. G. Meredith, S. Vinciguerra, and T. Reuschlé
Solid Earth, 5, 25–44, https://doi.org/10.5194/se-5-25-2014, https://doi.org/10.5194/se-5-25-2014, 2014
A. LaRue, D. R. Baker, M. Polacci, P. Allard, and N. Sodini
Solid Earth, 4, 373–380, https://doi.org/10.5194/se-4-373-2013, https://doi.org/10.5194/se-4-373-2013, 2013
S. B. Mueller, N. R. Varley, U. Kueppers, P. Lesage, G. Á. Reyes Davila, and D. B. Dingwell
Solid Earth, 4, 201–213, https://doi.org/10.5194/se-4-201-2013, https://doi.org/10.5194/se-4-201-2013, 2013
N. Bobrowski and G. Giuffrida
Solid Earth, 3, 433–445, https://doi.org/10.5194/se-3-433-2012, https://doi.org/10.5194/se-3-433-2012, 2012
S. Lepore and C. Scarpati
Solid Earth, 3, 161–173, https://doi.org/10.5194/se-3-161-2012, https://doi.org/10.5194/se-3-161-2012, 2012
O. Sigmarsson, I. Vlastelic, R. Andreasen, I. Bindeman, J.-L. Devidal, S. Moune, J. K. Keiding, G. Larsen, A. Höskuldsson, and Th. Thordarson
Solid Earth, 2, 271–281, https://doi.org/10.5194/se-2-271-2011, https://doi.org/10.5194/se-2-271-2011, 2011
A. Aiuppa, M. Burton, P. Allard, T. Caltabiano, G. Giudice, S. Gurrieri, M. Liuzzo, and G. Salerno
Solid Earth, 2, 135–142, https://doi.org/10.5194/se-2-135-2011, https://doi.org/10.5194/se-2-135-2011, 2011
D. Giordano, M. Polacci, P. Papale, and L. Caricchi
Solid Earth, 1, 61–69, https://doi.org/10.5194/se-1-61-2010, https://doi.org/10.5194/se-1-61-2010, 2010
E. Peruzzo, M. Barsanti, F. Flandoli, and P. Papale
Solid Earth, 1, 49–59, https://doi.org/10.5194/se-1-49-2010, https://doi.org/10.5194/se-1-49-2010, 2010
Cited articles
Abdelmalak, M. M., Mourgues, R., Galland, O., and Bureau, D.: Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling, Earth Planet. Sc. Lett., 359–360, 93–105, https://doi.org/10.1016/j.epsl.2012.10.008, 2012.
Abdelmalak, M. M., Bulois, C., Mourgues, R., Galland, O., Legland, J. B., and Gruber, C.: Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust, Tectonophysics, 684, 39–51, https://doi.org/10.1016/j.tecto.2016.03.003, 2016.
Ampferer, O.: Uber das bewegungsbild von falten-gebirgen, Jahrb. der Geol. Reichsanstalt, 56, 539–662, 1906.
Andrews, B. J. and Manga, M.: Effects of topography on pyroclastic density current runout and formation of coignimbrites, Geology, 39, 1099–1102, https://doi.org/10.1130/G32226.1, 2011.
Andrews, B. J. and Manga, M.: Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute pyroclastic density currents, J. Volcanol. Geoth. Res., 225–226, 30–44, https://doi.org/10.1016/j.jvolgeores.2012.02.011, 2012.
Annen, C.: From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust, Earth Planet. Sc. Lett., 284, 409–416, https://doi.org/10.1016/j.epsl.2009.05.006, 2009.
Annen, C., Lénat, J.-F., and Provost, A.: The long-term growth of volcanic edifces: numerical modelling of the role of dyke intrusion and lava-flow emplacement, J. Volcanol. Geoth. Res., 105, 263–289, https://doi.org/10.1016/S0377-0273(00)00257-2, 2001.
Annen, C., Blundy, J. D., and Sparks, R. S. J.: The genesis of intermediate and silicic magmas in deep crustal hot zones, J. Petrol., 47, 505–539, https://doi.org/10.1093/petrology/egi084, 2006a.
Annen, C., Blundy, J. D., and Sparks, R. S. J.: The sources of granitic melt in Deep Hot Zones, Earth Env. Sci. T. R. So., 97, 297–309, https://doi.org/10.1017/S0263593300001462, 2006b.
Annen, C., Pichavant, M., Bachmann, O., and Burgisser, A.: Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc), J. Geophys. Res.-Sol. Ea., 113, 1–16, https://doi.org/10.1029/2007JB005049, 2008.
Annen, C., Blundy, J. D., Leuthold, J., and Sparks, R. S. J.: Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism, Lithos, 230, 206–221, https://doi.org/10.1016/j.lithos.2015.05.008, 2015.
Bagdassarov, N. and Pinkerton, H.: Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials, J. Volcanol. Geoth. Res., 132, 115–136, https://doi.org/10.1016/S0377-0273(03)00341-X, 2004.
Baines, P. G., Jones, M. T., and Sparks, R. S. J.: The variation of large-magnitude volcanic ash cloud formation with source latitude, J. Geophys. Res.-Atmos., 113, 1–17, https://doi.org/10.1029/2007JD009568, 2008.
Ball, J. L., Stauffer, P. H., Calder, E. S., and Valentine, G. A.: The hydrothermal alteration of cooling lava domes, B. Volcanol., 77, 102, https://doi.org/10.1007/s00445-015-0986-z, 2015.
Balmforth, N. J., Burbidge, A. S., Craster, R. V., Salzig, J., and Shen, A.: Visco-plastic models of isothermal lava domes, J. Fluid Mech., 403, 37–65, https://doi.org/10.1017/S0022112099006916, 2000.
Barenblatt, G. I.: Scaling, Cambridge University Press., 171 pp., 2003.
Barnett, Z. A. and Gudmundsson, A.: Numerical modelling of dykes deflected into sills to form a magma chamber, J. Volcanol. Geoth. Res., 281, 1–11, https://doi.org/10.1016/j.jvolgeores.2014.05.018, 2014.
Barsotti, S., Neri, A., and Scire, J. S.: The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation, J. Geophys. Res., 113, B03208, https://doi.org/10.1029/2006JB004623, 2008.
Beckett, F. M., Mader, H. M., Phillips, J. C., Rust, A. C., and Witham, F.: An experimental study of low-Reynolds-number exchange flow of two Newtonian fluids in a vertical pipe, J. Fluid Mech., 682, 652–670, https://doi.org/10.1017/jfm.2011.264, 2011.
Benn, K., Odonne, F., and Blanquat, M. D. Saint: Pluton emplacement during transpression in brittle crust: New views from analogue experiments, Geology, 26, 1079–1082, https://doi.org/10.1130/0091-7613(1998)026<1079:PEDTIB>2.3.CO;2, 1998.
Bergantz, G. W.: On the dynamics of magma mixing by reintrusion: Implications for pluton assembly processes, J. Struct. Geol., 22, 1297–1309, https://doi.org/10.1016/S0191-8141(00)00053-5, 2000.
Bergantz, G. W., Schleicher, J. M., and Burgisser, A.: On the kinematics and dynamics of crystal-rich systems, J. Geophys. Res.-Sol. Ea., 122, 6131–6159, https://doi.org/10.1002/2017JB014218, 2017.
Bernabeu, N., Saramito, P., and Smutek, C.: Numericl modeling of non-newtonian viscoplastic flows: Part II, Viscoplastic fluids and general tridimensional topographies, Int. J. Numer. Anal. Mod., 1, 1–18, 2013.
Bernabeu, N., Saramito, P., and Smutek, C.: Modelling lava flow advance using a shallow-depth approximation for three-dimensional cooling of viscoplastic flows, Geol. Soc. London, Spec. Publ., 426, 409–423, 2016.
Bhattacharji, S. and Smith, C. H.: Flowage differentiation, Science, 145, 150–153, https://doi.org/10.1126/science.145.3628.150, 1964.
Blake, S.: Viscoplastic models of lava domes, in: Lava flows and domes: emplacement mechanisms and hazard implications, edited by: Fink, J. H., 88–128., 1990.
Blake, S. and Bruno, B. C.: Modelling the Emplacement of Compound Lava Flows, Earth Planet. Sc. Lett., 184, 181–197, 2000.
Bohrson, W. A., Spera, F. J., Ghiorso, M. S., Brown, G. A., Creamer, J. B., and Mayfield, A.: Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: The magma chamber simulator, J. Petrol., 55, 1685–1717, https://doi.org/10.1093/petrology/egu036, 2014.
Bonadonna, C. and Phillips, J. C.: Sedimentation from strong volcanic plumes, J. Geophys. Res.-Sol. Ea., 108, 2340, https://doi.org/10.1029/2002JB002034, 2003.
Bonadonna, C., Connor, C. B., Houghton, B. F., Connor, L., Byrne, M., Laing, A., and Hincks, T. K.: Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res., 110, B03203, https://doi.org/10.1029/2003JB002896, 2005.
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, B. Volcanol., 74, 1–10, https://doi.org/10.1007/s00445-011-0508-6, 2012.
Bons, P. D., Baur, A., Elburg, M. A., Lindhuber, M. J., Marks, M. A. W., Soesoo, A., Van Milligen, B. P., and Walte, N. P.: Layered intrusions and traffic jams, Geology, 43, 71–74, https://doi.org/10.1130/G36276.1, 2015.
Branney, M. J. and Kokelaar, B. P.: Pyroclastic density currents and the sedimentation of ignimbrites, Geological Society of London, 143 pp., 2002.
Buckingham, E.: On physically similar systems; Illustrations of the use of dimensional equations, Phys. Rev., 4, 345–376, 1914.
Bunger, A. P. and Cruden, A. R.: Modeling the growth of laccoliths and large mafic sills: Role of magma body forces, J. Geophys. Res.-Sol. Ea., 116, 1–18, https://doi.org/10.1029/2010JB007648, 2011.
Burchardt, S. and Galland, O.: Studying Volcanic Plumbing Systems – Multidisciplinary Approaches to a Multifaceted Problem, Updates in Volcanolgy – From Volcano Modelling to Volcano Geology, InTech, 2016, edited by: Karoly Nemeth, 23–53, https://doi.org/10.5772/63959, 2016.
Burgers, J. M.: The nonlinear diffusion equation: asymptotic solutions and statistical problems, Springer Netherlands, 174 pp., 1974.
Bursik, M.: Effect of wind on the rise height of volcanic plumes, Geophys. Res. Lett., 28, 3621–3624, https://doi.org/10.1029/2001GL013393, 2001.
Bursik, M. I. and Woods, A. W.: The dynamics and thermodynamics of large ash flows, B. Volcanol., 58, 175–193, https://doi.org/10.1007/s004450050134, 1996.
Bursik, M. I., Carey, S. N., and Sparks, R. S. J.: A gravity current model for the May 18, 1980 Mount St. Helens plume, Geophys. Res. Lett., 19, 1663–1666, https://doi.org/10.1029/92GL01639, 1992.
Caballero-Miranda, C. I., Alva-Valdivia, L. M., González-Rangel, J. A., Gogitchaishvili, A., Urrutia-Fucugauchi, J., and Kontny, A.: Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows, J. Volcanol. Geoth. Res., 311, 9–28, https://doi.org/10.1016/j.jvolgeores.2016.01.003, 2016.
Cañón-Tapia, E. and Merle, O.: Dyke nucleation and early growth from pressurized magma chambers: Insights from analogue models, J. Volcanol. Geoth. Res., 158, 207–220, https://doi.org/10.1016/j.jvolgeores.2006.05.003, 2006.
Carazzo, G. and Jellinek, A. M.: A new view of the dynamics, stability and longevity of volcanic clouds, Earth. Planet. Sc. Lett., 325, 39–51, 2012.
Carazzo, G., Kaminski, E., and Tait, S.: On the rise of turbulent plumes: Quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism, J. Geophys. Res.-Sol. Ea., 113, 1–19, https://doi.org/10.1029/2007JB005458, 2008.
Carey, S. N., Sigurdsson, H., and Sparks, R. S. J.: Experimental studies of particle-laden plumes, J. Geophys. Res.-Sol. Ea., 93, 15314–15328, https://doi.org/10.1029/JB093iB12p15314, 1988.
Carrivick, J. L., Manville, V., and Cronin, S. J.: A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand, B. Volcanol., 71, 153–169, https://doi.org/10.1007/s00445-008-0213-2, 2009.
Castro, J. M., Cordonnier, B., Schipper, C. I., Tuffen, H., Baumann, T. S., and Feisel, Y.: Rapid laccolith intrusion driven by explosive volcanic eruption, Nat. Commun., 7, 13585, https://doi.org/10.1038/ncomms13585, 2016.
Castruccio, A., Rust, A. C., and Sparks, R. S. J.: Rheology and flow of crystal-bearing lavas: Insights from analogue gravity currents, Earth Planet. Sc. Lett., 297, 471–480, https://doi.org/10.1016/j.epsl.2010.06.051, 2010.
Castruccio, A., Rust, A. C., and Sparks, R. S. J.: Assessing lava flow evolution from post-eruption field data using Herschel-Bulkley rheology, J. Volcanol. Geoth. Res., 275, 71–84, https://doi.org/10.1016/j.jvolgeores.2014.02.004, 2014.
Cerminara, M., Esposti Ongaro, T., and Neri, A.: Large Eddy Simulation of gas–particle kinematic decoupling and turbulent entrainment in volcanic plumes, J. Volcanol. Geoth. Res., 326, 143–171, https://doi.org/10.1016/j.jvolgeores.2016.06.018, 2016.
Chanceaux, L.: An experimental investigation of the solidification effects on sill formation and propagation dynamics, Universite Blaise Pascal, 48 pp., 2013.
Chanceaux, L. and Menand, T.: Solidification effects on sill formation: An experimental approach, Earth Planet. Sc. Lett., 403, 79–88, https://doi.org/10.1016/j.epsl.2014.06.018, 2014.
Chanceaux, L. and Menand, T.: The effects of solidification on sill propagation dynamics and morphology, Earth Planet. Sc. Lett., 442, 39–50, https://doi.org/10.1016/j.epsl.2016.02.044, 2016.
Cimarelli, C., Costa, A., Mueller, S., and Mader, H. M.: Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments, Geochem. Geophy. Geosy., 12, 1–14, https://doi.org/10.1029/2011GC003606, 2011.
Coleman, D. S., Gray, W., and Glazner, A. F.: Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California, Geology, 32, 433–436, https://doi.org/10.1130/G20220.1, 2004.
Connor, L. J., Connor, C. B., Meliksetian, K., and Savov, I.: Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia, J. Appl. Volcanol., 1, 3, https://doi.org/10.1186/2191-5040-1-3, 2012.
Cordonnier, B., Lev, E., and Garel, F.: Benchmarking lava-flow models, Geol. Soc. Spec. Publ., 426, 425–445, 2016.
Cornell, W., Carey, S., and Sigurdsson, H.: Computer simulation of transport and deposition of the Campanian Y-5 ash, J. Volcanol. Geoth. Res., 17, 89–109, 1983.
Corti, G., Moratti, G., and Sani, F.: Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation, J. Struct. Geol., 27, 1547–1562, https://doi.org/10.1016/j.jsg.2005.05.011, 2005.
Costa, A. and Macedonio, G.: Computational modeling of lava flows: A review, Geol. S. Am. S., 396, 209–218, https://doi.org/10.1130/0-8137-2396-5.209, 2005.
Costa, A., Folch, A., and Macedonio, G.: Density-driven transport in the umbrella region of volcanic clouds: Implications for tephra dispersion models, Geophys. Res. Lett., 40, 4823–4827, https://doi.org/10.1002/grl.50942, 2013.
Costa, A., Suzuki, Y. J., Cerminara, M., Devenish, B. J., Ongaro, T. E., Herzog, M., Van Eaton, A. R., Denby, L. C., Bursik, M., de' Michieli Vitturi, M., Engwell, S., Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G., Tait, S., Kaminski, E., Mastin, L. G., Woodhouse, M. J., Phillips, J. C., Hogg, A. J., Degruyter, W., and Bonadonna, C.: Results of the eruptive column model inter-comparison study, J. Volcanol. Geoth. Res., 326, 2–25, https://doi.org/10.1016/j.jvolgeores.2016.01.017, 2016.
Crisci, G. M., Rongo, R., Di Gregorio, S., and Spataro, W.: The simulation model SCIARA: The 1991 and 2001 lava flows at Mount Etna, J. Volcanol. Geoth. Res., 132, 253–267, https://doi.org/10.1016/S0377-0273(03)00349-4, 2004.
Dade, W. B. and Huppert, H. E.: Emplacement of the Taupo ignimbrite by a dilute turbulent flow, Nature, 381, 509–512, https://doi.org/10.1038/381509a0, 1996.
Dahm, T.: Numerical simulations of the propagation path and the arrest of fluid-filled fractures in the earth, Geophys. J. Int., 141, 623–638, https://doi.org/10.1046/j.1365-246X.2000.00102.x, 2000.
Daniels, K. A. and Menand, T.: An experimental investigation of dyke injection under regional extensional stress, J. Geophys. Res.-Sol. Ea., 120, 2014–2035, https://doi.org/10.1002/2014JB011627, 2015.
Darnell, A. R., Barclay, J., Herd, R. A., Phillips, J. C., Lovett, A. A., and Cole, P.: Geographical information system approaches for hazard mapping of dilute lahars on Montserrat, West Indies, B. Volcanol., 74, 1337–1353, https://doi.org/10.1007/s00445-012-0596-y, 2012.
Daubrée, A.: Recherches expérimentales sur le rôle possible des gaz à hautes températures doués de très fortes pressions et animés d'un mouvement fort rapide dans divers phénomènes géologiques, Bull. la Société géologique Fr., 19, 313–354, 1891.
De Bremond d'Ars, J., Arndt, N. T., and Hallot, E.: Analog experimental insights into the formation of magmatic sulfide deposits, Earth Planet. Sc. Lett., 186, 371–381, https://doi.org/10.1016/S0012-821X(01)00254-0, 2001.
de' Michieli Vitturi, M., Neri, A., and Barsotti, S.: PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments, Geosci. Model Dev., 8, 2447-2463, https://doi.org/10.5194/gmd-8-2447-2015, 2015.
de' Michieli Vitturi, M., Engwell, S. L., Neri, A., and Barsotti, S.: Uncertainty quantification and sensitivity analysis of volcanic columns models: Results from the integral model PLUME-MoM, J. Volcanol. Geoth. Res., 326, 77–91, https://doi.org/10.1016/j.jvolgeores.2016.03.014, 2016.
Degruyter, W. and Bonadonna, C.: Impact of wind on the condition for column collapse of volcanic plumes, Earth Planet. Sc. Lett., 377–378, 218–226, https://doi.org/10.1016/j.epsl.2013.06.041, 2013.
Del Bello, E., Taddeucci, J., de' Michieli Vitturi, M., Scarlato, P., Andronico, D., Scollo, S., Kueppers, U., and Ricci, T.: Effect of particle volume fraction on the settling velocity of volcanic ash particles: Insights from joint experimental and numerical simulations, Sci. Rep.-UK, 7, 39620, https://doi.org/10.1038/srep39620, 2017.
Del Gaudio, P., Ventura, G., and Taddeucci, J.: The effect of particle size on the rheology of liquid-solid mixtures with application to lava flows: Results from analogue experiments, Geochem. Geophy. Geosy., 14, 2661–2669, https://doi.org/10.1002/ggge.20172, 2013.
Dellino, P., Zimanowski, B., Büttner, R., La Volpe, L., Mele, D., and Sulpizio, R.: Large-scale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results, J. Geophys. Res.-Sol. Ea., 112, 1–13, https://doi.org/10.1029/2006JB004313, 2007.
Dellino, P., Dioguardi, F., Mele, D., D'Addabbo, M., Zimanowski, B., Büttner, R., Doronzo, D. M., Sonder, I., Sulpizio, R., Dürig, T., and La Volpe, L.: Volcanic jets, plumes, and collapsing fountains: Evidence from large-scale experiments, with particular emphasis on the entrainment rate, B. Volcanol., 76, 1–18, https://doi.org/10.1007/s00445-014-0834-6, 2014.
Di Giuseppe, E., Funiciello, F., Corbi, F., Ranalli, G., and Mojoli, G.: Gelatins as rock analogs: A systematic study of their rheological and physical properties, Tectonophysics, 473, 391–403, https://doi.org/10.1016/j.tecto.2009.03.012, 2009.
Di Giuseppe, E., Corbi, F., Funiciello, F., Massmeyer, A., Santimano, T. N., Rosenau, M., and Davaille, A.: Characterization of Carbopol®hydrogel rheology for experimental tectonics and geodynamics, Tectonophysics, 642, 29–45, https://doi.org/10.1016/j.tecto.2014.12.005, 2015.
Didden, N. and Maxworthy, T.: The viscous spreading of plane and axisymmetric gravity currents, J. Fluid Mech., 121, 27, https://doi.org/10.1017/S0022112082001785, 1982.
Dietterich, H. R., Lev, E., Chen, J., Richardson, J. A., and Cashman, K. V.: Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management, J. Appl. Volcanol., 6, 9, https://doi.org/10.1186/s13617-017-0061-x, 2017.
Dioguardi, F., Dürig, T., Engwell, S. L., Gudmundsson, M. T., and Loughlin, S. C.: Investigating Source Conditions and Controlling Parameters of Explosive Eruptions: Some Experimental-Observational- Modelling Case Studies, in: Updates in Volcanology - From Volcano Modelling to Volcano Geology, InTech, 422 pp., 2016.
Dioguardi, F., Mele, D., Dellino, P., and Dürig, T.: The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography, J. Volcanol. Geoth. Res., 329, 41–53, https://doi.org/10.1016/J.JVOLGEORES.2016.11.013, 2017.
Doyle, E. E., Hogg, A. J., Mader, H. M., and Sparks, R. S. J.: Modeling dense pyroclastic basal flows from collapsing columns, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2007GL032585, 2008.
Dufek, J.: The Fluid Mechanics of Pyroclastic Density Currents, Annu. Rev. Fluid Mech., 48, 459–485, https://doi.org/10.1146/annurev-fluid-122414-034252, 2016.
Engwell, S. L., de' Michieli Vitturi, M., Esposti Ongaro, T., and Neri, A.: Insights into the formation and dynamics of coignimbrite plumes from one-dimensional models, J. Geophys. Res.-Sol. Ea., 121, 4211–4231, https://doi.org/10.1002/2016JB012793, 2016.
Ernst, G. G. J., Davis, J. P., and Sparks, R. S. J.: Bifurcation of volcanic plumes in a crosswind, B. Volcanol., 56, 159–169, https://doi.org/10.1007/BF00279601, 1994.
Esposti Ongaro, T., Clarke, A. B., Voight, B., Neri, A., and Widiwijayanti, C.: Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens, J. Geophys. Res.-Sol. Ea., 117, 1–22, https://doi.org/10.1029/2011JB009081, 2012.
Favalli, M., Pareschi, M. T., Neri, A., and Isola, I.: Forecasting lava flow paths by a stochastic approach, Geophys. Res. Lett., 32, L03305, https://doi.org/10.1029/2004GL021718, 2005.
Fink, J. H. and Bridges, N. T.: Effects of eruption history and cooling rate on lava dome growth, B. Volcanol., 57, 229–239, https://doi.org/10.1007/BF00265423, 1995.
Fink, J. H. and Griffiths, R. W.: Radial Spreading of Viscous Gravity Currents With Solidifying Crust, J. Fluid Mech., 221, 485–509, https://doi.org/10.1017/S0022112090003640, 1990.
Fink, J. H. and Griffiths, R. W.: Morphology, eruption rates, and rheology of lava domes: Insights from laboratory models, J. Geophys. Res.-Sol. Ea., 103, 527–545, https://doi.org/10.1029/97JB02838, 1998.
Fiske, R. S. and Jackson, E. D.: Orientation and Growth of Hawaiian Volcanic Rifts: The Effect of Regional Structure and Gravitational Stresses, P. Roy. Soc. Lond. A. Mat., 329, 299–326, https://doi.org/10.1098/rspa.1972.0115, 1972.
Folch, A.: A review of tephra transport and dispersal models: Evolution, current status, and future perspectives, J. Volcanol. Geoth. Res., 235–236, 96–115, https://doi.org/10.1016/j.jvolgeores.2012.05.020, 2012.
Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computational model for transport and deposition of volcanic ash, Comput. Geosci., 35, 1334–1342, https://doi.org/10.1016/J.CAGEO.2008.08.008, 2009.
Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation, Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, 2016.
Fukushima, Y., Cayol, V., and Durand, P.: Finding realistic dike models from interferometric synthetic aperture radar data: The February 2000 eruption at Piton de la Fournaise, J. Geophys. Res.-Sol. Ea., 110, 1–15, https://doi.org/10.1029/2004JB003268, 2005.
Galgana, G. A., Grosfils, E. B., and McGovern, P. J.: Radial dike formation on Venus: Insights from models of uplift, flexure and magmatism, Icarus, 225, 538–547, https://doi.org/10.1016/j.icarus.2013.04.020, 2013.
Galland, O.: Experimental modelling of ground deformation associated with shallow magma intrusions, Earth Planet. Sc. Lett., 317–318, 145–156, https://doi.org/10.1016/j.epsl.2011.10.017, 2012.
Galland, O. and Scheibert, J.: Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: Implications for sill emplacement and geodesy, J. Volcanol. Geoth. Res., 253, 114–130, https://doi.org/10.1016/j.jvolgeores.2012.12.006, 2013.
Galland, O., Cobbold, P. R., Hallot, E., de Bremond d'Ars, J., and Delavaud, G.: Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust, Earth Planet. Sc. Lett., 243, 786–804, https://doi.org/10.1016/j.epsl.2006.01.014, 2006.
Galland, O., Burchardt, S., Hallot, E., Mourgues, R., and Bulois, C.: Dynamics of dikes versus cone sheets in volcanic systems, J. Geophys. Res.-Sol. Ea., 119, 6178–6192, https://doi.org/10.1002/2014JB011059, 2014.
Galland, O., Bertelsen, H. S., Guldstrand, F., Girod, L., Johannessen, R. F., Bjugger, F., Burchardt, S., and Mair, K.: Application of open-source photogrammetric software MicMac for monitoring surface deformation in laboratory models, J. Geophys. Res.-Sol. Ea., 121, 2852–2872, https://doi.org/10.1002/2015JB012564, 2016.
Galland, O., Holohan, E., van Wyk de Vries, B., and Burchardt, S.: Laboratory Modelling of Volcano Plumbing Systems: A Review, 1–68, Springer, Berlin, Heidelberg, 2018.
Garel, F., Kaminski, E., Tait, S., and Limare, A.: An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: Implications for thermal monitoring of lava flows and domes, J. Geophys. Res.-Sol. Ea., 117, B02205, https://doi.org/10.1029/2011JB008698, 2012.
Garel, F., Kaminski, E., Tait, S., and Limare, A.: An analogue study of the influence of solidification on the advance and surface thermal signature of lava flows, Earth Planet. Sc. Lett., 396, 46–55, https://doi.org/10.1016/J.EPSL.2014.03.061, 2014.
Gilbert, E. and Merle, O.: Extrusion and radial spreading beyond a closing channel, J. Struct. Geol., 9, 481–490, https://doi.org/10.1016/0191-8141(87)90123-4, 1987.
Glazner, A., Bartley, J., Coleman, D., Gray, W., and Taylor, R.: Are plutons assembled over millions of years by amalgamation from small magma chambers?, GSA Today, 14, 4–11, https://doi.org/10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2, 2004.
Goehring, L. and Morris, S. W.: Order and disorder in columnar joints, Europhys. Lett., 69, 1–7, https://doi.org/10.1209/epl/i2004-10408-x, 2005.
Goehring, L., Morris, S. W., and Lin, Z.: Experimental investigation of the scaling of columnar joints, Phys. Rev. E., 74, 1–12, https://doi.org/10.1103/PhysRevE.74.036115, 2006.
Gregg, T. and Fink, J. H: Quantification of submarine lava morphologies through analog experiments, Geology, 23, 73–76, 1995.
Gressier, J. B., Mourgues, R., Bodet, L., Matthieu, J. Y., Galland, O., and Cobbold, P.: Control of pore fluid pressure on depth of emplacement of magmatic sills: An experimental approach, Tectonophysics, 489, 1–13, https://doi.org/10.1016/j.tecto.2010.03.004, 2010.
Griffiths, R. W. and Fink, J. H.: Effects of surface cooling on the spreading of lava flows and domes, J. Fluid Mech., 252, 667–702, https://doi.org/10.1017/S0022112093003933, 1993.
Griffiths, R. W. and Fink, J. H.: Solidifying Bingham extrusions: a model for the growth of silicic lava domes, J. Fluid Mech., 347, 13–36, https://doi.org/10.1017/S0022112097006344, 1997.
Guldstrand, F., Burchardt, S., Hallot, E., and Galland, O.: Dynamics of Surface Deformation Induced by Dikes and Cone Sheets in a Cohesive Coulomb Brittle C rust, J. Geophys. Res., 122, 1–34, https://doi.org/10.1002/2017JB014346, 2017.
Hale, A. J.: Lava dome growth and evolution with an independently deformable talus, Geophys. J. Int., 174, 391–417, https://doi.org/10.1111/j.1365-246X.2008.03806.x, 2008.
Hale, A. J. and Wadge, G.: Numerical modelling of the growth dynamics of a simple silicic lava dome, Geophys. Res. Lett., 30, 19, https://doi.org/10.1029/2003GL018182, 2003.
Hale, A. J., Calder, E. S., Loughlin, S. C., Wadge, G., and Ryan, G. A.: Modelling the lava dome extruded at Soufrière Hills Volcano, Montserrat, August 2005–May 2006: Part II: Rockfall activity and talus deformation, J. Volcanol. Geoth. Res., 187, 69–84, https://doi.org/10.1016/J.JVOLGEORES.2009.08.014, 2009.
Hall, J.: II. On the Vertical Position and Convolutions of certain Strata, and their relation with Granite, T. Rse. Earth, 7, 79–108, https://doi.org/10.1017/S0080456800019268, 1815.
Hallworth, M. A., Huppert, H. E. and Sparks, R. S. J.: A laboratory simulation of basaltic lava flows, Modern Geology, 11, 93–107, 1987.
Hamilton, W. and Cadell, T.: Observations On Mount Vesuvius, Mount Etna, And Other Volcanos: In A Series of Letters, Addressed to the Royal Society, 1774.
Harris, A. J. L.: Modeling lava lake heat loss, rheology, and convection, Geophys. Res. Lett., 35, 1–6, https://doi.org/10.1029/2008GL033190, 2008.
Harris, A. J. L., Rhéty, M., Gurioli, L., Villeneuve, N., and Paris, R.: Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL, Geol. Soc. Spec. Publ., 426, 313–336, https://doi.org/10.1144/SP426.9, 2016.
Heffter, J. L., Stunder, B. J. B., Heffter, J. L., and Stunder, B. J. B.: Volcanic Ash Forecast Transport And Dispersion (VAFTAD) Model, Weather. Forecast., 8, 533–541, https://doi.org/10.1175/1520-0434(1993)008<0533:VAFTAD>2.0.CO;2, 1993.
Herschel, W. H. and Bulkley, R.: Konsistenzmessungen von Gummi-Benzollösungen, Kolloid-Zeitschrift, 39, 291–300, https://doi.org/10.1007/BF01432034, 1926.
Herzog, M. and Graf, H. F.: Applying the three-dimensional model ATHAM to volcanic plumes: Dynamic of large co-ignimbrite eruptions and associated injection heights for volcanic gases, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL044986, 2010.
Hickey, J., Gottsmann, J., Nakamichi, H., and Iguchi, M.: Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan, Sci. Rep.-UK, 6, 32691, https://doi.org/10.1038/srep32691, 2016.
Hubbert, M. and Willis, D.: Mechanics of hydraulic fracturing, J. Pet. Technol., 9, 153–166, https://doi.org/10.1016/S0376-7361(07)53011-6, 1957.
Huber, C., Parmigiani, A., Chopard, B., Manga, M., and Bachmann, O.: Lattice Boltzmann model for melting with natural convection, Int. J. Heat Fluid Fl., 29, 1469–1480, https://doi.org/10.1016/j.ijheatfluidflow.2008.05.002, 2008.
Huber, C., Bachmann, O., and Manga, M.: Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering), Earth Planet Sc. Lett., 283, 38–47, https://doi.org/10.1016/j.epsl.2009.03.029, 2009.
Hulme, G.: The interpretaion of lava flow morphology, Geophys. J. Roy. Astr. S., 39, 361–383, 1974.
Huppert, H. E. and Hallworth, M. A.: Bi-directional flows in constrained systems, J. Fluid Mech., 578, 95–112, https://doi.org/10.1017/S0022112007004661, 2007.
Huppert, H. E. and Sparks, R. S. J.: The Fluid Dynamics of a Basaltic Magma Chamber Replenished by Influx of Hot, Dense Ultrabasic Magma, Contrib. Mineral. Petr., 75, 279–289, https://doi.org/10.1007/BF01166768, 1980.
Huppert, H. E. and Sparks, R. S. J.: Komatiites I: Eruption and flow, J. Petrol., 26, 694–725, https://doi.org/10.1093/petrology/26.3.694, 1985.
Huppert, H. E. and Turner, J. S.: A laboratory model of a replenished magma chamber, Earth Planet. Sc. Lett., 54, 144–152, https://doi.org/10.1016/0012-821X(81)90075-3, 1981a.
Huppert, H. E. and Turner, J. S.: Double-diffusive convection, J. Fluid Mech., 106, 299, https://doi.org/10.1017/S0022112081001614, 1981b.
Huppert, H. E., Sparks, R. S. J., and Turner, J. S.: Effects of volatiles on mixing in calc-alkaline magma systems, Nature, 297, 554–557, https://doi.org/10.1038/297554a0, 1982.
Huppert, H. E., Sparks, R. S. J., and Turner, J. S.: Laboratory investigations of viscous effects in replenished magma chambers, Earth Planet. Sc. Lett., 65, 377–381, https://doi.org/10.1016/0012-821X(83)90175-9, 1983.
Huppert, H. E., Turner, J. S., Carey, S. N., Stephen, R., Sparks, J., and Hallworth, M. A.: A laboratory simulation of pyroclastic flows down slopes, J. Volcanol. Geoth. Res., 30, 179–199, https://doi.org/10.1016/0377-0273(86)90054-5, 1986.
Husain, T., Elsworth, D., Voight, B., Mattioli, G., and Jansma, P.: Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling, J. Volcanol. Geoth. Res., 285, 100–117, https://doi.org/10.1016/J.JVOLGEORES.2014.08.013, 2014.
Hutton, J.: Theory of the Earth; or an Investigation of the Laws observable in the Composition, Dissolution, and Restoration of Land upon the Globe., T. Rse. Earth, 1, 209–304, https://doi.org/10.1017/S0080456800029227, 1788.
Hyndman, D. W. and Alt, D.: Radial Dikes, Laccoliths, and Gelatin Models, J. Geol., 95, 763–774, 1987.
Ishibashi, H.: Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan, J. Volcanol. Geoth. Res., 181, 78–88, https://doi.org/10.1016/j.jvolgeores.2009.01.004, 2009.
Iverson, R. M.: Lava Domes Modeled as Brittle Shells that Enclose Pressurized Magma, with Application to Mount St. Helens, 47–69, Springer, Berlin, Heidelberg, 1990.
Iverson, R. M.: Scaling and design of landslide and debris-flow experiments, Geomorphology, 244, 9–20, https://doi.org/10.1016/j.geomorph.2015.02.033, 2015.
Iverson, R. M., Logan, M., LaHusen, R. G., and Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, https://doi.org/10.1029/2009JF001514, 2010.
Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., and Griswold, J. P.: Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4, 116–121, https://doi.org/10.1038/ngeo1040, 2011.
Ivey, G. N. and Blake, S.: Axisymmetric withdrawal and inflow in a density-stratified container, J. Fluid Mech., 161, 115–137, https://doi.org/10.1017/S0022112085002841, 1985.
Johnson, A. M. and Pollard, D. D.: Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I. Field observations, Gilbert's model, physical properties and flow of the magma, Tectonophysics, 18, 261–309, https://doi.org/10.1016/0040-1951(73)90050-4, 1973.
Johnson, C. G., Hogg, A. J., Huppert, H. E., Sparks, R. S. J., Phillips, J. C., Slim, A. C., and Woodhouse, M. J.: Modelling intrusions through quiescent and moving ambients, J. Fluid Mech., 771, 370–406, https://doi.org/10.1017/jfm.2015.180, 2015.
Jones, A., Thomson, D., Hort, M., and Devenish, B.: The U.K. Met Office's Next-Generation Atmospheric Dispersion Model, NAME III, in Air Pollution Modeling and Its Application XVII, 580–589, Springer US, Boston, USA, 2007.
Kaminski, E., Tait, S., and Carazzo, G.: Turbulent entrainment in jets with arbitrary buoyancy, J. Fluid Mech., 526, 361–376, https://doi.org/10.1017/S0022112004003209, 2005.
Karakas, O. and Dufek, J.: Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas, Earth Planet. Sc. Lett., 425, 131–144, https://doi.org/10.1016/j.epsl.2015.06.001, 2015.
Karakas, O., Degruyter, W., Bachmann, O., and Dufek, J.: Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism, Nat. Geosci., 10, 446–450, https://doi.org/10.1038/ngeo2959, 2017.
Karlstrom, L. and Manga, M.: Origins and implications of zigzag rift patterns on lava lakes, J. Volcanol. Geoth. Res., 154, 317–324, https://doi.org/10.1016/j.jvolgeores.2006.01.004, 2006.
Karlstrom, L., Dufek, J., and Manga, M.: Magma chamber stability in arc and continental crust, J. Volcanol. Geoth. Res., 190, 249–270, https://doi.org/10.1016/j.jvolgeores.2009.10.003, 2010.
Kavanagh, J. L., Menand, T., and Sparks, R. S. J.: An experimental investigation of sill formation and propagation in layered elastic media, Earth Planet. Sc. Lett., 245, 799–813, https://doi.org/10.1016/j.epsl.2006.03.025, 2006.
Kavanagh, J. L., Menand, T., and Daniels, K. A.: Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions, Tectonophysics, 582, 101–111, https://doi.org/10.1016/j.tecto.2012.09.032, 2013.
Kavanagh, J. L., Boutelier, D., and Cruden, A. R.: The mechanics of sill inception, propagation and growth: Experimental evidence for rapid reduction in magmatic overpressure, Earth Planet. Sc. Lett., 421, 117–128, https://doi.org/10.1016/j.epsl.2015.03.038, 2015.
Kavanagh, J. L., Rogers, B. D., Boutelier, D., and Cruden, A. R.: Controls on sill and dyke-sill hybrid geometry and propagation in the crust: The role of fracture toughness, Tectonophysics, 698, 109–120, https://doi.org/10.1016/j.tecto.2016.12.027, 2017.
Kelfoun, K. and Vallejo Vargas, S.: VolcFlow capabilities and potential development for the simulation of lava flows, Geol. Soc. Spec. Publ., 426, 337–343, https://doi.org/10.1144/SP426.8, 2015.
Kerr, R. C.: Thermal erosion by laminar lava flows, J. Geophys. Res.-Sol. Ea., 106, 453–465, https://doi.org/10.1029/2001JB000227, 2001.
Kervyn, M., Ernst, G. G. J., van Wyk de Vries, B., Mathieu, L., and Jacobs, P.: Volcano load control on dyke propagation and vent distribution: Insights from analogue modeling, J. Geophys. Res., 114, B03401, https://doi.org/10.1029/2008JB005653, 2009.
Keszthelyi, L.: A preliminary thermal budget for lava tubes on the Earth and planets, J. Geophys. Res.-Sol. Ea., 100, 411–420, 1995.
Keszthelyi, L. and Denlinger, R.: The initial cooling of pahoehoe flow lobes, B. Volcanol., 58, 5–18, https://doi.org/10.1007/s004450050121, 1996.
Kotsovinos, N. E.: Axisymmetric submerged intrusion in stratified fluid, J. Hydraul. Eng., 126, 446–456, https://doi.org/10.1061/(asce)0733-9429(2000)126:6(446), 2000.
Koyaguchi, T. and Takada, A.: An experimental study on the formation of composite intrusions from zoned magma chambers, J. Volcanol. Geoth. Res., 59, 261–267, https://doi.org/10.1016/0377-0273(94)90081-7, 1994.
Koyaguchi, T., Ochiai, K. and Suzuki, Y. J.: The effect of intensity of turbulence in umbrella cloud on tephra dispersion during explosive volcanic eruptions: Experimental and numerical approaches, J. Volcanol. Geoth. Res., 186, 68–78, 2009.
Kunii, D. and Levenspiel, O.: Fluidization engineering, Butterworth-Heinemann series in chemical engineering, MA, USA, 490 pp., 1991.
Lane, S. J., Chouet, B. A., Phillips, J. C., Dawson, P., Ryan, G. A., and Hurst, E.: Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system, J. Geophys. Res., 106, 6461–6476, https://doi.org/10.1029/2000jb900376, 2001.
Le Corvec, N., Menand, T., and Lindsay, J.: Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: An experimental approach, J. Geophys. Res.-Sol. Ea., 118, 968–984, https://doi.org/10.1002/jgrb.50142, 2013.
Le Corvec, N., McGovern, P. J., Grosfils, E. B. and Galgana, G.: Effects of crustal-scale mechanical layering on magma chamber failure and magma propagation within the Venusian lithosphere, J. Geophys. Res.-Planet, 120, 1279–1297, 2015.
Leitch, A. M.: Analog experiments on melting and contamination at the roof and walls of magma chambers, J. Volcanol. Geoth. Res., 129, 173–197, https://doi.org/10.1016/S0377-0273(03)00239-7, 2004.
Lejeune, A.-M. and Richet, P.: Rheology of crystal-bearing silicate melts: An experimental study at high viscosities, J. Geophys. Res., 100, 4215, https://doi.org/10.1029/94JB02985, 1995.
Leuthold, J., Müntener, O., Baumgartner, L. P., Putlitz, B., Ovtcharova, M., and Schaltegger, U.: Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia), Earth Planet. Sc. Lett., 325–326, 85–92, https://doi.org/10.1016/j.epsl.2012.01.032, 2012.
Lev, E., Spiegelman, M., Wysocki, R. J., and Karson, J. A.: Investigating lava flow rheology using video analysis and numerical flow models, J. Volcanol. Geoth. Res., 247–248, 62–73, https://doi.org/10.1016/J.JVOLGEORES.2012.08.002, 2012.
Lister, J. R.: Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors, J. Fluid Mech., 210, 263, https://doi.org/10.1017/S0022112090001288, 1990.
Llewellin, E. W., Mader, H. M., and Wilson, S. D. R.: The constitutive equation and flow dynamics of bubbly magmas, Geophys. Res. Lett., 29, 2170, https://doi.org/10.1029/2002GL015697, 2002a.
Llewellin, E. W., Mader, H. M., and Wilson, S. D. R.: The rheology of a bubbly liquid, P. Roy. Soc. A.-Math. Phy., 458, 987–1016, https://doi.org/10.1098/rspa.2001.0924, 2002b.
Longo, A., Papale, P., Vassalli, M., Saccorotti, G., Montagna, C. P., Cassioli, A., Giudice, S., and Boschi, E.: Magma convection and mixing dynamics as a source of Ultra-Long-Period oscillations, B. Volcanol., 74, 873–880, https://doi.org/10.1007/s00445-011-0570-0, 2011.
Loughlin, S. C., Sparks, S., Brown, S. K., Jenkins, S. F., and Vye-Brown, C.: Global volcanic hazards and risk, Cambridge University Press, Cambridge, UK, 393 pp., 2015.
Lube, G., Breard, E. C. P., Cronin, S. J., and Jones, J.: Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE, J. Geophys. Res.-Sol. Ea., 120, 1487–1502, https://doi.org/10.1002/2014JB011666, 2015.
Lundstrom, C. C. and Glazner, A. F.: Enigmatic relationships between silicic volcanic and plutonic rocks, Elements, 12, 154 pp., 2016a.
Lundstrom, C. C. and Glazner, A. F.: Silicic magmatism and the volcanic-plutonic connection, Elements, 12, 91–96, https://doi.org/10.2113/gselements.12.2.91, 2016b.
Lyman, A. W., Koenig, E., and Fink, J. H.: Predicting yield strengths and effusion rates of lava domes from morphology and underlying topography, J. Volcanol. Geoth. Res., 129, 125–138, https://doi.org/10.1016/S0377-0273(03)00236-1, 2004.
Maccaferri, F., Bonafede, M., and Rivalta, E.: A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation, J. Volcanol. Geoth. Res., 208, 39–50, https://doi.org/10.1016/j.jvolgeores.2011.09.001, 2011.
Maccaferri, F., Rivalta, E., Keir, D., and Acocella, V.: Off-rift volcanism in rift zones determined by crustal unloading, Nat. Geosci., 7, 297–300, https://doi.org/10.1038/ngeo2110, 2014.
Mader, H. M., Llewellin, E. W., and Mueller, S. P.: The rheology of two-phase magmas: A review and analysis, J. Volcanol. Geoth. Res., 257, 135–158, https://doi.org/10.1016/j.jvolgeores.2013.02.014, 2013.
Malthe-Sorensen, A., Planke, S., Svensen, H., and Jamtveit, B.: Formation of saucer-shaped sills, in: Physical geology of high-level magmatic systems, Geol. Soc. Spec. Publ, 234, 215–227, 2004.
Manga, M. and Loewenberg, M.: Viscosity of magmas containing highly deformable bubbles, J. Volcanol. Geoth. Res., 105, 19–24, https://doi.org/10.1016/S0377-0273(00)00239-0, 2001.
Manga, M., Castro, J., and Cashman, K. V: Rheology of bubble-bearing magmas, J. Volcanol. Geoth. Res., 87, 15–28, https://doi.org/10.1016/S0377-0273(98)00091-2, 1998.
Manville, V., Major, J. J., and Fagents, S. A.: Modeling lahar behavior and hazards, in: Modeling volcanic processes: the physics and mathematics of volcanism, edited by: Fagents, S. A., Gregg, T. K. P., and Lopes, R. M. C., 300–330, Cambridge University Press., 2013.
Manzella, I., Bonadonna, C., Phillips, J. C., and Monnard, H.: The role of gravitational instabilities in deposition of volcanic ash, Geology, 43, 211–214, https://doi.org/10.1130/G36252.1, 2015.
Mastin, L. G.: A user-friendly one-dimensional model for wet volcanic plumes, Geochem. Geophys. Geosys., 8, 1–24, https://doi.org/10.1029/2006GC001455, 2007.
Mathieu, L., van Wyk de Vries, B., Holohan, E. P., and Troll, V. R.: Dykes, cups, saucers and sills: Analogue experiments on magma intrusion into brittle rocks, Earth Planet. Sc. Lett., 271, 1–13, https://doi.org/10.1016/j.epsl.2008.02.020, 2008.
Mazzarini, F., Musumeci, G., Montanari, D., and Corti, G.: Relations between deformation and upper crustal magma emplacement in laboratory physical models, Tectonophysics, 484, 139–146, https://doi.org/10.1016/j.tecto.2009.09.013, 2010.
McGuire, W. J. and Pullen, A. D.: Location and orientation of eruptive fissures and feederdykes at Mount Etna; influence of gravitational and regional tectonic stress regimes, J. Volcanol. Geoth. Res., 38, 325–344, https://doi.org/10.1016/0377-0273(89)90046-2, 1989.
McLeod, P. and Tait, S.: The growth of dykes from magma chambers, J. Volcanol. Geoth. Res., 92, 231–246, https://doi.org/10.1016/S0377-0273(99)00053-0, 1999.
Menand, T. and Tait, S. R.: A phenomenological model for precursor volcanic eruptions., Nature, 411, 678–680, https://doi.org/10.1038/35079552, 2001.
Menand, T. and Tait, S. R.: The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach, J. Geophys. Res.-Sol. Ea., 107, 16–14, https://doi.org/10.1029/2001JB000589, 2002.
Menand, T., Daniels, K. A., and Benghiat, P.: Dyke propagation and sill formation in a compressive tectonic environment, J. Geophys. Res.-Sol. Ea., 115, 1–12, https://doi.org/10.1029/2009JB006791, 2010.
Merle, O.: The scaling of experiments on volcanic systems, Front. Earth Sci., 3, 1–15, https://doi.org/10.3389/feart.2015.00026, 2015.
Michaut, C.: Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon, J. Geophys. Res., 116, B05205, https://doi.org/10.1029/2010JB008108, 2011.
Miyamoto, H. and Sasaki, S.: Simulating lava flows by an improved cellular automata method, Comput. Geosci., 23, 283–292, https://doi.org/10.1016/S0098-3004(96)00089-1, 1997.
Miyamoto, H., Itoh, K., Kogure, J., Tosaka, H., Tokunaga, T., Fukui, K., and Mogi, K.: Experimental Studies on Non-Newtonian Fluid Flows as Analogues of Lava Flows: Toward a Numerical Model with a Cooling Crust, Theor. Appl. Mech., 50, 351–356, https://doi.org/10.11345/nctam.50.351, 2001.
Molina, I., Burgisser, A., and Oppenheimer, C.: Numerical simulations of convection in crystal-bearing magmas: A case study of the magmatic system at Erebus, Antarctica, J. Geophys. Res.-Sol. Ea., 117, B07209, https://doi.org/10.1029/2011JB008760, 2012.
Morton, B. R., Taylor, G., and Turner, J. S.: Turbulent Gravitational Convection from Maintained and Instantaneous Sources, P. Roy. Soc. A.-Math. Phy., 234, 1–23, https://doi.org/10.1098/rspa.1956.0011, 1956.
Mueller, S., Llewellin, E. W., and Mader, H. M.: The rheology of suspensions of solid particles, P. Roy. Soc. A.-Math. Phy., 466, 1201–1228, https://doi.org/10.1098/rspa.2009.0445, 2009.
Mueller, S., Llewellin, E. W., and Mader, H. M.: The effect of particle shape on suspension viscosity and implications for magmatic flows, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL047167, 2011.
Mueller, S. B., Kueppers, U., Ayris, P. M., Jacob, M., and Dingwell, D. B.: Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding, Earth Planet. Sc. Lett., 433, 232–240, https://doi.org/10.1016/j.epsl.2015.11.007, 2016.
Muller, J. R., Ito, G., and Martel, S. J.: Effects of volcano loading on dike propagation in an elastic half-space, J. Geophys. Res., 106, 11101–11113, https://doi.org/10.1029/2000JB900461, 2001.
Müller, G.: Starch columns: Analog model for basalt columns, J. Geophys. Res., 103, 15239, https://doi.org/10.1029/98JB00389, 1998.
Namiki, A., Rivalta, E., Woith, H., and Walter, T. R.: Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions, J. Volcanol. Geoth. Res., 320, 156–171, https://doi.org/10.1016/j.jvolgeores.2016.03.010, 2016.
Neri, A. and Dobran, F.: Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns, J. Geophys. Res., 99, 11833, https://doi.org/10.1029/94JB00471, 1994.
Nolan, M.: Levee Stability and The Evolution of “A”a Lava Flow-Fields, PhD thesis, University of Portsmouth, UK, 1–263, 2014.
Oppenheimer, J., Rust, A. C., Cashman, K. V., and Sandnes, B.: Gas migration regimes and outgassing in particle-rich suspensions, Front. Phys., 3, 1–13, https://doi.org/10.3389/fphy.2015.00060, 2015.
Orr, T. R. and Rea, J. C.: Time-lapse camera observations of gas piston activity at Pu'u “Ō”ō, Kīlauea volcano, Hawai'i, B. Volcanol., 74, 2353–2362, https://doi.org/10.1007/s00445-012-0667-0, 2012.
Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C., and Bachmann, O.: The mechanics of shallow magma reservoir outgassing, Geochem. Geophys. Geosys., 18, 2887–2905, https://doi.org/10.1002/2017GC006912, 2017.
Phillips, J. C. and Woods, A. W.: Bubble plumes generated during recharge of basaltic magma reservoirs, Earth Planet. Sc. Lett., 186, 297–309, https://doi.org/10.1016/S0012-821X(01)00221-7, 2001.
Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., and Bursik, M.: Computing granular avalanches and landslides, Phys. Fluids, 15, 3638–3646, https://doi.org/10.1063/1.1614253, 2003.
Pollard, D. D.: Derivation and evaluation of a mechanical model for sheet intrusions, Tectonophysics, 19, 233–269, https://doi.org/10.1016/0040-1951(73)90021-8, 1973.
Pollard, D. D. and Johnson, A. M.: Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II: Bending and failure of overburden layers and sill formation, Tectonophysics, 18, 311–354, https://doi.org/10.1016/0040-1951(73)90051-6, 1973.
Purtirka, K. D. and Cooper, K. M.: Volcanoes: From Mantle to Surface, Elements, 13, 74 pp., 2017.
Quareni, F., Tallarico, A., and Dragoni, M.: Modeling of the steady-state temperature field in lava flow levees, J. Volcanol. Geoth. Res., 132, 241–251, https://doi.org/10.1016/S0377-0273(03)00348-2, 2004.
Ramberg, H.: Model studies in relation to intrusion of plutonic bodies, in: Mechanism of igneous intrusion, edited by: Newall, G., and Rast, N., 261–288, Gallery Press, Liverpool, 1970.
Richter, D. H., Eaton, J. P., Murata, K. J., Ault, W. U., and Krivoy, H. L.: Chronological narrative of the 1959–60 eruption of Kīlauea volcano, Hawaii, Geological Society Professional Paper 537-E., United States Government Printing Office, Washington, 75 pp., 1970.
Rivalta, E., Böttinger, M., and Dahm, T.: Buoyancy-driven fracture ascent: Experiments in layered gelatine, J. Volcanol. Geoth. Res., 144, 273–285, https://doi.org/10.1016/j.jvolgeores.2004.11.030, 2005.
Rivalta, E., Taisne, B., Bunger, A. P., and Katz, R. F.: A review of mechanical models of dike propagation: Schools of thought, results and future directions, Tectonophysics, 638, 1–42, https://doi.org/10.1016/j.tecto.2014.10.003, 2015.
Roche, O.: Depositional processes and gas pore pressure in pyroclastic flows: An experimental perspective, B. Volcanol., 74, 1807–1820, https://doi.org/10.1007/s00445-012-0639-4, 2012.
Roman, A. and Jaupart, C.: Postemplacement dynamics of basaltic intrusions in the continental crust, J. Geophys. Res.-Sol. Ea., 122, 966–987, https://doi.org/10.1002/2016JB013912, 2017.
Roman-Berdiel, T.: Geometry of granite emplacement in the upper crust: contributions of analogue modelling, Geol. Soc. Spec. Publ., 168, 77–94, https://doi.org/10.1144/GSL.SP.1999.168.01.06, 1999.
Roman-Berdiel, T., Gapais, D., and Brun, J. P.: Analogue models of laccolith formation, J. Struct. Geol., 17, 1337–1346, https://doi.org/10.1016/0191-8141(95)00012-3, 1995.
Roman-Berdiel, T., Gapais, D., and Brun, J.-P.: Granite intrusion along strike-slip zones in experiment and nature, Am. J. Sci., 297, 651–678, https://doi.org/10.2475/ajs.297.6.651, 1997.
Rongo, R., Lupiano, V., Spataro, W., D'ambrosio, D., Iovine, G., and Crisci, G. M.: SCIARA: cellular automata lava flow modelling and applications in hazard prediction and mitigation, Geol. Soc. Spec. Publ., 426, 345–356, https://doi.org/10.1144/SP426.22, 2016.
Rossetti, F., Ranalli, G., and Faccenna, C.: Rheological properties of paraffin as an analogue material for viscous crustal deformation, J. Struct. Geol., 21, 413–417, 1999.
Rowley, P. J., Roche, O., Druitt, T. H., and Cas, R.: Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows, B. Volcanol., 76, 1–13, https://doi.org/10.1007/s00445-014-0855-1, 2014.
Ruprecht, P., Bergantz, G. W., and Dufek, J.: Modeling of gas-driven magmatic overturn: Tracking of phenocryst dispersal and gathering during magma mixing, Geochem. Geophys. Geosys., 9, https://doi.org/10.1029/2008GC002022, 2008.
Rust, A. C. and Manga, M.: Bubble Shapes and Orientations in Low Re Simple Shear Flow, J. Colloid Interf. Sci., 249, 476–480, https://doi.org/10.1006/jcis.2002.8292, 2002a.
Rust, A. C. and Manga, M.: Effects of bubble deformation on the viscosity of dilute suspensions, J. Non.-Newton. Fluid., 104, 53–63, https://doi.org/10.1016/S0377-0257(02)00013-7, 2002b.
Ruzicka, B. and Zaccarelli, E.: A fresh look at the Laponite phase diagram, Soft Matter, 7, 1268, https://doi.org/10.1039/c0sm00590h, 2011.
Saumur, B. M., Cruden, A. R., and Boutelier, D.: Sulfide liquid entrainment by silicate magma: Implications for the dynamics and petrogenesis of magmatic sulfide deposits, J. Petrol., 56, 2473–2490, https://doi.org/10.1093/petrology/egv080, 2016.
Savitski, A. A. and Detournay, E.: Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions, Int. J. Solids Struct., 39, 6311–6337, 2002.
Scheibert, J., Galland, O., and Hafver, A.: Inelastic deformation during sill and laccolith emplacement: Insights from an analytic elastoplastic model, J. Geophys. Res.-Sol. Ea., 122, 923–945, https://doi.org/10.1002/2016JB013754, 2017.
Schellart, W. P.: Rheology and density of glucose syrup and honey: Determining their suitability for usage in analogue and fluid dynamic models of geological processes, J. Struct. Geol., 33, 1079–1088, https://doi.org/10.1016/j.jsg.2011.03.013, 2011.
Schilling, S.: Laharz_py: GIS Tools for Automated Mapping of Lahar Inundation Hazard Zones, U.S. Geol. Surv., Open-File Report 2014-1073, 78 pp., https://doi.org/10.3133/ofr20141073, 2014.
Schmiedel, T., Galland, O., and Breitkreuz, C.: Dynamics of Sill and Laccolith Emplacement in the Brittle Crust: Role of Host Rock Strength and Deformation Mode, J. Geophys. Res.-Sol. Ea., 122, 8860–8871, https://doi.org/10.1002/2017JB014468, 2017.
Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden, A. R., Daniel, J.-M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., Del Ventisette, C., Brady, J. A. E., Hoffmann-Rothe, A., Mengus, J.-M., Montanari, D., and Nilforoushan, F.: Analogue benchmarks of shortening and extension experiments, Geol. Soc. Spec. Publ., 253, 1–27, https://doi.org/10.1144/GSL.SP.2006.253.01.01, 2006.
Scollo, S., Tarantola, S., Bonadonna, C., Coltelli, M., and Saltelli, A.: Sensitivity analysis and uncertainty estimation for tephra dispersal models, J. Geophys. Res.-Sol. Ea., 113, 1–17, https://doi.org/10.1029/2006JB004864, 2008.
Sheets, P.: Volcanoes, Ancient People, and Their Societies, in: The Encyclopedia of Volcanoes (second edition), edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., Elsevier, 1313-1319, https://doi.org/10.1016/B978-0-12-385938-9.00076-6, 2015.
Sigmundsson, F., Hooper, A., Hreinsdóttir, S., Vogfjörd, K. S., Ófeigsson, B. G., Heimisson, E. R., Dumont, S., Parks, M., Spaans, K., Gudmundsson, G. B., Drouin, V., Árnadóttir, T., Jónsdóttir, K., Gudmundsson, M. T., Högnadóttir, T., Fridriksdóttir, H. M., Hensch, M., Einarsson, P., Magnússon, E., Samsonov, S., Brandsdóttir, B., White, R. S., Ágústsdóttir, T., Greenfield, T., Green, R. G., Hjartardóttir, Á. R., Pedersen, R., Bennett, R. A., Geirsson, H., La Femina, P. C., Björnsson, H., Pálsson, F., Sturkell, E., Bean, C. J., Möllhoff, M., Braiden, A. K., and Eibl, E. P. S.: Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland, Nature, 517, 191–195, https://doi.org/10.1038/nature14111, 2014.
Sigurdsson, H.: Volcanoes in Art, in: The Encyclopedia of Volcanoes (second edition), edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H. and Stix, J., Elsevier, 1321–1343, 2015a.
Sigurdsson, H.: The History of Volcanology, in: The Encyclopedia of Volcanoes (second edition), edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., Elsevier, 13–32, 2015b.
Soule, S. A. and Cashman, K. V.: Shear rate dependence of the pāhoehoe-to-'a 'ā transition: Analog experiments, Geology, 33, 361–364, https://doi.org/10.1130/G21269.1, 2005.
Sparks, R. S. J.: The dimensions and dynamics of volcanic eruption columns, B. Volcanol., 48, 3–15, https://doi.org/10.1007/BF01073509, 1986.
Sparks, R. S. J.: The legacy of George Walker to volcanology, in: Studies in Volcanology: The legacy of George Walker, The Geological Society of London, Bath, UK, 1–16., 2009.
Sparks, R. S. J. and Cashman, K. V.: Dynamic magma systems: Implications for forecasting volcanic activity, Elements, 13, 35–40, https://doi.org/10.2113/gselements.13.1.35, 2017.
Sparks, R. S. J. and Wilson, L.: A model for the formation of ignimbrite by gravitational column collapse, J. Geol. Soc. London, 132, 441–451, https://doi.org/10.1144/gsjgs.132.4.0441, 1976.
Sparks, R. S. J., Bonnecaze, R. T., Huppert, H. E., Lister, J. R., Hallworth, M. A., Mader, H., and Phillips, J.: Sediment-laden gravity currents with reversing buoyancy, Earth Planet. Sc. Lett., 114, 243–257, https://doi.org/10.1016/0012-821X(93)90028-8, 1993.
Spence, D. A., Sharp, P. W., and Turcotte, D. L.: Buoyancy-driven crack propagation: a mechanism for magma migration, J. Fluid Mech., 174, 135, https://doi.org/10.1017/S0022112087000077, 1987.
Stasiuk, M., Jaupart, C. and Sparks, R. S. J.: Influence of cooling on lava flow dynamics, Geology, 21, 335–338, 1993.
Sulpizio, R. and Dellino, P.: Sedimentology, Depositional Mechanisms and Pulsating Behaviour of Pyroclastic Density Currents, Dev. Volcanol., 10, 57–96, https://doi.org/10.1016/S1871-644X(07)00002-2, 2008.
Suzuki, Y. J. and Koyaguchi, T.: A three-dimensional numerical simulation of spreading umbrella clouds, J. Geophys. Res., 114, 1–18, https://doi.org/10.1029/2007JB005369, 2009.
Suzuki, Y. J. and Koyaguchi, T.: 3-D numerical simulations of eruption column collapse: Effects of vent size on pressure-balanced jet/plumes, J. Volcanol. Geoth. Res., 221–222, 1–13, https://doi.org/10.1016/j.jvolgeores.2012.01.013, 2012.
Suzuki, Y. J. and Koyaguchi, T.: Effects of wind on entrainment efficiency in volcanic plumes, J. Geophys. Res.-Sol. Ea., 120, 6122–6140, https://doi.org/10.1002/2015JB012208, 2015.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, https://doi.org/10.1038/nature02566, 2004.
Taisne, B. and Tait, S.: Effect of solidification on a propagating dike, J. Geophys. Res.-Sol. Ea., 116, 1–14, https://doi.org/10.1029/2009JB007058, 2011.
Taisne, B., Tait, S., and Jaupart, C.: Conditions for the arrest of a vertical propagating dyke, B. Volcanol., 73, 191–204, https://doi.org/10.1007/s00445-010-0440-1, 2011.
Takada, A.: Experimental study on propagation of liquid-filled crack in gelatin: Shape and velocity in hydrostatic stress condition, J. Geophys. Res., 95, 8471, https://doi.org/10.1029/JB095iB06p08471, 1990.
Tarquini, S. and Favalli, M.: Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna, J. Volcanol. Geoth. Res., 204, 27–39, https://doi.org/10.1016/J.JVOLGEORES.2011.05.001, 2011.
Thorey, C. and Michaut, C.: Elastic-plated gravity currents with a temperature-dependent viscosity, J. Fluid Mech., 805, 88–117, https://doi.org/10.1017/jfm.2016.538, 2016.
Tortini, R., Bonali, F. L., Corazzato, C., Carn, S. A., and Tibaldi, A.: An innovative application of the Kinect in Earth sciences: quantifying deformation in analogue modelling of volcanoes, Terra Nov., 26, 273–281, https://doi.org/10.1111/ter.12096, 2014.
Truby, J. M., Mueller, S. P., Llewellin, E. W., and Mader, H. M.: The rheology of three-phase suspensions at low bubble capillary number, P. Roy. Soc. A.-Math. Phy., 471, 20140557, https://doi.org/10.1098/rspa.2014.0557, 2015.
Turner, J. S., Huppert, H. E., and Sparks, R. S. J.: An experimental investigation of volatile exsolution in evolving magma chambers, J. Volcanol. Geoth. Res., 16, 263–277, https://doi.org/10.1016/0377-0273(83)90033-1, 1983.
Valentine, G. A., Wohletz, K. H., and Kieffer, S. W.: Effects of topography on facies and compositional zonation in caldera-related ignimbrites, Geol. Soc. Am. Bull., 104, 154–165, https://doi.org/10.1130/0016-7606(1992)104<0154:EOTOFA>2.3.CO;2, 1992.
Valentine, G. A., Graettinger, A. H., Macorps, É., Ross, P. S., White, J. D. L., Döhring, E., and Sonder, I.: Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes, B. Volcanol., 77, 1–17, https://doi.org/10.1007/s00445-015-0901-7, 2015.
Vicari, A., Alexis, H., Del Negro, C., Coltelli, M., Marsella, M., and Proietti, C.: Modeling of the 2001 lava flow at Etna volcano by a Cellular Automata approach, Environ. Model. Softw., 22, 1465–1471, https://doi.org/10.1016/j.envsoft.2006.10.005, 2007.
Walker, G. P. L.: Zeolite Zones and Dike Distribution in Relation to the Structure of the Basalts of Eastern Iceland, J. Geol., 68, 515–528, 1960.
Walker, G. P. L.: Thickness and Viscosity of Etnean Lavas, Nature, 213, 484–485, https://doi.org/10.1038/213484a0, 1967.
Walker, G. P. L., Wilson, L., and Bowell, E. L. G.: Explosive volcanic eruptions – I The rate of fall of pyroclast, Geophys. J. Roy. Astr. S., 22, 377–383, https://doi.org/10.1111/j.1365-246X.1971.tb03607.x, 1971.
Walter, T. R. and Troll, V. R.: Experiments on rift zone evolution in unstable volcanic edifices, J. Volcanol. Geoth. Res., 127, 107–120, https://doi.org/10.1016/S0377-0273(03)00181-1, 2003.
Watanabe, T., Masuyama, T., Nagaoka, K., and Tahara, T.: Analog experiments on magma-filled cracks: Competition between external stresses and internal pressure, Earth Planets Space, 54, 1247–1261, https://doi.org/10.1186/BF03352453, 2002.
Weertman, J.: Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges, J. Geophys. Res., 76, 1171–1183, https://doi.org/10.1029/JB076i005p01171, 1971.
Weinberg, R. F. and Leitch, A. M.: Mingling in mafic magma chambers replenished by light felsic inputs: fluid dynamical experiments, Earth Planet. Sc. Lett., 157, 41–56, https://doi.org/10.1016/S0012-821X(98)00025-9, 1998.
Williams, R., Stinton, A. J., and Sheridan, M. F.: Evaluation of the Titan2D two-phase flow model using an actual event: Case study of the 2005 Vazcún Valley Lahar, J. Volcanol. Geoth. Res., 177, 760–766, https://doi.org/10.1016/j.jvolgeores.2008.01.045, 2008.
Wilson, L. and Walker, G. P. L.: Explosive volcanic eruptions – VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties, Geophys. J. Int., 89, 657–679, https://doi.org/10.1111/j.1365-246X.1987.tb05186.x, 1987.
Wilson, L., Sparks, R. S. J., Huang, T. C., and Watkins, N. D.: The control of volcanic column heights by eruption energetics and dynamics, J. Geophys. Res.-Sol. Ea., 83, 1829–1836, https://doi.org/10.1029/JB083iB04p01829, 1978.
Witham, F., Woods, A. W., and Gladstone, C.: An analogue experimental model of depth fluctuations in lava lakes, B. Volcanol., 69, 51–56, https://doi.org/10.1007/s00445-006-0055-8, 2006.
Woodhouse, M. J., Hogg, A. J., Phillips, J. C., and Sparks, R. S. J.: Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland, J. Geophys. Res.-Sol. Ea., 118, 92–109, https://doi.org/10.1029/2012JB009592, 2013.
Woods, A. W.: The fluid dynamics and thermodynamics of eruption columns, B. Volcanol., 50, 169–193, https://doi.org/10.1007/BF01079681, 1988.
Woods, A. W. and Bursik, M. I.: A laboratory study of ash flows, J. Geophys. Res., 99, 4375–4394, https://doi.org/10.1029/93JB02224, 1994.
Woods, A. W. and Caulfield, C. P.: A Laboratory Sudy of Explosive Volcanic Eruptions, J. Geophys. Res., 97, 6699–6712, 1992.
Závada, P., Kratinová, Z., Kusbach, V., and Schulmann, K.: Internal fabric development in complex lava domes, Tectonophysics, 466, 101–113, https://doi.org/10.1016/j.tecto.2008.07.005, 2009.
Zhao, C., Hobbs, B. E., Ord, A., and Peng, S.: Particle simulation of spontaneous crack generation associated with the laccolithic type of magma intrusion processes, Int. J. Numer. Methods Eng., 75, 1172–1193, https://doi.org/10.1002/nme.2287, 2008.
Short summary
Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first described by Sir James Hall in 1815. Models are informed by observations of volcanic processes in nature, including eye-witness accounts of eruptions, monitoring of active volcanoes, and analysis of ancient deposits. To push the frontiers in volcanology we must adopt a multidisciplinary approach, with more interaction between analogue and numerical modelling communities.
Modelling has been used in the study of volcanic systems for more than 100 years, building upon...