Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1247-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-1247-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The enigmatic curvature of Central Iberia and its puzzling kinematics
Daniel Pastor-Galán
CORRESPONDING AUTHOR
Frontier Research Institute for Interdisciplinary Sciences, Tohoku
University, 41 Kawauchi,
Aoba-ku, Sendai, Miyagi 980-8576, Japan
Department of Earth Science, Tohoku University, 41 Kawauchi,
Aoba-ku, Sendai, Miyagi 980-8576, Japan
Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi,
Aoba-ku, Sendai, Miyagi 980-8576, Japan
Invited contribution by Daniel Pastor-Galán, recipient of the EGU Tectonics and Structural Geology Division Outstanding Early Career Scientists Award 2019.
Gabriel Gutiérrez-Alonso
Dept. of Geology, Faculty of Sciences, University of Salamanca, Plaza
de la Merced s/n, Salamanca 38007, Spain
Geology and Geography Department, Tomsk State University, Lenin
Street 36, Tomsk 634050, Russia
Arlo B. Weil
Department of Geology, Bryn Mawr College, Bryn Mawr, PA 19010, USA
Related authors
No articles found.
Emilio González Clavijo, Ícaro Dias da Silva, José R. Martínez Catalán, Juan Gómez Barreiro, Gabriel Gutiérrez-Alonso, Alejandro Díez Montes, Mandy Hofmann, Andreas Gärtner, and Ulf Linnemann
Solid Earth, 12, 835–867, https://doi.org/10.5194/se-12-835-2021, https://doi.org/10.5194/se-12-835-2021, 2021
Short summary
Short summary
In northwest Iberia, a low-grade unit separates the unrooted accretionary prism from the autochthon. It was divided into Upper (preorogenic) and Lower (synorogenic) parautochthons around the Morais Complex. A review of the sedimentary sequence characteristics, supported by U–Pb ages in 17 new samples of synorogenic sediments and volcanic olistoliths, proposes this model to show the Galicia–Trás-os-Montes Zone forming a tectonic carpet exposed in most of the Parautochthon–Autochthon limit.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Construction of the Ukrainian Carpathian Wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Effects of basal drag on subduction dynamics from 2D numerical models
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)
Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes
Seismic reflection data reveal the 3D structure of the newly discovered Exmouth Dyke Swarm, offshore NW Australia
Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite
Uncertainties in break-up markers along the Iberia–Newfoundland margins illustrated by new seismic data
Tectonic inheritance controls nappe detachment, transport and stacking in the Helvetic nappe system, Switzerland: insights from thermomechanical simulations
Can subduction initiation at a transform fault be spontaneous?
The Geodynamic World Builder: a solution for complex initial conditions in numerical modeling
From mapped faults to fault-length earthquake magnitude (FLEM): a test on Italy with methodological implications
Lithosphere tearing along STEP faults and synkinematic formation of lherzolite and wehrlite in the shallow subcontinental mantle
A systematic comparison of experimental set-ups for modelling extensional tectonics
Improving subduction interface implementation in dynamic numerical models
The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults
The Ulakhan fault surface rupture and the seismicity of the Okhotsk–North America plate boundary
Control of increased sedimentation on orogenic fold-and-thrust belt structure – insights into the evolution of the Western Alps
Anticlockwise metamorphic pressure–temperature paths and nappe stacking in the Reisa Nappe Complex in the Scandinavian Caledonides, northern Norway: evidence for weakening of lower continental crust before and during continental collision
Deformation of feldspar at greenschist facies conditions – the record of mylonitic pegmatites from the Pfunderer Mountains, Eastern Alps
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
EGUsphere, https://doi.org/10.5194/egusphere-2022-828, https://doi.org/10.5194/egusphere-2022-828, 2022
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial and subsequent exhumation of the wedge’s nappes, from 34 to ~12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Torsten Hundebøl Hansen, Ole Rønø Clausen, and Katrine Juul Andresen
Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, https://doi.org/10.5194/se-12-1719-2021, 2021
Short summary
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Short summary
Many of the world's hydrocarbon resources are found in rifted sedimentary basins. Some rifts experience multiple phases of extension and inversion. This results in complicated oil and gas generation, migration, and entrapment histories. We present examples of basins in the Western Desert of Egypt and the western Black Sea that were inverted multiple times, sometimes separated by additional phases of extension. We then discuss how these complex deformation histories impact exploration campaigns.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Manfred Lafosse, Elia d'Acremont, Alain Rabaute, Ferran Estrada, Martin Jollivet-Castelot, Juan Tomas Vazquez, Jesus Galindo-Zaldivar, Gemma Ercilla, Belen Alonso, Jeroen Smit, Abdellah Ammar, and Christian Gorini
Solid Earth, 11, 741–765, https://doi.org/10.5194/se-11-741-2020, https://doi.org/10.5194/se-11-741-2020, 2020
Short summary
Short summary
The Alboran Sea is one of the most active region of the Mediterranean Sea. There, the basin architecture records the effect of the Africa–Eurasia plates convergence. We evidence a Pliocene transpression and a more recent Pleistocene tectonic reorganization. We propose that main driving force of the deformation is the Africa–Eurasia convergence, rather than other geodynamical processes. It highlights the evolution and the geometry of the present-day Africa–Eurasia plate boundary.
Dan J. Clark, Sarah Brennand, Gregory Brenn, Matthew C. Garthwaite, Jesse Dimech, Trevor I. Allen, and Sean Standen
Solid Earth, 11, 691–717, https://doi.org/10.5194/se-11-691-2020, https://doi.org/10.5194/se-11-691-2020, 2020
Short summary
Short summary
A magnitude 5.3 reverse-faulting earthquake in September 2018 near Lake Muir in southwest Western Australia was followed after 2 months by a collocated magnitude 5.2 strike-slip event. The first event produced a ~ 5 km long and up to 0.5 m high west-facing surface rupture, and the second triggered event deformed but did not rupture the surface. The earthquake sequence was the ninth to have produced surface rupture in Australia. None of these show evidence for prior Quaternary surface rupture.
Craig Magee and Christopher Aiden-Lee Jackson
Solid Earth, 11, 579–606, https://doi.org/10.5194/se-11-579-2020, https://doi.org/10.5194/se-11-579-2020, 2020
Short summary
Short summary
Injection of vertical sheets of magma (dyke swarms) controls tectonic and volcanic processes on Earth and other planets. Yet we know little of the 3D structure of dyke swarms. We use seismic reflection data, which provides ultrasound-like images of Earth's subsurface, to study a dyke swarm in 3D for the first time. We show that (1) dyke injection occurred in the Late Jurassic, (2) our data support previous models of dyke shape, and (3) seismic data provides a new way to view and study dykes.
Emmanuelle Ricchi, Christian A. Bergemann, Edwin Gnos, Alfons Berger, Daniela Rubatto, Martin J. Whitehouse, and Franz Walter
Solid Earth, 11, 437–467, https://doi.org/10.5194/se-11-437-2020, https://doi.org/10.5194/se-11-437-2020, 2020
Short summary
Short summary
This study investigates Cenozoic deformation during cooling and exhumation of the Tauern metamorphic and structural dome, Eastern Alps, through Th–Pb dating of fissure monazite-(Ce). Fissure (or hydrothermal) monazite-(Ce) typically crystallizes in a temperature range of 400–200 °C. Three major episodes of monazite growth occurred at approximately 21, 17, and 12 Ma, corroborating previous crystallization and cooling ages.
Annabel Causer, Lucía Pérez-Díaz, Jürgen Adam, and Graeme Eagles
Solid Earth, 11, 397–417, https://doi.org/10.5194/se-11-397-2020, https://doi.org/10.5194/se-11-397-2020, 2020
Short summary
Short summary
Here we discuss the validity of so-called “break-up” markers along the Newfoundland margin, challenging their perceived suitability for plate kinematic reconstructions of the southern North Atlantic. We do this on the basis of newly available seismic transects across the Southern Newfoundland Basin. Our new data contradicts current interpretations of the extent of oceanic lithosphere and illustrates the need for a differently constraining the plate kinematics of the Iberian plate pre M0 times.
Dániel Kiss, Thibault Duretz, and Stefan Markus Schmalholz
Solid Earth, 11, 287–305, https://doi.org/10.5194/se-11-287-2020, https://doi.org/10.5194/se-11-287-2020, 2020
Short summary
Short summary
In this paper, we investigate the physical mechanisms of tectonic nappe formation by high-resolution numerical modeling. Tectonic nappes are key structural features of many mountain chains which are packets of rocks displaced, sometimes even up to 100 km, from their original position. However, the physical mechanisms involved are not fully understood. We solve numerical equations of fluid and solid dynamics to improve our knowledge. The results are compared with data from the Helvetic Alps.
Diane Arcay, Serge Lallemand, Sarah Abecassis, and Fanny Garel
Solid Earth, 11, 37–62, https://doi.org/10.5194/se-11-37-2020, https://doi.org/10.5194/se-11-37-2020, 2020
Short summary
Short summary
We propose a new exploration of the concept of
spontaneouslithospheric collapse at a transform fault (TF) by performing a large study of conditions allowing instability of the thicker plate using 2-D thermomechanical simulations. Spontaneous subduction is modelled only if extreme mechanical conditions are assumed. We conclude that spontaneous collapse of the thick older plate at a TF evolving into mature subduction is an unlikely process of subduction initiation at modern Earth conditions.
Menno Fraters, Cedric Thieulot, Arie van den Berg, and Wim Spakman
Solid Earth, 10, 1785–1807, https://doi.org/10.5194/se-10-1785-2019, https://doi.org/10.5194/se-10-1785-2019, 2019
Short summary
Short summary
Three-dimensional numerical modelling of geodynamic processes may benefit strongly from using realistic 3-D starting models that approximate, e.g. natural subduction settings in the geological past or at present. To this end, we developed the Geodynamic World Builder (GWB), which enables relatively straightforward parameterization of complex 3-D geometric structures associated with geodynamic processes. The GWB is an open-source community code designed to easily interface with geodynamic codes.
Fabio Trippetta, Patrizio Petricca, Andrea Billi, Cristiano Collettini, Marco Cuffaro, Anna Maria Lombardi, Davide Scrocca, Giancarlo Ventura, Andrea Morgante, and Carlo Doglioni
Solid Earth, 10, 1555–1579, https://doi.org/10.5194/se-10-1555-2019, https://doi.org/10.5194/se-10-1555-2019, 2019
Short summary
Short summary
Considering all mapped faults in Italy, empirical scaling laws between fault dimensions and earthquake magnitude are used at the national scale. Results are compared with earthquake catalogues. The consistency between our results and the catalogues gives credibility to the method. Some large differences between the two datasets suggest the validation of this experiment elsewhere.
Károly Hidas, Carlos J. Garrido, Guillermo Booth-Rea, Claudio Marchesi, Jean-Louis Bodinier, Jean-Marie Dautria, Amina Louni-Hacini, and Abla Azzouni-Sekkal
Solid Earth, 10, 1099–1121, https://doi.org/10.5194/se-10-1099-2019, https://doi.org/10.5194/se-10-1099-2019, 2019
Short summary
Short summary
Subduction-transform edge propagator (STEP) faults are the locus of continual lithospheric tearing at the edges of subducted slabs, resulting in sharp changes in the lithospheric thickness and triggering lateral and/or near-vertical mantle flow. Here, we study upper mantle rocks recovered from a STEP fault context by < 4 Ma alkali volcanism. We reconstruct how the microstructure developed during deformation and coupled melt–rock interaction, which are promoted by lithospheric tearing at depth.
Frank Zwaan, Guido Schreurs, and Susanne J. H. Buiter
Solid Earth, 10, 1063–1097, https://doi.org/10.5194/se-10-1063-2019, https://doi.org/10.5194/se-10-1063-2019, 2019
Short summary
Short summary
This work was inspired by an effort to numerically reproduce laboratory models of extension tectonics. We tested various set-ups to find a suitable analogue model and in the process systematically charted the impact of set-ups and boundary conditions on model results, a topic poorly described in existing scientific literature. We hope that our model results and the discussion on which specific tectonic settings they could represent may serve as a guide for future (analogue) modeling studies.
Dan Sandiford and Louis Moresi
Solid Earth, 10, 969–985, https://doi.org/10.5194/se-10-969-2019, https://doi.org/10.5194/se-10-969-2019, 2019
Short summary
Short summary
This study investigates approaches to implementing plate boundaries within a fluid dynamic framework, targeted at the evolution of subduction over many millions of years.
Marco Cuffaro, Andrea Billi, Sabina Bigi, Alessandro Bosman, Cinzia G. Caruso, Alessia Conti, Andrea Corbo, Antonio Costanza, Giuseppe D'Anna, Carlo Doglioni, Paolo Esestime, Gioacchino Fertitta, Luca Gasperini, Francesco Italiano, Gianluca Lazzaro, Marco Ligi, Manfredi Longo, Eleonora Martorelli, Lorenzo Petracchini, Patrizio Petricca, Alina Polonia, and Tiziana Sgroi
Solid Earth, 10, 741–763, https://doi.org/10.5194/se-10-741-2019, https://doi.org/10.5194/se-10-741-2019, 2019
Short summary
Short summary
The Ionian Sea in southern Italy is at the center of active convergence between the Eurasian and African plates, with many known
Mw > 7.0 earthquakes. Here, a recently discovered mud volcano (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). The BMV is the active emergence of crustal fluids probably squeezed up during the seismic cycle. As such, the BMV may potentially be used to track the seismic cycle of active faults.
David Hindle, Boris Sedov, Susanne Lindauer, and Kevin Mackey
Solid Earth, 10, 561–580, https://doi.org/10.5194/se-10-561-2019, https://doi.org/10.5194/se-10-561-2019, 2019
Short summary
Short summary
On one of the least studied boundaries between tectonic plates (North America–Okhotsk in northeastern Russia), which moves very similarly to the famous San Andreas fault in California, we have found the traces of earthquakes from the recent past, but before the time of historical records. This makes us a little more sure that the fault is still the place where movement between the plates takes place, and when it happens again, there could be dangerous earthquakes.
Zoltán Erdős, Ritske S. Huismans, and Peter van der Beek
Solid Earth, 10, 391–404, https://doi.org/10.5194/se-10-391-2019, https://doi.org/10.5194/se-10-391-2019, 2019
Short summary
Short summary
We used a 2-D thermomechanical code to simulate the evolution of an orogen. Our aim was to study the interaction between tectonic and surface processes in orogenic forelands. We found that an increase in the sediment input to the foreland results in prolonged activity of the active frontal thrust. Such a scenario could occur naturally as a result of increasing relief in the orogenic hinterland or a change in climatic conditions. We compare our results with observations from the Alps.
Carly Faber, Holger Stünitz, Deta Gasser, Petr Jeřábek, Katrin Kraus, Fernando Corfu, Erling K. Ravna, and Jiří Konopásek
Solid Earth, 10, 117–148, https://doi.org/10.5194/se-10-117-2019, https://doi.org/10.5194/se-10-117-2019, 2019
Short summary
Short summary
The Caledonian mountains formed when Baltica and Laurentia collided around 450–400 million years ago. This work describes the history of the rocks and the dynamics of that continental collision through space and time using field mapping, estimated pressures and temperatures, and age dating on rocks from northern Norway. The rocks preserve continental collision between 440–430 million years ago, and an unusual pressure–temperature evolution suggests unusual tectonic activity prior to collision.
Felix Hentschel, Claudia A. Trepmann, and Emilie Janots
Solid Earth, 10, 95–116, https://doi.org/10.5194/se-10-95-2019, https://doi.org/10.5194/se-10-95-2019, 2019
Short summary
Short summary
We used microscopy and electron backscatter diffraction to analyse the deformation behaviour of feldspar at greenschist facies conditions in mylonitic pegmatites of the Austroalpine basement. There are strong uncertainties about feldspar deformation, mainly because of the varying contributions of different deformation processes. We observed that deformation is mainly the result of coupled fracturing and dislocation glide, followed by growth and granular flow.
Cited articles
Ábalos, B., Carreras, J., Druguet, E., Escuder Viruete, J., Gómez
Pugnaire, M. T., Lorenzo Álvarez, S., Quesada, C., Rodríguez
Fernández, L. R., and Gil-Ibarguchi, J. I.: Variscan and pre-Variscan
tectonics, in: The geology of Spain, edited by: Gibbons, W. and Moreno, T., Geological Society of London, London, 155–183, 2002.
Aerden, D.: Correlating deformation in Variscan NW-Iberia using
porphyroblasts; implications for the Ibero-Armorican Arc, J. Struct. Geol.,
26, 177–196, 2004.
Alcock, J. E., Catalán, J. R. M., Arenas, R., and Montes, A. D.: Use of
thermal modeling to assess the tectono-metamorphic history of the Lugo and
Sanabria gneiss domes, Northwest Iberia, B. Soc.
Geol. Fr., 180, 179–197, https://doi.org/10.2113/gssgfbull.180.3.179, 2009.
Aller, J., Bastida, F., and Bobillo-Ares, N. C.: On the development of
kink-bands: A case study in the West Asturian-Leonese Zone (Variscan belt,
NW Spain)/Sur le développement des kink-bands?: un exemple dans le
Zone Astur Occidentale-léonaise (chaîne varisque ibérique,
nord-ouest de l'Espagne), B. Soc. Geol. Fr., 191, 6,
https://doi.org/10.1051/bsgf/2020003, 2020.
Aller, J. J. J. and Gallastegui, J. J.: Analysis of kilometric-scale
superposed folding in the Central Coal Basin (Cantabrian zone, NW Spain), J.
Struct. Geol., 17, 961–969, https://doi.org/10.1016/0191-8141(94)00115-G, 1995.
Alonso, J. L., Marcos, A., and Suárez, A.: Paleogeographic inversion
resulting from large out of sequence breaching thrusts: The León Fault
(Cantabrian zone, NW Iberia). A new picture of the external Variscan thrust
belt in the Ibero-Armorican arc, Geol. Acta, 7, 451–473,
https://doi.org/10.1344/105.000001449, 2009.
Álvaro, J. J., Casas, J. M., Clausen, S., and Quesada, C.: Early
Palaeozoic geodynamics in NW Gondwana, J. Iber. Geol., 44, 551–565,
https://doi.org/10.1007/s41513-018-0079-x, 2018.
Ardizone, J., Mezcua, J., and Socías, I.: Mapa aeromagnético
de España peninsular, Instituto Geográfico Nacional, Spain, 1989.
Aramburu, C., Méndez-Bedia, I., and Arbizu, M.: The Lower Palaeozoic in
the Cantabrian Zone (Cantabrian Mountains, NW Spain), in: Paleozoic conodonts from north Spain, edited by:
García-López, S. and Bastida, F., Cuad Mus Geomin, 1, 35–49, Madrid, Spain, 2002.
Arango, C., Díez Fernández, R., and Arenas, R.: Large-scale
flat-lying isoclinal folding in extending lithosphere: Santa María de
la Alameda dome (Central Iberian Massif, Spain), Lithosphere, 5,
483–500, https://doi.org/10.1130/L270.1, 2013.
Arenas, R., Sánchez Martínez, S., Díez Fernández, R.,
Gerdes, A., Abati, J., Fernández-Suárez, J., Andonaegui, P.,
González Cuadra, P., López Carmona, A., Albert, R., Fuenlabrada, J.
M., and Rubio Pascual, F. J.: Allochthonous terranes involved in the Variscan
suture of NW Iberia: A review of their origin and tectonothermal evolution,
Earth-Sci. Rev., 161, 140–178, https://doi.org/10.1016/j.earscirev.2016.08.010, 2016.
Ayala, C., Bohoyo, F., Maestro, A., Reguera, M. I., Torne, M., Rubio, F.,
Fernàndez, M., and García-Lobón, J. L.: Updated Bouguer
anomalies of the Iberian Peninsula: a new perspective to interpret the
regional geology, J. Maps, 12, 1089–1092,
https://doi.org/10.1080/17445647.2015.1126538, 2016.
Ayarza, P., Catalan, J. R. M., Gallart, J., Pulgar, J. A., and Danobeitia, J.
J.: Estudio Sismico de la Corteza Iberica Norte 3.3: A seismic image of the
Variscan crust in the hinterland of the NW Iberian Massif, Tectonics, 17, 171–186,
https://doi.org/10.1029/97TC03411, 1998.
Azor, A., Rubatto, D., Simancas, J. F., Lodeiro, F. G., Poyatos, D. M.,
Parra, L. M. M., and Matas, J.: Rheic Ocean ophiolitic remnants in Southern
Iberia questioned by SHRIMP U-Pb zircon ages on the Beja-Acebuches
amphibolites, Tectonics, 27, C5006, https://doi.org/10.1029/2008TC002306, 2008.
Azor, A., Dias da Silva, Í., Gómez Barreiro, J.,
González-Clavijo, E., Martínez Catalán, J. R., Simancas, J. F.,
Martínez Poyatos, D., Pérez-Cáceres, I., González Lodeiro,
F., Expósito, I., Casas, J. M., Clariana, P., García-Sansegundo, J.,
and Margalef, A.: Deformation and Structure, in: The Geology of Iberia: A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., 307–348,
Springer International Publishing, Cham., 2019.
Barrois, C. E.: Recherches sur le terrains anciens des Asturies et de la
Galice, Six-Horemans, Lille, 1882.
Bastida, F.: Zona Cantábrica, in: Geología de España, edited by:
Vera, J. A., 25–49, SGE-IGME, Madrid, 2004.
Bayona, G., Thomas, W. A., and Van der Voo, R.: Kinematics of thrust sheets
within transverse zones: A structural and paleomagnetic investigation in the
Appalachian thrust belt of Georgia and Alabama, J. Struct. Geol., 25,
1193–1212, https://doi.org/10.1016/S0191-8141(02)00162-1, 2003.
Braid, J. A., Murphy, J. B., Quesada, C., and Mortensen, J.: Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U–Pb detrital zircon data from the Late Palaeozoic Pulo do Lobo and South Portuguese zones, southern Iberia, J. Geol. Soc., 168, 383–392, 2011.
Buiter, S. J. H. and Torsvik, T. H.: A review of Wilson Cycle plate margins:
A role for mantle plumes in continental break-up along sutures?, Gondwana
Res., 26, 627–653, https://doi.org/10.1016/j.gr.2014.02.007, 2014.
Butler, R. F.: Paleomagnetism: Magnetic domains to geologic terranes, Electronic Edn. 23, available at: https://websites.pmc.ucsc.edu/~njarboe/pmagresource/ButlerPaleomagnetismBook.pdf (last access: 3 July 2020), 1998.
Calvín, P., Casas, A. M., Villalaín, J. J., Tierz, P., Calvín, P.,
Casas, A. M., Villalaín, J. J., Tierz, P., Calvin, P., Casas, A. M.,
Villalaín, J. J., and Tierz, P.: Reverse magnetic anomaly controlled by
Permian Igneous rocks in the Iberian Chain (N Spain), Geol. Acta, 12,
193–207, https://doi.org/10.1344/GeologicaActa2014.12.3.2, 2014.
Calvín, P., Casas-Sainz, A. M. M., Villalaín, J. J. J., and
Moussaid, B.: Diachronous folding and cleavage in an intraplate setting
(Central High Atlas, Morocco) determined through the study of
remagnetizations, J. Struct. Geol., 97, 144–160,
https://doi.org/10.1016/j.jsg.2017.02.009, 2017.
Calvín-Ballester, P. and Casas, A.: Folded Variscan thrusts in the
Herrera Unit of the Iberian Range (NE Spain), Geol. Soc. Lond. Spec. Publ.,
394, 39–52, https://doi.org/10.1144/SP394.3, 2014.
Carey, S. W.: The orocline concept in geotectonics – Part I, Pap. Proc. R.
Soc. Tasman., 89, 255–288, 1955.
Carreras, J. and Druguet, E.: Framing the tectonic regime of the NE Iberian
Variscan segment, Geol. Soc. Lond. Spec. Publ., 405, 249–264,
https://doi.org/10.1144/SP405.7, 2014.
Chopin, F., Schulmann, K., Skrzypek, E., Lehmann, J., Dujardin, J. R.,
Martelat, J. E., Lexa, O., Corsini, M., Edel, J. B., Štípská,
P., and Pitra, P.: Crustal influx, indentation, ductile thinning and gravity
redistribution in a continental wedge: Building a Moldanubian mantled gneiss
dome with underthrust Saxothuringian material (European Variscan belt),
Tectonics, 31, TC1013, https://doi.org/10.1029/2011TC002951, 2012.
Chopin, F., Corsini, M., Schulmann, K., El Houicha, M., Ghienne, J.-F., and
Edel, J.-B.: Tectonic evolution of the Rehamna metamorphic dome (Morocco) in
the context of the Alleghanian-Variscan orogeny, Tectonics, 33,
1154–1177, https://doi.org/10.1002/2014TC003539, 2014.
Cifelli, F., Mattei, M., and Della Seta, M.: Calabrian Arc oroclinal bending:
The role of subduction, Tectonics, 27, TC5001,
https://doi.org/10.1029/2008TC002272, 2008.
Crespo-Blanc, A. and Orozco,
M.: The Southern Iberian Shear Zone: a major boundary in the Hercynian
folded belt, Tectonophysics, 148, 221–227, 1988.
Dallmeyer, R. D., Fonseca, P. E., Quesada, C., and Ribeiro, A.: 40Ar∕39Ar
mineral age constraints for the tectonothermal evolution of a Variscan
suture in southwest Iberia, Tectonophysics, 222, 177–194,
https://doi.org/10.1016/0040-1951(93)90048-O, 1993.
Dallmeyer, R. D. D., Catalán, J. R. M., Arenas, R., Gil Ibarguchi, J. I.
I., Gutiérrez-Alonso, G., Farias, P., Bastida, F., and
Aller, J.: Diachronous Variscan tectonothermal activity in the NW Iberian
Massif: Evidence from 40Ar∕39Ar dating of regional fabrics, Tectonophysics,
277, 307–337, https://doi.org/10.1016/S0040-1951(97)00035-8, 1997.
Del Greco, K., Johnston, S. T., Gutiérrez-Alonso, G., Shaw, J., and
Lozano, J. F.: Interference folding and orocline implications: A structural
study of the Ponga Unit, Cantabrian orocline, northern Spain, Lithosphere,
8, 757–768, https://doi.org/10.1130/L576.1, 2016.
del Moral, B. and Sarmiento, G. N.: Conodontos del Katiense (Ordovícico
Superior) del sector meridional de la Zona Centroibérica (España),
Rev. Esp. Micropaleontol., 40, 169–245, 2008.
Dias, R. and Ribeiro, A.: Finite strain analysis in a transpressive regime
(Variscan autochthon, northeast Portugal), Tectonophysics, 191, 389–397,
https://doi.org/10.1016/0040-1951(91)90069-5, 1991.
Dias, R. and Ribeiro, A.: Constriction in a transpressive regime – an
example in the Iberian branch of the Ibero-Armorican arc, J. Struct. Geol.,
16, 1543–1554, 1994.
Dias, R., Mateus, A., and Ribeiro, A.: Strain partitioning in transpressive
shears zones in the southern branch of the Variscan Ibero-Armorican arc:
Geodin. Acta, 16, 119–129,
https://doi.org/10.1016/j.geoact.2003.04.001, 2003.
Dias, R., Ribeiro, A., Romão, J., Coke, C., and Moreira, N.: A review of
the arcuate structures in the Iberian Variscides; constraints and genetic
models, Tectonophysics, 681, 170–194, https://doi.org/10.1016/j.tecto.2016.04.011,
2016.
Dias da Silva, Í., Valverde-Vaquero, P., González-Clavijo, E.,
Díez-Montes, A., and Catalán, J. R. M.: Structural and
stratigraphical significance of U–Pb ages from the Mora and Saldanha
volcanic complexes (NE Portugal, Iberian Variscides), Geol. Soc. Lond. Spec.
Publ., 405, 115–135, https://doi.org/10.1144/SP405.3, 2014.
Dias da Silva, Í., Linnemann, U., Hofmann, M., González-Clavijo,
E., Díez-Montes, A., and Catalán, J. R. M.: Detrital zircon and
tectonostratigraphy of the Parautochthon under the Morais Complex (NE
Portugal): implications for the Variscan accretionary history of the Iberian
Massif, J. Geol. Soc., 172, 45–61, https://doi.org/10.1144/jgs2014-005, 2015.
Dias da Silva, Í., Gómez-Barreiro, J., Martínez Catalán, J.
R., Ayarza, P., Pohl, J., and Martínez, E.: Structural and
microstructural analysis of the Retortillo Syncline (Variscan belt, Central
Iberia). Implications for the Central Iberian Orocline, Tectonophysics, 717,
99–115, https://doi.org/10.1016/j.tecto.2017.07.015, 2017.
Dias da Silva, Í., Pereira, M. F., Silva, J. B., and Gama, C.: Time-space
distribution of silicic plutonism in a gneiss dome of the Iberian Variscan
Belt: The Évora Massif (Ossa-Morena Zone, Portugal), Tectonophysics,
747–748, 298–317, https://doi.org/10.1016/j.tecto.2018.10.015, 2018.
Dias da Silva, Í., González Clavijo, E., and Díez-Montes, A.:
The collapse of the Variscan belt: a Variscan lateral extrusion thin-skinned
structure in NW Iberia, Int. Geol. Rev.,
https://doi.org/10.1080/00206814.2020.1719544, online first, 2020.
Díez Balda, M. A.: El Complejo Esquisto-Grauváquico, las series paleozoicas y la estructura hercínica al Sur de Salamanca, Acta Salmanticensia, 52, 1–162, 1986.
Díez Balda, M. A., Vegas, R., and González Lodeiro, F.:
Central-Iberian zone structure, in: Pre-mesozoic geology of Iberia, edited by: Dallmeyer, R. D. and Martinez Garcia, E., Springer Science & Business, Berlin Heiderlberg, 172–188, 1990.
Díez Balda, M. A., Martínez Catalán, J. R., and Ayarza Arribas,
P.: Syn-collisional extensional collapse parallel to the orogenic trend in a
domain of steep tectonics: the Salamanca Detachment Zone (Central Iberian
Zone, Spain), J. Struct. Geol., 17, 163–182,
https://doi.org/10.1016/0191-8141(94)E0042-W, 1995.
Díez Fernández, R. and Arenas, R.: The Late Devonian Variscan
suture of the Iberian Massif: A correlation of high-pressure belts in NW and
SW Iberia, Tectonophysics, 654, 96–100, https://doi.org/10.1016/j.tecto.2015.05.001,
2015.
Díez Fernández, R. and Pereira, M. F.: Extensional orogenic
collapse captured by strike-slip tectonics: Constraints from structural
geology and UPb geochronology of the Pinhel shear zone (Variscan orogen,
Iberian Massif), Tectonophysics, 691, 290–310,
https://doi.org/10.1016/j.tecto.2016.10.023, 2016.
Díez Fernández, R. and Pereira, M. F.: Strike-slip shear zones of
the Iberian Massif: Are they coeval?, Lithosphere, 9, 726–744,
https://doi.org/10.1130/L648.1, 2017.
Díez Fernández, R., Gómez Barreiro, J., Martínez
Catalán, J. R., and Ayarza, P.: Crustal thickening and attenuation as
revealed by regional fold interference patterns: Ciudad Rodrigo basement
area (Salamanca, Spain), J. Struct. Geol., 46, 115–128,
https://doi.org/10.1016/j.jsg.2012.09.017, 2013.
Díez Fernández, R., Arenas, R., Pereira, M. F.,
Sánchez-Martínez, S., Albert, R., Martín Parra, L.-M., Rubio
Pascual, F.-J., and Matas, J.: Tectonic evolution of Variscan Iberia:
Gondwana–Laurussia collision revisited, Earth-Sci. Rev., 162, 269–292,
https://doi.org/10.1016/j.earscirev.2016.08.002, 2016.
Díez-Montes, A., Martínez Catalán, J. R. R., and Bellido-Mulas,
F.: Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the
Early Ordovician dynamics of northern Gondwana, Gondwana Res., 17,
363–376, https://doi.org/10.1016/j.gr.2009.09.001, 2010.
Domeier, M. and Torsvik, T. H.: Plate tectonics in the late Paleozoic,
Geosci. Front., 5, 303–350, https://doi.org/10.1016/j.gsf.2014.01.002, 2014.
Du Toit, A. L.: Our wandering continents: an hypothesis of continental
drifting, Oliver and Boyd, available at:
http://books.google.es/books?id=iDZEAAAAIAAJ (last access: 3 July 2020), 1937.
Edel, J. B., Schulmann, K., Lexa, O., and Lardeaux, J. M.: Late Palaeozoic
palaeomagnetic and tectonic constraints for amalgamation of Pangea
supercontinent in the European Variscan belt, Earth-Sci. Rev., 177, 589–612, https://doi.org/10.1016/j.earscirev.2017.12.007, 2018.
Eichelberger, N. and McQuarrie, N.: Kinematic reconstruction of the Bolivian
orocline, Geosphere, 11, 445–462, https://doi.org/10.1130/GES01064.1, 2015.
Escuder Viruete, J., Arenas, R., and Catalán, J. R. M.: Tectonothermal
evolution associated with Variscan crustal extension in the Tormes Gneiss
Dome (NW Salamanca, Iberian Massif, Spain), Tectonophysics, 238,
117–138, https://doi.org/10.1016/0040-1951(94)90052-3, 1994.
Farias, P., Gallastegui, G., González Lodeiro, F., Marquínez, J., Martín Parra, L. M., Martínez Catalán, J. R., Pablo Maciá, J. D., and Rodríguez Fernández, L. R.: Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central, Memórias da Faculdade de Ciências, Universidade do Porto, 1, 411–431, 1987.
Fernández-Lozano, J., Pastor-Galán, D., Gutiérrez-Alonso, G., and
Franco, P.: New kinematic constraints on the Cantabrian orocline: A
paleomagnetic study from the Peñalba and Truchas synclines, NW Spain,
Tectonophysics, 681, 195–208, https://doi.org/10.1016/j.tecto.2016.02.019, 2016.
Fernández-Lozano, J., Gutiérrez-Alonso, G., Willingshofer, E.,
Sokoutis, D., de Vicente, G., and Cloetingh, S.: Shaping of intraplate
mountain patterns: The Cantabrian orocline legacy in Alpine Iberia,
Lithosphere, 11, 708–721, https://doi.org/10.1130/L1079.1, 2019.
Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán,
D., Hofmann, M., Murphy, J. B., and Linnemann, U.: The Ediacaran-Early
Cambrian detrital zircon record of NW Iberia: Possible sources and
paleogeographic constraints, Int. J. Earth Sci., 103, 1335–1357,
https://doi.org/10.1007/s00531-013-0923-3, 2014.
Fossen, H.: Structural Geology, Cambridge University Press, Cambridge, UK, 2016.
Franke, W., Cocks, L. R. M., and Torsvik, T. H.: The Palaeozoic Variscan
oceans revisited, Gondwana Res., 48, 257–284, https://doi.org/10.1016/j.gr.2017.03.005,
2017.
Franke, W., Cocks, L. R. M., and Torsvik, T. H.: Detrital zircons and the
interpretation of palaeogeography, with the Variscan Orogeny as an example,
Geol. Mag., 157, 690–694, https://doi.org/10.1017/S0016756819000943, 2020.
García-Arias, M., Díez-Montes, A., Villaseca, C., and
Blanco-Quintero, I. F.: The Cambro-Ordovician Ollo de Sapo magmatism in the
Iberian Massif and its Variscan evolution: A review, Earth-Sci. Rev., 176,
345–372, https://doi.org/10.1016/j.earscirev.2017.11.004, 2018.
Gil Toja, A., Jimenez-Ontiveros, P., and Seara Valero, J. R.: La cuarta fase
de deformación hercinica en la Zona Centroibérica del Macizo
Hespérico: Cuadernos Del Laboratório Xeoloxico De Laxe, 9,
91–104, 1985.
Gong, Z., Langereis, C. G., and Mullender, T. A. T.: The rotation of Iberia
during the Aptian and the opening of the Bay of Biscay, Earth Planet. Sc.
Lett., 273, 80–93, 2008.
Gozalo, R., Liñán, E., Vintaned, J. A. G., Eugenia, M., Álvarez,
D., Martorell, J. B. C., Zamora, S., Esteve, J., and Mayoral, E.: The
Cambrian of the Cadenas Ibéricas (ne Spain) and Its Trilobites, Cuadernos del Museo Geominero, 9, 137–151, 2008.
Gutiérrez-Alonso, G.: El Antiforme del Narcea y su relación con los
mantos occidentales de la Zona Cantábrica, PhD thesis, Universidad de Oviedo, 1992.
Gutiérrez-Alonso, G.: Strain partitioning in the footwall of the Somiedo
Nappe: Structural evolution of the Narcea Tectonic window, NW Spain, J.
Struct. Geol., 18, 1217–1229, 1996.
Gutiérrez Alonso, G.: Estratigrafía y Tectónica, in: Memoria
del Mapa Geológico de España 1 : 50 000, Hoja de Mora (680), IGME,
Madrid, available at:
http://info.igme.es/cartografiadigital/datos/magna50/memorias/MMagna0658.pdf (last access: 3 July 2020),
2009.
Gutiérrez-Alonso, G., Fernández-Suárez, J., and Weil, A. B.:
Orocline triggered lithospheric delamination, in: Special Paper 383: Orogenic
curvature: Integrating paleomagnetic and structural analyses, Vol. 383,
edited by: Weil, A. B. and Sussman, A., 121–130, Geological Society of
America, Boulder, 2004.
Gutiérrez-Alonso, G., Fernández-Suárez, J., Weil, A. B., Brendan
Murphy, J., Damian Nance, R., Corf, F., and Johnston, S. T.: Self-subduction
of the Pangaean global plate, Nat. Geosci., 1, 549–553,
https://doi.org/10.1038/ngeo250, 2008a.
Gutiérrez-Alonso, G., Murphy, J. B. B., Fernández-Suárez, J., and
Hamilton, M. A. A.: Rifting along the northern Gondwana margin and the
evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic
rocks (Salamanca, Central Iberian Zone), Tectonophysics, 461,
157–165, https://doi.org/10.1016/j.tecto.2008.01.013, 2008b.
Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T. E. T.
E. E., Johnston, S. T., Pastor-Galán, D., Murphy, J. B. B., Franco, M.
P. P., and Gonzalo, J. C. C.: Diachronous post-orogenic magmatism within a
developing orocline in Iberia, European Variscides, Tectonics, 30, TC5008, https://doi.org/10.1029/2010TC002845, 2011a.
Gutiérrez-Alonso, G., Murphy, J. B., Fernández-Suárez, J., Weil,
A. B., Franco, M. P., and Gonzalo, J. C.: Lithospheric delamination in the core
of Pangea: Sm-Nd insights from the Iberian mantle, Geology, 39, 155–158,
https://doi.org/10.1130/G31468.1, 2011b.
Gutiérrez-Alonso, G., Collins, A. S., Fernández-Suárez, J.,
Pastor-Galán, D., González-Clavijo, E., Jourdan, F., Weil, A. B., and
Johnston, S. T.: Dating of lithospheric buckling: 40Ar∕39Ar ages of
syn-orocline strike-slip shear zones in northwestern Iberia, Tectonophysics,
643, 44–54, https://doi.org/10.1016/j.tecto.2014.12.009, 2015.
Gutiérrez-Alonso, G., Fernández-Suárez, J., López-Carmona,
A., and Gärtner, A.: Exhuming a cold case: The early granodiorites of the
northwest Iberian Variscan belt – A Visean magmatic flare-up?, Lithosphere,
10, 194–216, https://doi.org/10.1130/L706.1, 2018.
Gutiérrez-Alonso, G., López-Carmona, A., Núñez-Guerrero, E.,
Martínez García, A., Fernández-Suárez, J.,
Pastor-Galán, D., Gutiérrez-Marco, J. C., Bernárdez, E.,
Colmenero, J. R., Hofmann, M., and Linnemann, U.: Neoproterozoic-Palaeozoic
detrital sources in the Variscan foreland of northern Iberia: primary vs.
recycled sediments. Pannotia to Pangaea: Neoproterozoic and Paleozoic
Orogenic Cycles in the Circum- Atlantic Region, Geol. Soc. Lond. Spec. Publ., https://doi.org/10.1144/SP503-2020-21, in press, 2020.
Gutiérrez-Marco, J. C., Sá, A. A., García-Bellido, D. C., and
Rábano, I.: The Bohemo-Iberian regional chronostratigraphical scale for
the Ordovician System and palaeontological correlations within South
Gondwana, Lethaia, 50, 258–295, https://doi.org/10.1111/let.12197, 2017.
Gutiérrez-Marco, J. C., Piçarra, J. M., Meireles, C. A., Cózar,
P., García-Bellido, D. C., Pereira, Z., Vaz, N., Pereira, S., Lopes,
G., Oliveira, J. T., Quesada, C., Zamora, S., Esteve, J., Colmenar, J.,
Bernárdez, E., Coronado, I., Lorenzo, S., Sá, A. A., Dias da Silva,
Í., González-Clavijo, E., Díez-Montes, A., and
Gómez-Barreiro, J.: Early Ordovician–Devonian Passive Margin Stage in
the Gondwanan Units of the Iberian Massif, in: The Geology of Iberia: A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., 75–98,
Springer International Publishing, Cham., 2019.
Hindle, D., Besson, O., and Burkhard, M.: A model of displacement and strain
for arc-shaped mountain belts applied to the Jura arc, J. Struct. Geol.,
22, 1285–1296, https://doi.org/10.1016/S0191-8141(00)00038-9, 2000.
Hirt, A. M., Lowrie, W., Julivert, M., Arboleya, M. L., Lowric, A. M. H. W.,
and Arboleya, M. L.: Paleomagnetic results in support of a model for the
origin of the Asturian arc, Tectonophysics, 213, 321–339, 1992.
Hnat, J. S. and van der Pluijm, B. A.: Foreland signature of indenter
tectonics: Insights from calcite twinning analysis in the Tennessee salient
of the Southern Appalachians, USA, Lithosphere, 3, 317–327,
https://doi.org/10.1130/L151.1, 2011.
Holmes, A.: A review of the continental drift hypothesis, Min. Mag., 40,
205–209, 1929.
Huang, W., Lippert, P. C., Zhang, Y., Jackson, M. J., Dekkers, M. J., Li,
J., Hu, X., Zhang, B., Guo, Z., and van Hinsbergen, D. J. J. J.:
Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock
magnetic and petrographic investigations, J. Geophys. Res.-Sol. Ea.,
122, 2434–2456, https://doi.org/10.1002/2017JB013987, 2017.
Izquierdo-Llavall, E., Sainz, A. C., Oliva-Urcia, B., Burmester, R., Pueyo,
E. L., and Housen, B.: Multi-episodic remagnetization related to deformation
in the Pyrenean Internal Sierras, Geophys. J. Int., 201, 891–914,
https://doi.org/10.1093/gji/ggv042, 2015.
Izquierdo-Llavall, E., Casas-Sainz, A. M., Oliva-Urcia, B., Villalaín,
J. J., Pueyo, E., and Scholger, R.: Rotational Kinematics of Basement
Antiformal Stacks: Paleomagnetic Study of the Western Nogueras Zone (Central
Pyrenees), Tectonics, 37, 3456–3478, https://doi.org/10.1029/2018TC005153, 2018.
Izquierdo-Llavall, E., Ayala, C., Pueyo, E. L., Casas-Sainz, A. M.,
Oliva-Urcia, B., Rubio, F., Rodríguez-Pintó, A., Rey-Moral, C.,
Mediato, J. F., and García-Crespo, J.: Basement-Cover Relationships and
Their Along-Strike Changes in the Linking Zone (Iberian Range, Spain): A
Combined Structural and Gravimetric Study, Tectonics, 38, 2934–2960,
https://doi.org/10.1029/2018TC005422, 2019.
Jabaloy-Sánchez, A., Talavera, C., Gómez-Pugnaire, M. T.,
López-Sánchez-Vizcaíno, V., Vázquez-Vílchez, M.,
Rodríguez-Peces, M. J., and Evans, N. J.: U-Pb ages of detrital zircons
from the Internal Betics: A key to deciphering paleogeographic provenance
and tectono-stratigraphic evolution, Lithos, 318–319, 244–266,
https://doi.org/10.1016/j.lithos.2018.07.026, 2018.
Jackson, M.: Diagenetic sources of stable remanence in remagnetized
paleozoic cratonic carbonates: A rock magnetic study, J. Geophys. Res.-Sol.
Ea., 95, 2753–2761, https://doi.org/10.1029/JB095iB03p02753, 1990.
Jacques, D., Muchez, P., and Sintubin, M.: Superimposed folding and W-Sn
vein-type mineralisation in the Central Iberian Zone associated with
late-Variscan oroclinal buckling: A structural analysis from the Regoufe
area (Portugal), Tectonophysics, 742–743, 66–83,
https://doi.org/10.1016/j.tecto.2018.05.021, 2018a.
Jacques, D., Vieira, R., Muchez, P., and Sintubin, M.: Transpressional
folding and associated cross-fold jointing controlling the geometry of
post-orogenic vein-type W-Sn mineralization: examples from Minas da
Panasqueira, Portugal, Miner. Deposita, 53, 171–194,
https://doi.org/10.1007/s00126-017-0728-6, 2018b.
Johnston, S. T.: The Great Alaskan Terrane Wreck: Reconciliation of
paleomagnetic and geological data in the Northern Cordillera, Earth Planet.
Sc. Lett., 193, 259–272, https://doi.org/10.1016/S0012-821X(01)00516-7, 2001.
Johnston, S. T., Weil, A. B., and Gutiérrez-Alonso, G.: Oroclines: Thick
and thin, GSA Bull., 125, 643–663, https://doi.org/10.1130/B30765.1, 2013.
Julivert, M.: L'évolution structurale de l'Arc Asturien, Paris, Publications de l'Institut Francais du Petrole & Editions Technip, 1971.
Julivert, M. and Arboleya, M. L.: A geometrical and kinematical approach to
the nappe structure in an arcuate fold belt: the Cantabrian nappes
(Hercynian chain, NW Spain), J. Struct. Geol., 6, 499–519,
https://doi.org/10.1016/0191-8141(84)90061-0, 1984.
Julivert, M. and Marcos, A.: superimposed folding under flexural conditions
in the Cantabrian Zone (Hercynian Cordillera, Northwest Spain), Am. J. Sci.,
273, 353–375, https://doi.org/10.2475/ajs.273.5.353, 1973.
Julivert, M., Fontboté, J. M., Ribeiro, A., and Nabais Conde, L. E.: Mapa
Tectónico de la Península Ibérica y Baleares E: 1 : 1.000.000 y
memoria explicativa, Publ IGME, Madrid, 113, 1974.
Julivert, M., Vegas, R., Roiz, J. M., and Martinez-Rius, A.: La estructura de la extensión SE de la Zona Centroibérica con metamorfismo de bajo grado, in: Libro Jubilar JM Ríos, Geología de España, Madrid, 477–489, 1983.
Keppie, F.: How subduction broke up Pangaea with implications for the
supercontinent cycle, Geol. Soc. Lond. Spec. Publ., 424, 265–288,
https://doi.org/10.1144/SP424.8, 2016.
Kirsch, M., Keppie, J. D., Murphy, J. B., and Solari, L. A.:
Permian-Carboniferous arc magmatism and basin evolution along the western
margin of Pangea: Geochemical and geochronological evidence from the eastern
Acatlan Complex, southern Mexico, Geol. Soc. Am. Bull., 124,
1607–1628, https://doi.org/10.1130/B30649.1, 2012.
Kollmeier, J. M., van der Pluijm, B. A., and Van der Voo, R.: Analysis of
Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern
Spain, Earth Planet. Sc. Lett., 181, 203–216,
https://doi.org/10.1016/S0012-821X(00)00203-X, 2000.
Kroner, U. and Romer, R. L. L.: Two plates – Many subduction zones: The
Variscan orogeny reconsidered, Gondwana Res., 24, 298–329,
https://doi.org/10.1016/j.gr.2013.03.001, 2013.
Langereis, C. G., Krijgsman, W., Muttoni, G., and Menning, M.: Magnetostratigraphy–concepts, definitions, and applications, Newsl. Stratigr., 43, 207–233, 2010.
Leite Mendes, B. D., Pastor-Galán, D., Dekkers, M., and Krijgsman, W.: Avalonia, Get Bent! Paleomagnetism from SW Iberia Confirms the
Greater Cantabrian Orocline, EarthArXiv [preprint], https://doi.org/10.31223/osf.io/evwc6, 2020.
Li, P. and Rosenbaum, G.: Does the Manning Orocline exist? New structural
evidence from the inner hinge of the Manning Orocline (eastern Australia),
Gondwana Res., 25, 1599–1613, https://doi.org/10.1016/j.gr.2013.06.010, 2014.
Li, P., Sun, M., Rosenbaum, G., Yuan, C., Safonova, I., Cai, K., Jiang, Y.,
and Zhang, Y.: Geometry, kinematics and tectonic models of the Kazakhstan
Orocline, Central Asian Orogenic Belt, J. Asian Earth Sci., 153,
42–56, https://doi.org/10.1016/j.jseaes.2017.07.029, 2018.
Li, P.-F., Rosenbaum, G., and Rubatto, D.: Triassic asymmetric subduction
rollback in the southern New England Orogen (eastern Australia): the end of
the Hunter-Bowen Orogeny, Aust. J. Earth Sci., 59, 965–981,
https://doi.org/10.1080/08120099.2012.696556, 2012.
López-Carmona, A., Abati, J., Pitra, P., and Lee, J. K. W.: Retrogressed
lawsonite blueschists from the NW Iberian Massif: P–T–t constraints from
thermodynamic modelling and 40Ar/39Ar geochronology, Contrib. Mineral.
Petr., 167, 987–987, https://doi.org/10.1007/s00410-014-0987-5, 2014.
López-Moro, F. J., López-Plaza, M., Gutiérrez-Alonso, G.,
Fernández-Suárez, J., López-Carmona, A., Hofmann, M., and Romer,
R. L.: Crustal melting and recycling: geochronology and sources of Variscan
syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian
Zone). A U–Pb LA-ICP-MS study, Int. J. Earth Sci., 107, 985–1004,
https://doi.org/10.1007/s00531-017-1483-8, 2018.
Lotze, F.: Zur gliederung der Variszichen der lberischen Meseta,
Geotektonísche Forschungen, 6, 78–92, 1945.
Macaya, J., González-Lodeiro, F., Martínez Catalán, J. R., and
Alvarez, F.: Continuous deformation, ductile thrusting and backfolding of
cover and basement in the Sierra de Guadarrama, Hercynian orogen of central
Spain, Tectonophysics, 191, 291–309, https://doi.org/10.1016/0040-1951(91)90063-X,
1991.
Maffione, M., Speranza, F., and Faccenna, C.: Bending of the Bolivian
orocline and growth of the central Andean plateau: Paleomagnetic and
structural constraints from the Eastern Cordillera (22–24∘ S, NW
Argentina), Tectonics, 28, TC4006, https://doi.org/10.1029/2008TC002402, 2009.
Marcos, A. and Pulgar, J. A. A.: An Approach to the tectonostratigraphic
evolution of the Cantabrian foreland thrust and fold belt, Hercynian
Cordillera of NW Spain, Neues Jahrb. Geol. P.-A., 163,
256–260, 1982.
Marcos, A., Pérez-Estaún, A., Martínez Catalán, J. R., and
Gutiérrez-Marco, J. C.: Estratigrafía y Paleogeografía, Zona
Asturoccidental-Leonesa, in: Geología de España, edited by: Vera, J. A., IGME, Madrid, 2004.
Marshak, S.: KINEMATICS OF OROCLINE AND ARC FORMATION IN THIN-SKINNED
OROGENS, Tectonics, 7, 73–86, 1988.
Marshak, S.: Salients, Recesses, Arcs, Oroclines, and Syntaxes – A Review
of Ideas Concerning the Formation of Map-view Curves in Fold-thrust Belts,
Thrust Tecton. Hydrocarb. Syst. AAPG Mem., 82, 131–156, 2004.
Martín-Algarra, A., García-Casco, A., Gómez-Pugnaire, M. T.,
Jabaloy-Sánchez, A., Laborda-López, C., López
Sánchez-Vizcaíno, V., Mazzoli, S., Navas-Parejo, P., Perrone, V.,
Rodríguez-Cañero, R., and Sánchez-Navas, A.: Paleozoic Basement
and Pre-Alpine History of the Betic Cordillera, in: The Geology of Iberia: A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., 261–305,
Springer International Publishing, Cham., 2019.
Martínez Catalán, J. R.: A non-cylindrical model for the northwest
Iberian allochthonous terranes and their equivalents in the Hercynian belt
of Western Europe, Tectonophysics, 179, 253–272,
https://doi.org/10.1016/0040-1951(90)90293-H, 1990.
Martínez Catalán, J. R.: Are the oroclines of the Variscan belt
related to late Variscan strike-slip tectonics?, Terra Nova, 23,
241–247, https://doi.org/10.1111/j.1365-3121.2011.01005.x, 2011.
Martínez Catalán, J. R.: The Central Iberian arc, an orocline
centered in the Iberian Massif and some implications for the Variscan belt,
Int. J. Earth Sci., 101, 1–16, https://doi.org/10.1007/s00531-011-0715-6, 2012.
Martínez Catalán, J. R., Rodriguez, M. P. H., Alonso, P. V., Perez-Estaun,
A., and Lodeiro, F. G.: Lower Paleozoic extensional tectonics in the limit
between the West Asturian-Leonese and Central Iberian Zones of the Variscan
Fold-Belt in NW Spain, Geol. Rundsch., 81, 545–560,
https://doi.org/10.1007/BF01828614, 1992.
Martínez Catalán, J., García, F. D., Arenas, R., Abati, J., Castiñeiras, P., Cuadra, P. G., Barreiro, J. G., and Pascual, F. J. R.: Thrust and detachment systems in the Ordenes Complex (northwestern Spain): Implications for the Variscan-Appalachian geodynamics, Special Papers, Geological Society of America, 163–182, 2002.
Martínez Catalán J. R., Martínez Poyatos, D., and Bea, F.:
Zona Centroibérica, in: Geología de España, edited by: Vera, J. A., IGME, 68–133, 2004a.
Martínez Catalán, J. R. M., Fernández-Suárez, J., Jenner,
G. A., Belousova, E., and Montes, A.: Provenance constraints from detrital
zircon U–Pb ages in the NW Iberian Massif: implications for Palaeozoic
plate configuration and Variscan evolution, J. Geol. Soc., 161, 463–476,
https://doi.org/10.1144/0016-764903-054, 2004b.
Martínez Catalán, J. R., Arenas, R., Abati, J., Martínez, S.
S., García, F. D., Suárez, J. F., Cuadra, P. G., Castiñeiras,
P., Barreiro, J. G., Montes, A. D., Clavijo, E. G., Pascual, F. J. R.,
Andonaegui, P., Jeffries, T. E., Alcock, J. E., Fernández, R. D., and
Carmona, A. L.: A rootless suture and the loss of the roots of a mountain
chain: The Variscan belt of NW Iberia, C.R. Geosci., 341,
114–126, https://doi.org/10.1016/j.crte.2008.11.004, 2009.
Martínez Catalán, J. R., Rubio Pascual, F. J., Diez Montes, A., Diez
Fernandez, R., Gomez Barreiro, J., Dias da Silva, I., Gonzalez Clavijo, E.,
Ayarza, P., and Alcock, J. E..: The late Variscan HT/LP metamorphic event in NW
and Central Iberia: relationships to crustal thickening, extension, orocline
development and crustal evolution, Geol. Soc. Lond. Spec. Publ., 405,
225–247, https://doi.org/10.1144/SP405.1, 2014.
Martínez Catalán, J. R., Aerden, D. G. A. M., and Carreras, J.: The
“Castilian bend” of Rudolf Staub (1926): historical perspective of a
forgotten orocline in Central Iberia, Swiss J. Geosci., 108, 289–303,
https://doi.org/10.1007/s00015-015-0202-3, 2015.
Martínez Catalán, J. R., Gómez Barreiro, J., Dias da Silva,
Í., Chichorro, M., López-Carmona, A., Castiñeiras, P., Abati,
J., Andonaegui, P., Fernández-Suárez, J., González Cuadra, P.,
and Benítez-Pérez, J. M.: Variscan Suture Zone and Suspect Terranes
in the NW Iberian Massif: Allochthonous Complexes of the Galicia-Trás os
Montes Zone (NW Iberia), in: The Geology of Iberia: A Geodynamic Approach,
edited by: Quesada, C. and Oliveira, J. T., 99–130, Springer International
Publishing, Cham., 2019.
McWilliams, C. K., Kunk, M. J., Wintsch, R. P., and Bish, D. L.: Determining
ages of multiple muscovite-bearing foliations in phyllonites using the
40Ar∕39Ar step heating method: Applications to the alleghanian orogeny in
central new England, Am. J. Sci., 313, 996–1016,
https://doi.org/10.2475/10.2013.02, 2013.
Meijers, M. J. M., Smith, B., Pastor-Galán, D., Degenaar, R., Sadradze,
N., Adamia, S., Sahakyan, L., Avagyan, A., Sosson, M., Rolland, Y.,
Langereis, C. G., and Müller, C.: Progressive orocline formation in the
Eastern Pontides-Lesser Caucasus, Geol. Soc. Spec. Publ., 428,
https://doi.org/10.1144/SP428.8, 2017.
Mergl, M. and Zamora, S.: New and revised occurrences of rhynchonelliformean brachiopods from the middle Cambrian of the Iberian Chains, NE Spain, B. Geosci., 87, 571–586, 2012.
Merino-Tomé, O. A., Bahamonde, J. R., Colmenero, J. R., Heredia, N.,
Villa, E., and Farias, P.: Emplacement of the Cuera and Picos de Europa
imbricate system at the core of the Iberian-Armorican arc (Cantabrian zone,
north Spain): New precisions concerning the timing of arc closure, B.
Geol. Soc. Am., 121, 729–751, https://doi.org/10.1130/B26366.1, 2009.
Molina Garza, R. S. and Zijderveld, J. D. A.: Paleomagnetism of Paleozoic
strata, Brabant and Ardennes Massifs, Belgium: Implications of prefolding
and postfolding Late Carboniferous secondary magnetizations for European
apparent polar wander, J. Geophys. Res., 10, 15799–15799,
https://doi.org/10.1029/96JB00325, 1996.
Montes, A. D.: La Geología del Dominio “`Ollo de Sapo”' en las
comarcas de Sanabria y Terra do Bolo, Serie Nova Terra, 494 pp., Instituto Universitario de Geología Isidro Parga Pondal, A Coruña, 2007.
Munha, J.: Metamorphic Evolution of the South Portuguese/Pulo Do Lobo Zone,
in: Pre-Mesozoic Geology of Iberia, edited by: Dallmeyer, R. D. and
Garcia, E. M., 363–368, Springer, Berlin, Heidelberg, 1990.
Munha, J., Barriga, F. J. A. S., and Kerrich, R.: High 18O ore-forming
fluids in volcanic-hosted base metal massive sulfide deposits; geologic, 18O∕16O, and D/H evidence from the Iberian pyrite belt; Crandon, Wisconsin;
and Blue Hill, Maine, Econ. Geol., 81, 530–552,
https://doi.org/10.2113/gsecongeo.81.3.530, 1986.
Murphy, J. B., Gutierrez-Alonso, G., Fernandez-Suarez, J., and Braid, J. A.:
Probing crustal and mantle lithosphere origin through Ordovician volcanic
rocks along the Iberian passive margin of Gondwana, Tectonophysics,
461, 166–180, 2008.
Murphy, J. B., Quesada, C., Gutiérrez-Alonso, G., Johnston, S. T., and Weil, A.: Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe, Tectonophysics, 681, 209–219, 2016.
Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U.,
Murphy, J. B., Quesada, C., Strachan, R. A., and Woodcock, N. H.: Evolution
of the Rheic Ocean, Gondwana Res., 17, 194–222,
https://doi.org/10.1016/j.gr.2009.08.001, 2010.
O'Brien, T. M. and van der Pluijm, B. A.: Timing of Iapetus Ocean rifting from Ar geochronology of pseudotachylytes in the St. Lawrence rift system of southern Quebec, Geology, 40, 443–446, 2012.
Ogg, J. G., Ogg, G. M., and Gradstein, F. M.: A concise geologic time scale: 2016, Elsevier, Amsterdam, Boston, 2016.
Oliveira, J. T., Quesada, C., Pereira, Z., Matos, J. X., Solá, A. R.,
Rosa, D., Albardeiro, L., Díez-Montes, A., Morais, I., Inverno, C.,
Rosa, C., and Relvas, J.: South Portuguese Terrane: A Continental Affinity
Exotic Unit, in The Geology of Iberia: A Geodynamic Approach, edited by:
Quesada, C. and Oliveira, J. T., 173–206, Springer International Publishing,
Cham., 2019a.
Oliveira, J. T., González-Clavijo, E., Alonso, J., Armendáriz, M.,
Bahamonde, J. R., Braid, J. A., Colmenero, J. R., Dias da Silva, Í.,
Fernandes, P., Fernández, L. P., Gabaldón, V., Jorge, R. S.,
Machado, G., Marcos, A., Merino-Tomé, Ó., Moreira, N., Murphy, J.
B., Pinto de Jesus, A., Quesada, C., Rodrigues, B., Rosales, I.,
Sanz-López, J., Suárez, A., Villa, E., Piçarra, J. M., and
Pereira, Z.: Synorogenic Basins, in The Geology of Iberia: A Geodynamic
Approach, edited by: Quesada, C. and Oliveira, J. T., 349–429, Springer
International Publishing, Cham., 2019b.
Palero-Fernández, F. J., Martin-Izard, A., Zarzalejos Prieto, M., and
Mansilla-Plaza, L.: Geological context and plumbotectonic evolution of the
giant Almadén Mercury Deposit, Ore Geol. Rev., 64, 71–88,
https://doi.org/10.1016/j.oregeorev.2014.06.013, 2015.
Parés, J. M. and Van der Voo, R.: Paleozoic paleomagnetism of Almaden,
Spain: A cautionary note, J. Geophys. Res., 97, 9353–9356,
https://doi.org/10.1029/91JB03073, 1992.
Parés, J. M., Van der Voo, R., Stamatakos, J., and Pérez-Estaún,
A.: Remagnetizations and postfolding oroclinal rotations in the
Cantabrian/Asturian arc, northern Spain, Tectonics, 13, 1461–1471,
https://doi.org/10.1029/94TC01871, 1994.
Pastor-Galán, D., Gutiérrez-Alonso, G., Meere, P. A., and Mulchrone,
K. F.: Factors affecting finite strain estimation in low-grade, low-strain
clastic rocks, J. Struct. Geol., 31, 1586–1596,
https://doi.org/10.1016/j.jsg.2009.08.005, 2009.
Pastor-Galán, D., Gutiérrez-Alonso, G., and Weil, A. B.: Orocline
timing through joint analysis: Insights from the Ibero-Armorican Arc,
Tectonophysics, 507, 31–46, https://doi.org/10.1016/j.tecto.2011.05.005, 2011.
Pastor-Galán, D., Gutiérrez-Alonso, G., Zulauf, G., and Zanella, F.:
Analogue modeling of lithospheric-scale orocline buckling: Constraints on
the evolution of the Iberian-Armorican arc, B. Geol. Soc. Am., 124, 1293–1309,
https://doi.org/10.1130/B30640.1, 2012a.
Pastor-Galán, D., Gutiérrez-Alonso, G., Mulchrone, K. F., and Huerta,
P.: Conical folding in the core of an orocline. A geometric analysis from
the Cantabrian Arc (Variscan Belt of NW Iberia), J. Struct. Geol., 39,
210–223, https://doi.org/10.1016/j.jsg.2012.02.010, 2012b.
Pastor-Galán, D., Gutiérrez-Alonso, G., Murphy, J. B. B.,
Fernández-Suárez, J., Hofmann, M., and Linnemann, U.: Provenance
analysis of the Paleozoic sequences of the northern Gondwana margin in NW
Iberia: Passive margin to Variscan collision and orocline development,
Gondwana Res., 23, 1089–1103, https://doi.org/10.1016/j.gr.2012.06.015, 2013a.
Pastor-Galán, D., Gutiérrez-Alonso, G., Fernández-Suárez,
J., Murphy, J. B., and Nieto, F.: Tectonic evolution of NW Iberia during the
Paleozoic inferred from the geochemical record of detrital rocks in the
Cantabrian Zone, Lithos, 182–183, 221–228,
https://doi.org/10.1016/j.lithos.2013.09.007, 2013b.
Pastor-Galán, D., Martín-Merino, G., and Corrochano, D.: Timing and
structural evolution in the limb of an orocline: The Pisuerga-Carrión
Unit (southern limb of the Cantabrian Orocline, NW Spain), Tectonophysics,
622, 110–121, https://doi.org/10.1016/j.tecto.2014.03.004, 2014.
Pastor-Galán, D., Ursem, B., Meere, P. A., and Langereis, C.: Extending
the Cantabrian Orocline to two continents (from Gondwana to Laurussia),
Paleomagnetism from South Ireland, Earth Planet. Sc. Lett., 432, 223–231,
https://doi.org/10.1016/j.epsl.2015.10.019, 2015a.
Pastor-Galán, D., Groenewegen, T., Brouwer, D., Krijgsman, W., and Dekkers, M.
J.: One or two oroclines in the Variscan orogen of Iberia?
Implications for Pangea amalgamation, Geology, 43, 527–530,
https://doi.org/10.1130/G36701.1, 2015b.
Pastor-Galán, D., Dekkers, M. J., Gutiérrez-Alonso, G., Brouwer, D.,
Groenewegen, T., Krijgsman, W., Fernández-Lozano, J., Yenes, M., and
Álvarez-Lobato, F.: Paleomagnetism of the Central Iberian curve's
putative hinge: Too many oroclines in the Iberian Variscides, Gondwana Res.,
39, 96–113, https://doi.org/10.1016/j.gr.2016.06.016, 2016.
Pastor-Galán, D., Mulchrone, K. F., Koymans, M. R. , van Hinsbergen, D.
J. J., and Langereis, C. G.: Bootstrapped total least squares orocline test:
A robust method to quantify vertical-axis rotation patterns in orogens, with
examples from the Cantabrian and Aegean oroclines, Lithosphere, 9,
499–511, https://doi.org/10.1130/L547.1, 2017a.
Pastor-Galán, D., Gutiérrez-Alonso, G., Dekkers, M. J. M. J., and
Langereis, C. G.: Paleomagnetism in Extremadura (Central Iberian zone,
Spain) Paleozoic rocks: extensive remagnetizations and further constraints
on the extent of the Cantabrian orocline, J. Iber. Geol., 43, 583–600,
https://doi.org/10.1007/s41513-017-0039-x, 2017b.
Pastor-Galán, D., Pueyo, E. L., Diederen, M., García-Lasanta, C.,
and Langereis, C. G.: Late Paleozoic Iberian Orocline(s) and the Missing
Shortening in the Core of Pangea. Paleomagnetism From the Iberian Range,
Tectonics, 37, 3877–3892, https://doi.org/10.1029/2018TC004978, 2018.
Pastor-Galán, D., Nance, R. D., Murphy, J. B., and Spencer, C. J.:
Supercontinents: myths, mysteries, and milestones, Geol. Soc. Lond. Spec.
Publ., 470, 39–64, https://doi.org/10.1144/SP470.16, 2019a.
Pastor-Galán, D., Dias da Silva, Í. F., Groenewegen, T., and
Krijgsman, W.: Tangled up in folds: tectonic significance of superimposed
folding at the core of the Central Iberian curve (West Iberia), Int. Geol.
Rev., 61, 240–255, https://doi.org/10.1080/00206814.2017.1422443, 2019b.
Pereira, I., Dias, R., Bento, T., and Mata, J.: Exhumation of a migmatite
complex along a transpressive shear zone?: inferences from the Variscan
Juzbado – Penalva do Castelo Shear Zone (Central Iberian Zone), J. Geol.
Soc., 174, 1004, https://doi.org/10.1144/jgs2016-159, 2017.
Pereira, M. F., Chichorro, M., Silva, J. B., Ordóñez-Casado, B.,
Lee, J. K. W. W., and Williams, I. S.: Early carboniferous wrenching,
exhumation of high-grade metamorphic rocks and basin instability in SW
Iberia: Constraints derived from structural geology and U–Pb and 40Ar–39Ar
geochronology, Tectonophysics, 558, 28–44, https://doi.org/10.1016/j.tecto.2012.06.020,
2012.
Pereira, M. F., Díez Fernández, R., Gama, C., Hofmann, M.,
Gärtner, A., and Linnemann, U.: S-type granite generation and emplacement
during a regional switch from extensional to contractional deformation
(Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny), Int.
J. Earth Sci., 107, 251–267, https://doi.org/10.1007/s00531-017-1488-3, 2018.
Pérez-Cáceres, I., Poyatos, D. M., Simancas, J. F., and Azor, A.: The
elusive nature of the Rheic Ocean suture in SW Iberia, Tectonics, 34,
2429–2450, https://doi.org/10.1002/2015TC003947, 2015.
Pérez-Cáceres, I., Simancas, J. F., Martínez Poyatos, D., Azor, A., and González Lodeiro, F.: Oblique collision and deformation partitioning in the SW Iberian Variscides, Solid Earth, 7, 857–872, https://doi.org/10.5194/se-7-857-2016, 2016.
Pérez-Cáceres, I., Martínez Poyatos, D., Simancas, J. F., and
Azor, A.: Testing the Avalonian affinity of the South Portuguese Zone and
the Neoproterozoic evolution of SW Iberia through detrital zircon
populations, Gondwana Res., 42, 177–192, https://doi.org/10.1016/j.gr.2016.10.010,
2017.
Pérez-Cáceres, I., Martínez Poyatos, D. J., Vidal, O., Beyssac, O., Nieto, F., Simancas, J. F., Azor, A., and Bourdelle, F.: Deciphering the metamorphic evolution of the Pulo do Lobo metasedimentary domain (SW Iberian Variscides), Solid Earth, 11, 469–488, https://doi.org/10.5194/se-11-469-2020, 2020.
Pérez-Estaún, A., Bastida, F., Alonso, J. L., Marquinez, J., Aller,
J., Alvarezmarron, J., Marcos, A., and Pulgar, J. A.: A thin-skinned
tectonics model for an arcuate fold and thrust belt – the Cantabrian Zone
(Variscan Ibero–Armorican Arc), Tectonics, 7, 517–537, 1988.
Pérez-Estaún, A., Bastida, F., Martínez Catalán, J. R.,
Gutiérrez-Marco, J. C., Marcos, A., and Pulgar, J.: Stratigraphy of the
West Asturian-Leonese Zone, Springer, available at:
https://digital.csic.es/handle/10261/30719 (last access: 6 April 2020), 1990.
Pérez-Estaún, A., Martinezcatalan, J. R., and Bastida, F.: Crustal
thickening and deformation sequence in the footwall to the suture of the
Variscan belt of northwest Spain, Tectonophysics, 191, 243–253, 1991.
Perroud, H., Bonhommet, N., and Ribeiro, A.: Paleomagnetism of Late Paleozoic
igneous rocks from southern Portugal, Geophys. Res. Lett., 12, 45–48,
https://doi.org/10.1029/GL012i001p00045, 1985.
Perroud, H., Calza, F., and Khattach, D.: Paleomagnetism of the Silurian
Volcanism at Almaden, Southern Spain, J. Geophys. Res.-Solid,
96, 1949–1962, https://doi.org/10.1029/90JB02226, 1991.
Pin, C., Paquette, J. L., Santos Zalduegui, J. F., and Gil Ibarguchi, J. I.: Early Devonian suprasubduction-zone ophiolite related to incipient collisional processes in the Western Variscan Belt: The Sierra de Careón unit, Ordenes Complex, Galicia, Special Papers-Geological Society of America, 57–72, 2002.
Pin, C., Fonseca, P. E., Paquette, J. L., Castro, P., and Matte, P.: The ca. 350 Ma Beja Igneous Complex: A record of transcurrent slab break-off in the Southern Iberia Variscan Belt?, Tectonophysics, 461, 356–377, 2008.
Pueyo, E. L., Mauritsch, H. J., Gawlick, H.-J., Scholger, R., and Frisch, W.:
New evidence for block and thrust sheet rotations in the central northern
Calcareous Alps deduced from two pervasive remagnetization events,
Tectonics, 26, TC5011, https://doi.org/10.1029/2006TC001965, 2007.
Pueyo, E. L., Sussman, A. J., Oliva-Urcia, B., and Cifelli, F.:
Palaeomagnetism in fold and thrust belts: Use with caution, Geol. Soc. Spec.
Publ., 425, 259–276, https://doi.org/10.1144/SP425.14, 2016.
Quesada, C.: The Ossa-Morena Zone of the Iberian Massif: a
tectonostratigraphic approach to its evolution, Z. Dtsch. Ges.
Geowiss., 157, 585–595, https://doi.org/10.1127/1860-1804/2006/0157-0585, 2006.
Quesada, C. and Dallmeyer, R. D. D.: Tectonothermal evolution of the
Badajoz-Cordóba shear zone (SW Iberia): characteristics and 40Ar∕39Ar
mineral age constraints, Tectonophysics, 231, 195–213,
https://doi.org/10.1016/0040-1951(94)90130-9, 1994.
Quesada, C., Braid, J. A., Fernandes, P., Ferreira, P., Jorge, R. S., Matos,
J. X., Murphy, J. B., Oliveira, J. T., Pedro, J., and Pereira, Z.: SW Iberia
Variscan Suture Zone: Oceanic Affinity Units, in: The Geology of Iberia: A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., 131–171,
Springer International Publishing, Cham., 2019.
Rankin, D. W.: Appalachian salients and recesses: Late Precambrian
continental breakup and the opening of the Iapetus Ocean, J. Geophys. Res.,
81, 5605–5619, https://doi.org/10.1029/JB081i032p05605, 1976.
Rezaeian, M., Kuijper, C. B., van der Boon, A., Pastor-Galán, D., Cotton, L. J., Langereis, C. G., and Krijgsman, W.: Post-Eocene coupled oroclines in the Talesh (NW Iran): Paleomagnetic constraints, Tectonophysics, 786, 228459, https://doi.org/10.1016/j.tecto.2020.228459, 2020.
Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L.,
Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H.,
Coke, C., and Pedro, J.: Geodynamic evolution of the SW Europe Variscides,
Tectonics, 26, TC6009, https://doi.org/10.1029/2006TC002058, 2007.
Ries, A. C. and Shackleton, R. M.: Catazonal Complexes of North-West Spain
and North Portugal, Remnants of a Hercynian Thrust Plate, Nat. Phys. Sci.,
234, 65–68, https://doi.org/10.1038/physci234065a0, 1971.
Ries, A. C. and Shackleton, R. M.: Patterns of Strain Variation in Arcuate
Fold Belts, Philos. T. R. Soc. S.-A, 283,
281–288, 1976.
Robardet, M. and Marco, J. C. G.: The Ordoviciam, Silurian and Devonian sadimentary rocks of the Ossa-Morena Zone (SW Iberian Peninsula, Spain), Cuadernos de geología ibérica (Journal of iberian geology: an international publication of earth sciences), 30, 73–92, 2004.
Rodríguez-Cañero, R., Jabaloy-Sánchez, A., Navas-Parejo, P.,
Martín-Algarra, A., Rodríguez, R., Antonio, C., Sánchez, J.,
Navas, P., Agustín, P., and Algarra, M.: Linking Palaeozoic
palaeogeography of the Betic Cordillera to the Variscan Iberian Massif?: new
insight through the first conodonts of the Nevado-Filábride Complex,
Int. J. Earth Sci., 107, 1791–1806, https://doi.org/10.1007/s00531-017-1572-8, 2018.
Rosenbaum, G.: Geodynamics of oroclinal bending: Insights from the
Mediterranean, J. Geodyn., 82, 5–15, https://doi.org/10.1016/j.jog.2014.05.002, 2014.
Rubio Pascual, F. J., Arenas, R., Martínez Catalán, J. R.,
Rodríguez Fernández, L. R., and Wijbrans, J. R.: Thickening and
exhumation of the Variscan roots in the Iberian Central System:
Tectonothermal processes and 40Ar∕39Ar ages, Tectonophysics, 587, 207–221,
https://doi.org/10.1016/j.tecto.2012.10.005, 2013.
Rubio Pascual, F. J., López-Carmona, A., and Arenas, R.: Thickening vs.
extension in the Variscan belt: P–T modelling in the Central Iberian
autochthon, Tectonophysics, 681, 144–158, https://doi.org/10.1016/j.tecto.2016.02.033,
2016.
Sánchez-García, T., Chichorro, M., Solá, A. R., Álvaro, J.
J., Díez-Montes, A., Bellido, F., Ribeiro, M. L., Quesada, C., Lopes,
J. C., Dias da Silva, Í., González-Clavijo, E., Gómez Barreiro,
J., and López-Carmona, A.: The Cambrian-Early Ordovician Rift Stage in
the Gondwanan Units of the Iberian Massif, in The Geology of Iberia: A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., 27–74,
Springer International Publishing, Cham., 2019.
Schulz, G.: Descripción geológica de Asturias: Publicada de Real
Órden, Con un atlas, José Gonzalez, Madrid, 1858.
Schwartz, S. Y. and Van der Voo, R.: Paleomagnetic evaluation of the Orocline
hypothesis in the central and southern Appalachians, Geophys. Res. Lett.,
10, 505–508, 1983.
Shaw, J. and Johnston, S. T.: Terrane wrecks (coupled oroclines) and
paleomagnetic inclination anomalies, Earth-Sci. Rev., 154, 191–209,
https://doi.org/10.1016/j.earscirev.2016.01.003, 2016.
Shaw, J., Johnston, S. T., Gutiérrez-Alonso, G., and Weil, A. B.:
Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and
paleogeographic implications, Earth Planet. Sc. Lett., 329–330, 60–70,
https://doi.org/10.1016/j.epsl.2012.02.014, 2012.
Shaw, J., Johnston, S. T., Gutiérrez-Alonso, G., and Pastor-Galán,
D.: Provenance variability along the Early Ordovician north Gondwana margin:
Paleogeographic and tectonic implications of U-Pb detrital zircon ages from
the Armorican Quartzite of the Iberian Variscan belt, Bull. Geol. Soc. Am.,
126, 702–719, https://doi.org/10.1130/B30935.1, 2014.
Shaw, J., Johnston, S. T., and Gutiérrez-Alonso, G.: Orocline formation
at the core of Pangea: A structural study of the Cantabrian orocline, NW
Iberian Massif, Lithosphere, 7, 653–661, https://doi.org/10.1130/L461.1, 2015.
Shaw, J., Johnston, S. T., and Gutiérrez-Alonso, G.: Orocline formation
at the core of Pangea: A structural study of the Cantabrian orocline, NW
Iberian Massif, Lithosphere, 8, 97–97, https://doi.org/10.1130/L461.1, 2016.
Simancas, J. F., Carbonell, R., Lodeiro, F. G., Estaun, A., Juhlin, C.,
Ayarza, P., Kashubin, A., Azor, A., Poyatos, D. M., Almodovar, G. R.,
Pascual, E., Saez, R., and Exposito, I.: Crustal structure of the
transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic
reflection profile (IBERSEIS), Tectonics, 22, 25–25, 2003.
Simancas, J. F., Carbonell, R., Lodeiro, F. G., Estaún, A. P., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A., Poyatos, D. M., Sáez, R., and Almodóvar, G. R.: Transpressional collision tectonics and mantle plume dynamics: the Variscides of southwestern Iberia, Geological Society, London, Memoirs, 32, 345–354, 2006.
Simancas, J. F., Ayarza, P., Azor, A., Carbonell, R., Martínez Poyatos,
D., Pérez-Estaún, A., and González Lodeiro, F.: A seismic
geotraverse across the Iberian Variscides: Orogenic shortening, collisional
magmatism, and orocline development, Tectonics, 32,
https://doi.org/10.1002/tect.20035, 2013.
Solís-Alulima, B. E., López-Carmona, A., Gutiérrez Alonso, G.,
and Álvarez Valero, A. M.: Petrologic and thermobarometric study of the
Riás schists (NW Iberian Massif), Bol. Geológico Min., 130,
445–464, https://doi.org/10.21701/bolgeomin.130.3.004, 2019.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, 2002.
Staub, R.: Gedanken zur Tektonik Spaniens, Prag and Leipzig, Zürich, 1926.
Stewart, S. A.: Paleomagnetic analysis of fold kinematics and implications
for geological models of the Cantabrian/Asturian arc, north Spain, J.
Geophys. Res.-Sol. Ea., 100, 20079–20094, https://doi.org/10.1029/95JB01482,
1995.
Suess, E.: Das Antlitz der Erde, F. Tempsky, Prag and Leipzig, available at: http://archive.org/details/dasantlitzderer02suesgoog
(last access: 12 March 2020), 1892.
Tait, J. A., Bachtadse, V., and Soffel, H. C.: Eastern Variscan fold belt?:
Paleomagnetic evidence for oroclinal bending, Geology, 24, 871–874,
https://doi.org/10.1130/0091-7613(1996)024<0871:EVFBPE>2.3.CO;2, 1996.
Tauxe, L.: Essentials of Paleomagnetism, Univ. of California Press, Berkely, California, 2010.
Thomas, W. A.: Evolution of Appalachian-Ouachita Salients and Recesses from
Reentrants and Promontories in the Continental Margin, Am. J. Sci., 277,
1233–1278, https://doi.org/10.2475/ajs.277.10.1233, 1977.
Thomas, W. A.: Genetic relationship of rift-stage crustal structure, terrane
accretion, and foreland tectonics along the southern Appalachian-Ouachita
orogen, J. Geodyn., 37, 549–563, https://doi.org/10.1016/j.jog.2004.02.020, 2004.
Tohver, E., Weil, A. B. B. B., Solum, J. G. G. G., and Hall, C. M. M. M.:
Direct dating of carbonate remagnetization by 40Ar∕39Ar analysis of the
smectite–illite transformation, Earth Planet. Sc. Lett., 274,
524–530, https://doi.org/10.1016/j.epsl.2008.08.002, 2008.
Valladares, M. I., Barba, P., Ugidos, J. M., Colmenero, J. R., and
Armenteros, I.: Upper Neoproterozoic-Lower Cambrian sedimentary successions
in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and
chemostratigraphy. Implications for other European zones, Int. J. Earth
Sci., 89, 2–20, 2000.
van der Boon, A., van Hinsbergen, D. J. J. J. J., Rezaeian, M., Gürer,
D., Honarmand, M., Pastor-Galán, D., Krijgsman, W., and Langereis, C. G.
G.: Quantifying Arabia–Eurasia convergence accommodated in the Greater
Caucasus by paleomagnetic reconstruction, Earth Planet. Sc. Lett., 482, 454–469,
https://doi.org/10.1016/j.epsl.2017.11.025, 2018.
Van der Voo, R.: Paleomagnetism, oroclines, and growth of the continental
crust, GSA Today, 14, 4–9, https://doi.org/10.1130/1052-5173(2004)014<4:POAGOT>2.0.CO;2, 2004.
van der Voo, R., Stamatakos, J. A., and Pares, J. M.: Kinematic constraints
on thrust-belt curvature from syndeformational magnetizations in the Lagos
del Valle Syncline in the Cantabrian Arc, Spain, J. Geophys. Res.-Sol.
Ea., 102, 10105–10119, 1997.
van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C.,
Maffione, M., Vissers, R. L. M., Gürer, D., and Spakman, W.: Orogenic
architecture of the Mediterranean region and kinematic reconstruction of its
tectonic evolution since the Triassic, Gondwana Res., 81, 79–229,
https://doi.org/10.1016/j.gr.2019.07.009, 2020.
Vergés, J.: Estudio del Complejo volcáno-sedimentario del
Devónico y de la estructura de la terminación oriental del sinclinal
de Almadén (Ciudad Real), in: Libro Jubilar JM Rios, Tomo 3, IGME, Madrid,
215–229, 1983.
Vissers, R. L. M., van Hinsbergen, D. J. J., van der Meer, D. G., and
Spakman, W.: Cretaceous slab break-off in the Pyrenees: Iberian plate
kinematics in paleomagnetic and mantle reference frames, Gondwana Res., 34,
49–59, https://doi.org/10.1016/J.GR.2016.03.006, 2016.
Weil, A., Pastor-Galán, D., Johnston, S. T., and Gutiérrez-Alonso,
G.: Late/Post Variscan Orocline Formation and Widespread Magmatism, in The
Geology of Iberia: A Geodynamic Approach, edited by: Quesada, C. and
Oliveira, J. T., 527–542, Springer International Publishing, Cham., 2019.
Weil, A. B.: Kinematics of orocline tightening in the core of an arc:
Paleomagnetic analysis of the Ponga Unit, Cantabrian Arc, northern Spain,
Tectonics, 25, TC3012, https://doi.org/10.1029/2005TC001861, 2006.
Weil, A. B. and Sussman, A. J.: Classifying curved orogens based on timing relationships between structural development and vertical-axis rotations, edited by:
Sussman, A. J. and Weil, A. B., Orogenic Curvature: Integrating Paleomagnetic and Structural Analyses, Vol. 383, Geological Society of America, 1–16, 2004.
Weil, A. B. and Van der Voo, R.: Insights into the mechanism for orogen‐related carbonate remagnetization from growth of authigenic Fe‐oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain, J. Geophys. Res.-Sol. Ea., 107, EPM 1-1–EPM 1-14, 2002.
Weil, A. B., Van der Voo, R., van der Pluijm, B. A., and Parés, J. M.:
The formation of an orocline by multiphase deformation: a paleomagnetic
investigation of the Cantabria–Asturias Arc (northern Spain), J. Struct.
Geol., 22, 735–756, https://doi.org/10.1016/S0191-8141(99)00188-1, 2000.
Weil, A. B., van der Voo, R., and van der Pluijm, B. A.: Oroclinal bending
and evidence against the Pangea megashear: The Cantabria-Asturias arc
(northern Spain), Geology, 29, 991–994, 2001.
Weil, A. B., Van der Voo, R., and Voo, R. V. D.: Insights into the mechanism
for orogen-related carbonate remagnetization from growth of authigenic
Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian
carbonates from northern Spain, J. Geophys. Res.-Sol. Ea., 107,
EPM 1-1–EPM 1-14, https://doi.org/10.1029/2001JB000200, 2002.
Weil, A. B., Yonkee, A., and Sussman, A.: Reconstructing the kinematics of
thrust sheet rotation: a paleomagnetic study of Triassic redbeds from the
Wyoming Salient, U.S.A., GSA Bulletin, 122, 2–23, 2010a.
Weil, A. B., Gutiérrez-Alonso, G., and Conan, J.: New time constraints on
lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a
palaeomagnetic study of earliest Permian rocks from Iberia, J. Geol. Soc.,
167, 127–143, https://doi.org/10.1144/0016-76492009-002, 2010b.
Weil, A. B. B., Gutiérrez-Alonso, G., Johnston, S. T., and
Pastor-Galán, D.: Kinematic constraints on buckling a lithospheric-scale
orocline along the northern margin of Gondwana: A geologic synthesis,
Tectonophysics, 582, 25–49, https://doi.org/10.1016/j.tecto.2012.10.006, 2013.
Woodcock, N. H., Soper, N. J., and Strachan, R. A.: A Rheic cause for the
Acadian deformation in Europe, J. Geol. Soc., 164, 1023–1036, 2007.
Yenes, M., Alvarez, F., and Gutierrez-Alonso, G.: Granite emplacement in
orogenic compressional conditions: the La Alberca-Bejar granitic area
(Spanish Central System, Variscan Iberian Belt), J. Struct. Geol., 21,
1419–1440, 1999.
Yonkee, A. and Weil, A. B.: Quantifying vertical axis rotation in curved
orogens: Correlating multiple data sets with a refined weighted least
squares strike test, Tectonics, 29, TC3012,
https://doi.org/10.1029/2008TC002312, 2010.
Zegers, T. E., Dekkers, M. J., and Bailly, S.: Late Carboniferous to Permian
remagnetization of Devonian limestones in the Ardennes: Role of temperature,
fluids, and deformation, J. Geophys. Res.-Sol. Ea., 108, 2357, https://doi.org/10.1029/2002JB002213, 2003.
Short summary
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and winding orogeny that today transects Europe, northwestern Africa, and eastern North America. This orogen is characterized by an
Sshape corrugated geometry in Iberia. This paper presents the advances and milestones in our understanding of the geometry and kinematics of the Central Iberian curve from the last decade with particular attention paid to structural and paleomagnetic studies.
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and...