Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1823-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1823-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Christoph von Hagke
Institute of Geology and Palaeontology, RWTH Aachen University,
Wüllnerstrasse 2, 52056 Aachen, Germany
Department of Geography and Geology, University of Salzburg,
Hellbrunnerstrasse 34, 5020 Salzburg, Austria
Fritz Schlunegger
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
István Dunkl
Geoscience Center, Sedimentology and Environmental Geology, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
Marco Herwegh
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Related authors
No articles found.
Jörg Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
Earth Surf. Dynam., 13, 745–770, https://doi.org/10.5194/esurf-13-745-2025, https://doi.org/10.5194/esurf-13-745-2025, 2025
Short summary
Short summary
The Bohemian Massif is one of several low mountain ranges in Europe that rises more than 1 km above the surrounding lowlands. Landscape characteristics indicate relief rejuvenation due to recent surface uplift. To constrain the pace of relief formation, we determined erosion rates of 20 catchments that range from 22 to 51 m Myr-1. Correlating these rates with topographic properties reveals that contrasts in bedrock erodibility represent a critical control of landscape evolution.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
James Gilgannon and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1718, https://doi.org/10.5194/egusphere-2025-1718, 2025
Short summary
Short summary
Carbonate rocks can control how strong the Earth’s crust is in places. They are often described in simple terms as calcite or dolomite, but they are more complicated. At the atomistic level different amounts of elements, like magnesium and calcium, are incorporated at different temperatures and at the microscopic level carbonates can have different internal structures. We review 50 years of experimental data to provide equations that can describe the strength of most kinds of carbonates.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Markus Ohl, Oliver Plümper, and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3970, https://doi.org/10.5194/egusphere-2024-3970, 2025
Short summary
Short summary
To date, there remains a deficiency in rheological parameters for polymineralic rocks to be used in models for strain localization and seismicity in the Earth's continental middle crust. We calculated grain size and stress sensitivity of experimentally deformed natural, fine-grained, granitoid rocks. Extrapolation of these parameters predicts a switch in the weakest material as a function of grain size and deformation mechanism: from coarse monomineralic quartz to fine polymineralic rocks.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Weijia Zhan, Markus Ohl, Oliver Plümper, and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3968, https://doi.org/10.5194/egusphere-2024-3968, 2025
Short summary
Short summary
Rheology of polymineralic rocks is crucial to unravel the strain and stress distribution in Earth’s middle crust with implications for e.g. seismicity or geothermal systems. Our experimental study of the viscous rheology of natural, fine-grained, granitoid rocks shows that dissolution-precipitation creep and pinning is active in extremely weak narrow zones. Due to the polymineralic character, strain localizes with and without a precursory fracture in zones weaker than monomineralic quartz.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Michael A. Schwenk, Laura Stutenbecker, Patrick Schläfli, Dimitri Bandou, and Fritz Schlunegger
E&G Quaternary Sci. J., 71, 163–190, https://doi.org/10.5194/egqsj-71-163-2022, https://doi.org/10.5194/egqsj-71-163-2022, 2022
Short summary
Short summary
We investigated the origin of glacial sediments in the Bern area to determine their route of transport either with the Aare Glacier or the Valais Glacier. These two ice streams are known to have joined in the Bern area during the last major glaciation (ca. 20 000 years ago). However, little is known about the ice streams prior to this last glaciation. Here we collected evidence that during a glaciation about 250 000 years ago the Aare Glacier dominated the area as documented in the deposits.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022, https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Fritz Schlunegger, Romain Delunel, and Philippos Garefalakis
Earth Surf. Dynam., 8, 717–728, https://doi.org/10.5194/esurf-8-717-2020, https://doi.org/10.5194/esurf-8-717-2020, 2020
Short summary
Short summary
We calculated the probability of sediment transport in coarse-grained mountainous streams in the Alps and the Andes where data on water discharge is available. We find a positive correlation between the predicted probability of sediment transport and the grain size sorting of the bed material. We suggest that besides sediment discharge, the bedload sorting exerts a significant influence on the mobility of sediment and thus on the stability of gravel bars in mountainous streams.
Cited articles
Allen, P. A., Crampton, S. L., and Sinclair, H. D.: The inception and early
evolution of the North Alpine Foreland Basin, Switzerland, Basin Res., 3,
143–163, https://doi.org/10.1111/j.1365-2117.1991.tb00124.x, 1991.
Aubert, D.: Sur l'existence d'une ride de plissement oligocène dans le
Jura vaudois, Bull. la Société Neuchâteloise des Sci. Nat., 81,
47–54, 1958.
Bachmann, G. H. and Müller, M.: Sedimentary and structural evolution of
the German Molasse Basin, Eclogae Geol. Helv., 85, 519–530,
https://doi.org/10.5169/seals-167019, 1992.
Baran, R., Friedrich, A. M., and Schlunegger, F.: The late Miocene to
Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab
unloading beneath the western Alps rather than global climate change,
Lithosphere, 6, 124–131, https://doi.org/10.1130/L307.1, 2014.
Beck, P.: Über den Mechanismus der subalpinen Molassetektonik, Eclogae
Geol. Helv., 38, 353–368, 1945.
Becker, A.: The Jura Mountains – an active foreland fold-and-thrust belt?,
Tectonophysics, 321, 381–406, https://doi.org/10.1016/S0040-1951(00)00089-5, 2000.
Beidinger, A. and Decker, K.: Quantifying Early Miocene in-sequence and
out-of-sequence thrusting at the Alpine-Carpathian junction, Tectonics,
33, 222–252, https://doi.org/10.1002/2012TC003250, 2014.
Berge, T. B. and Veal, S. L.: Structure of the Alpine foreland, Tectonics,
24, TC5011, https://doi.org/10.1029/2003TC001588, 2005.
Berger, A., Wehrens, P., Lanari, P., Zwingmann, H., and Herwegh, M.:
Microstructures, mineral chemistry and geochronology of white micas along a
retrograde evolution: An example from the Aar massif (Central Alps,
Switzerland), Tectonophysics, 721, 179–195,
https://doi.org/10.1016/j.tecto.2017.09.019, 2017.
Blau, R. V.: Molasse und Flysch im östlichen Gurnigelgebiet (Kt. Bern),
Beiträge zur Geol. Karte der Schweiz, Schweizerische Geologische Kommission, Bern, NF 125, 151 pp., 1966.
Boyer, S. E. and Elliott, D.: Thrust systems, Am. Assoc. Pet. Geol. Bull.,
66, 1196–1230, 1982.
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and
Fitzgerald, P.: Natural age dispersion arising from the analysis of broken
crystals. Part I: Theoretical basis and implications for the apatite
(U–Th)/He thermochronometer, Geochim. Cosmochim. Ac., 122, 478–497,
https://doi.org/10.1016/j.gca.2013.05.041, 2013.
Burkhard, M.: Aspects of the large-scale Miocene deformation in the most
external part of the Swiss Alps (Subalpine Molasse to Jura fold belt),
Eclogae Geol. Helv., 83, 559–583, 1990.
Burkhard, M. and Sommaruga, A.: Evolution of the western Swiss Molasse
basin: structural relations with the Alps and the Jura belt, Geol. Soc.
London, Spec. Publ., 134, 279–298, https://doi.org/10.1144/GSL.SP.1998.134.01.13,
1998.
Buxtorf, A.: Prognosen und Befunde beim Hauensteinbasis- und
Grenchenbergtunnel und die Bedeutung der letzteren für die Geologie des
Juragebirges, Verhandlungen der Naturforschenden Gesesellschaft Basel, 27,
184–254, 1916.
Campani, M., Mulch, A., Kempf, O., Schlunegger, F., and Mancktelow, N.:
Miocene paleotopography of the Central Alps, Earth Planet. Sci. Lett.,
337–338, 174–185, https://doi.org/10.1016/j.epsl.2012.05.017, 2012.
Caputo, R., Poli, M. E., and Zanferrari, A.: Neogene–Quaternary tectonic
stratigraphy of the eastern Southern Alps, NE Italy, J. Struct. Geol.,
32, 1009–1027, https://doi.org/10.1016/j.jsg.2010.06.004, 2010.
Cardello, G. L., Di Vincenzo, G., Giorgetti, G., Zwingmann, H., and
Mancktelow, N.: Initiation and development of the Pennine Basal Thrust
(Swiss Alps): a structural and geochronological study of an exhumed
megathrust, J. Struct. Geol., 126, 338–356, https://doi.org/10.1016/j.jsg.2019.06.014,
2019.
Castellarin, A. and Cantelli, L.: Neo-Alpine evolution of the Southern
Eastern Alps, J. Geodyn., 30, 251–274,
https://doi.org/10.1016/S0264-3707(99)00036-8, 2000.
Cederbom, C. E., Sinclair, H. D., Schlunegger, F., and Rahn, M. K.:
Climate-induced rebound and exhumation of the European Alps, Geology, 32,
709–712, https://doi.org/10.1130/g20491.1, 2004.
Cederbom, C. E., van der Beek, P., Schlunegger, F., Sinclair, H. D., and
Oncken, O.: Rapid extensive erosion of the North Alpine foreland basin at
5-4 Ma, Basin Res., 23, 528–550, https://doi.org/10.1111/j.1365-2117.2011.00501.x,
2011.
Champagnac, J.-D., Molnar, P., Anderson, R. S., Sue, C., and Delacou, B.:
Quaternary erosion-induced isostatic rebound in the western Alps, Geology,
35, 195–198, https://doi.org/10.1130/G23053A.1, 2007.
Chemenda, A. I., Burg, J. P., and Mattauer, M.: Evolutionary model of the
Himalaya-Tibet system: Geopoem based on new modelling, geological and
geophysical data, Earth Planet. Sci. Lett., 174, 397–409,
https://doi.org/10.1016/S0012-821X(99)00277-0, 2000.
Davies, J. H. and von Blanckenburg, F.: Slab breakoff: A model of
lithosphere detachment and its test in the magmatism and deformation of
collisional orogens, Earth Planet. Sci. Lett., 129, 85–102,
https://doi.org/10.1016/0012-821X(94)00237-S, 1995.
DeCelles, P. G. and Giles, K. A.: Foreland basin systems, Basin Res., 8,
105–123, https://doi.org/10.1046/j.1365-2117.1996.01491.x, 1996.
Dürst Stucki, M., Reber, R., and Schlunegger, F.: Subglacial tunnel
valleys in the Alpine foreland: an example from Bern, Switzerland, Swiss J.
Geosci., 103, 363–374, https://doi.org/10.1007/s00015-010-0042-0, 2010.
Egli, D., Mancktelow, N., and Spikings, R.: Constraints from 40Ar∕39Ar geochronology on the timing of Alpine shear zones in the Mont Blanc-Aiguilles Rouges region of the European Alps, Tectonics, 36,
730–748, https://doi.org/10.1002/2016TC004450, 2017.
Farley, K. A.: (U-Th)/He Dating: Techniques, Calibrations, and Applications,
Rev. Mineral. Geochemistry, 47, 819–844, https://doi.org/10.2138/rmg.2002.47.18,
2002.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long
alpha-stopping distances on (U-Th)/He ages, Geochim. Cosmochim. Ac.,
60, 4223–4229, https://doi.org/10.1016/S0016-7037(96)00193-7, 1996.
Fillon, C., Huismans, R. S., and van der Beek, P.: Syntectonic sedimentation
effects on the growth of fold-and-thrust belts, Geology, 41, 83–86,
https://doi.org/10.1130/G33531.1, 2013.
Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A.: Apatite
(U–Th)/He thermochronometry using a radiation damage accumulation and
annealing model, Geochim. Cosmochim. Ac., 73, 2347–2365,
https://doi.org/10.1016/j.gca.2009.01.015, 2009.
Fox, M., Herman, F., Willett, S. D., and Schmid, S. M.: The Exhumation
history of the European Alps inferred from linear inversion of
thermochronometric data, Am. J. Sci., 316, 505–541,
https://doi.org/10.2475/06.2016.01, 2016.
Frisch, W., Kuhlemann, J., Dunkl, I., and Brügel, A.: Palinspastic
reconstruction and topographic evolution of the Eastern Alps during late
Tertiary tectonic extrusion, Tectonophysics, 297, 1–15,
https://doi.org/10.1016/S0040-1951(98)00160-7, 1998.
Fry, B., Deschamps, F., Kissling, E., Stehly, L., and Giardini, D.: Layered
azimuthal anisotropy of Rayleigh wave phase velocities in the European
Alpine lithosphere inferred from ambient noise, Earth Planet. Sci. Lett.,
297, 95–102, https://doi.org/10.1016/j.epsl.2010.06.008, 2010.
Fuchs, W.: Gedanken zur Tektogenese der nördlichen Molasse zwischen
Rhone und March, Jahrb. der Geol. Bundesanstalt, 119, 207–249, 1976.
Ganss, O. and Schmidt-Thomé, P.: Die gefaltete Molasse am Alpenrand
zwischen Bodensee und Salzach, Zeitschrift der Dtsch. Geol. Gesellschaft,
105, 402–495, 1953.
Ganti, V., von Hagke, C., Scherler, D., Lamb, M. P., Fischer, W. W., and
Avouac, J.-P.: Time scale bias in erosion rates of glaciated landscapes,
Sci. Adv., 2, e1600204, https://doi.org/10.1126/sciadv.1600204, 2016.
Garefalakis, P. and Schlunegger, F.: Link between concentrations of sediment
flux and deep crustal processes beneath the European Alps, Sci. Rep., 8,
183, https://doi.org/10.1038/s41598-017-17182-8, 2018.
Genser, J., Cloetingh, S., and Neubauer, F.: Late orogenic rebound and
oblique Alpine convergence: New constraints from subsidence analysis of the
Austrian Molasse basin, Global Planet. Change, 58, 214–223,
https://doi.org/10.1016/j.gloplacha.2007.03.010, 2007.
Giamboni, M., Ustaszewski, K., Schmid, S. M., Schumacher, M. E., and Wetzel,
A.: Plio-Pleistocene transpressional reactivation of Paleozoic and Paleogene
structures in the Rhine-Bresse transform zone (northern Switzerland and
eastern France), Int. J. Earth Sci., 93, 207–223,
https://doi.org/10.1007/s00531-003-0375-2, 2004.
Glotzbach, C., Reinecker, J., Danišík, M., Rahn, M. K., Frisch, W., and Spiegel, C.: Thermal history of the central Gotthard and Aar massifs,
European Alps: Evidence for steady state, long-term exhumation, J. Geophys.
Res., 115, F03017, https://doi.org/10.1029/2009JF001304, 2010.
Glotzbach, C., van der Beek, P. A., and Spiegel, C.: Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data, Earth Planet. Sci. Lett., 304, 417–430, https://doi.org/10.1016/j.epsl.2011.02.020, 2011.
Guellec, S., Mugnier, J.-L., Tardy, M., and Roure, F.: Neogene evolution of
the western Alpine foreland in the light of ECORS data and balanced
cross-section, in: Deep structure of the Alps, Mém. Soc. géol.
suisse, 1, edited by: Roure, F., Heitzmann, P., and Polino, R., Société Geologique Suisse, Zürich, 165–184, 1990.
Gusterhuber, J., Dunkl, I., Hinsch, R., Linzer, H.-G., and Sachsenhofer, R.:
Neogene uplift and erosion in the Alpine Foreland Basin (Upper Austria and
Salzburg), Geol. Carpathica, 63, 295–305, https://doi.org/10.2478/v10096-012-0023-5,
2012.
Haldemann, E. G., Haus, H. A., Holliger, A., Liechti, W., Rutsch, R. F., and
della Valle, G.: Geological Atlas of Switzerland 1:25000, Map sheet Eggiwil
(LK 1188), Federal Office of Topography swisstopo, Wabern, Switzerland,
1980.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the Alps,
Earth-Science Rev., 102, 121–158,
https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding switches in
subduction polarity, slab gaps and surface motion, Int. J. Earth Sci.,
104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Haus, H.: Über alte Erosionserscheinungen am Südrand der miocaenen
Nagelfluh des oberen Emmentales und deren Bedeutung für die Tektonik des
Alpenrandes, Eclogae Geol. Helv., 28, 667–677, 1935.
Haus, H.: Geologie der Gegend von Schangnau im oberen Emmental (Kanton
Bern): ein Beitrag zur Stratigraphie und Tektonik der subalpinen Molasse und
des Alpenrandes, Beiträge zur Geol. Karte der Schweiz, Geologische Kommission der Schweizerischen Naturforschenden Gesellschaft, Bern, NF 75, 106 pp., 1937.
Herwegh, M., Berger, A., Baumberger, R., Wehrens, P., and Kissling, E.:
Large-Scale Crustal-Block-Extrusion During Late Alpine Collision, Sci. Rep.,
7, 413, https://doi.org/10.1038/s41598-017-00440-0, 2017.
Herwegh, M., Berger, A., Glotzbach, C., Wangenheim, C., Mock, S., Wehrens,
P., Baumberger, R., Egli, D., and Kissling, E.: Late stages of
continent-continent collision: Timing, kinematic evolution, and exhumation
of the Northern rim (Aar Massif) of the Alps, Earth Sci. Rev., 200, 102959,
https://doi.org/10.1016/j.earscirev.2019.102959, 2020.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F.,
Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling,
E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul,
A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter,
J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann,
F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V., and
Živčić, M.: The AlpArray Seismic Network: A Large-Scale European
Experiment to Image the Alpine Orogen, Surv. Geophys., 39, 1009–1033,
https://doi.org/10.1007/s10712-018-9472-4, 2018a.
Hetényi, G., Plomerová, J., Bianchi, I., Kampfová Exnerová,
H., Bokelmann, G., Handy, M. R., and Babuška, V.: From mountain summits
to roots: Crustal structure of the Eastern Alps and Bohemian Massif along
longitude 13.3∘ E, Tectonophysics, 744, 239–255,
https://doi.org/10.1016/j.tecto.2018.07.001, 2018b.
Hinsch, R.: Laterally varying structure and kinematics of the Molasse fold
and thrust belt of the Central Eastern Alps: Implications for exploration,
Am. Assoc. Pet. Geol. Bull., 97, 1805–1831, https://doi.org/10.1306/04081312129,
2013.
Homewood, P., Allen, P. A., and Williams, G. D.: Dynamics of the Molasse
Basin of Western Switzerland, in: Foreland Basins, edited by: Allen, P. A. and Homewood, P., Blackwell Publishing Ltd., Oxford, UK,
199–217, https://doi.org/10.1002/9781444303810.ch10pp, 1986.
Hourigan, J. K., Reiners, P. W., and Brandon, M. T.: U-Th zonation-dependent
alpha-ejection in (U-Th)/He chronometry, Geochim. Cosmochim. Ac., 69,
3349–3365, https://doi.org/10.1016/j.gca.2005.01.024, 2005.
Hurford, A. J.: Cooling and uplift patterns in the Lepontine Alps South
Central Switzerland and an age of vertical movement on the Insubric fault
line, Contrib. to Mineral. Petrol., 92, 413–427,
10.1007/BF00374424,
1986.
Jordi, H. A.: Blatt 1188 Eggiwil, Geol. Atlas Schweiz 1 25 000, Erläut.
75, Bundesamt für Landestopografie swisstopo, Wabern, 72 pp., ISBN 978-3-302-40065-5, 2012.
Karner, G. D. and Watts, A. B.: Gravity anomalies and flexure of the
lithosphere at mountain ranges, J. Geophys. Res., 88,
10449–10477, https://doi.org/10.1029/JB088iB12p10449, 1983.
Kästle, E. D., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T., and
El-Sharkawy, A.: Slab break-offs in the Alpine subduction zone, Int. J.
Earth Sci., 109, 587–603, https://doi.org/10.1007/s00531-020-01821-z, 2020.
Kempf, O., Matter, A., Burbank, D. W., and Mange, M.: Depositional and
structural evolution of a foreland basin margin in a magnetostratigraphic
framework: the eastern Swiss Molasse Basin, Int. J. Earth Sci., 88,
253–275, https://doi.org/10.1007/s005310050263, 1999.
Ketcham, R. A.: Forward and Inverse Modeling of Low-Temperature
Thermochronometry Data, Rev. Mineral. Geochemistry, 58, 275–314,
https://doi.org/10.2138/rmg.2005.58.11, 2005.
Kissling, E. and Schlunegger, F.: Rollback Orogeny Model for the Evolution
of the Swiss Alps, Tectonics, 37, 1097–1115, https://doi.org/10.1002/2017TC004762,
2018.
Kissling, E., Schmid, S. M., Lippitsch, R., Ansorge, J., and Fügenschuh,
B.: Lithosphere structure and tectonic evolution of the Alpine arc: new
evidence from high-resolution teleseismic tomography, Geol. Soc. London,
Mem., 32, 129–145, https://doi.org/10.1144/GSL.MEM.2006.032.01.08, 2006.
Kuhlemann, J. and Kempf, O.: Post-Eocene evolution of the North Alpine
Foreland Basin and its response to Alpine tectonics, Sediment. Geol.,
152, 45–78, https://doi.org/10.1016/S0037-0738(01)00285-8, 2002.
Landesgeologie: Geological Map of Switzerland 1:500'000, Federal Office of
Topography swisstopo, Wabern, Switzerland, 2005.
Landesgeologie: GeoMol: Geologisches 3D-Modell des Schweizer Molassebeckens
– Schlussbericht, Bundesamt für Landestopografie swisstopo, Wabern, Berichte der Landesgeologie, 10, 128 pp., ISBN 978-3-302-40109-6, 2017.
Laubscher, H. P.: Die Fernschubhypothese der Jurafaltung, Eclogae Geol.
Helv., 54, 221–280, 1961.
Laubscher, H. P.: Jura kinematics and the Molasse Basin, Eclogae Geol.
Helv., 85, 653–675, 1992.
Leary, R., Orme, D. A., Laskowski, A. K., DeCelles, P. G., Kapp, P.,
Carrapa, B., and Dettinger, M.: Along-strike diachroneity in deposition of
the Kailas Formation in central southern Tibet: Implications for Indian slab
dynamics, Geosphere, 12, 1198–1223, https://doi.org/10.1130/GES01325.1, 2016.
Lemcke, K.: Das Bayerische Alpenvorland vor der Eiszeit, Schweizerbart
Science Publishers, Stuttgart, Germany, 1988.
Liniger, H.: Pliozän und Tektonik des Juragebirges, Eclogae Geol. Helv.,
60, 407–490, 1967.
Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath
the Alpine orogen from high-resolution teleseismic tomography, J. Geophys.
Res., 108, 2376, https://doi.org/10.1029/2002JB002016, 2003.
Louis, S., Luijendijk, E., Dunkl, I., and Person, M.: Episodic fluid flow in
an active fault, Geology, 47, 938–942, https://doi.org/10.1130/G46254.1, 2019.
Luijendijk, E.: Beo v1.0: numerical model of heat flow and low-temperature thermochronology in hydrothermal systems, Geosci. Model Dev., 12, 4061–4073, https://doi.org/10.5194/gmd-12-4061-2019, 2019.
Luijendijk, E., Winter, T., Köhler, S., Ferguson, G., von Hagke, C., and
Scibek, J.: Using thermal springs to quantify deep groundwater flow and its
thermal footprint in the Alps and North American orogens, EarthArXiv
[preprint], https://doi.org/10.31223/osf.io/364dj, 29 April 2020.
Madritsch, H., Schmid, S. M., and Fabbri, O.: Interactions between thin- and
thick-skinned tectonics at the northwestern front of the Jura
fold-and-thrust belt (eastern France), Tectonics, 27, TC5005,
https://doi.org/10.1029/2008TC002282, 2008.
Mair, D., Lechmann, A., Herwegh, M., Nibourel, L., and Schlunegger, F.: Linking Alpine deformation in the Aar Massif basement and its cover units – the case of the Jungfrau–Eiger mountains (Central Alps, Switzerland), Solid Earth, 9, 1099–1122, https://doi.org/10.5194/se-9-1099-2018, 2018.
Mazurek, M., Hurford, A. J., and Leu, W.: Unravelling the multi-stage burial
history of the Swiss Molasse Basin: integration of apatite fission track,
vitrinite reflectance and biomarker isomerisation analysis, Basin Res.,
18, 27–50, https://doi.org/10.1111/j.1365-2117.2006.00286.x, 2006.
Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A.,
Keller, G. R., Koslovskaya, E., Rumpfhuber, E.-M., and Šumanovac, F.:
Shape and origin of the East-Alpine slab constrained by the ALPASS
teleseismic model, Tectonophysics, 510, 195–206,
https://doi.org/10.1016/j.tecto.2011.07.001, 2011.
Mock, S. and Herwegh, M.: Tectonics of the central Swiss Molasse Basin:
Post-Miocene transition to incipient thick-skinned tectonics?, Tectonics,
36, 1699–1723, https://doi.org/10.1002/2017TC004584, 2017.
Molnar, P., England, P., and Martinod, J.: Mantle dynamics, uplift of the
Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 31, 357–396,
https://doi.org/10.1029/93RG02030, 1993.
Mosar, J.: Present-day and future tectonic underplating in the western Swiss
Alps: reconciliation of basement/wrench-faulting and décollement folding
of the Jura and Molasse basin in the Alpine foreland, Earth Planet. Sci.
Lett., 173, 143–155, https://doi.org/10.1016/S0012-821X(99)00238-1, 1999.
Mosar, J., Stampfli, G. M., and François, G.: Western Préalpes
Médianes Romandes: Timing and structure. A review, Eclogae Geol. Helv.,
89, 389–425, 1996.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental
climatic evolution of Central Europe, Proc. Natl. Acad. Sci., 102,
14964–14969, https://doi.org/10.1073/pnas.0505267102, 2005.
Müller, M., Nieberding, F., and Wanninger, A.: Tectonic style and
pressure distribution at the northern margin of the Alps between Lake
Constance and the River Inn, Geol. Rundschau, 77, 787–796,
https://doi.org/10.1007/BF01830185, 1988.
Nussbaum, C.: Neogene tectonics and thermal maturity of sediments of the
easternmost Southern Alps (Friuli area, Italy), PhD thesis, Université de
Neuchâtel, 172 pp., 2000.
Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., and Schemmann, K.:
Deformation of the Central Andean Upper Plate System – Facts, Fiction, and
Constraints for Plateau Models, in The Andes, in: Frontiers in Earth Sciences,
edited by: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V. A., Strecker, M. R., and Wigger, P., Springer, Berlin, Heidelberg, Germany, 3–27, 2006.
Ortner, H., Reiter, F., and Brandner, R.: Kinematics of the Inntal shear
zone–sub-Tauern ramp fault system and the interpretation of the TRANSALP
seismic section, Eastern Alps, Austria, Tectonophysics, 414, 241–258,
https://doi.org/10.1016/j.tecto.2005.10.017, 2006.
Ortner, H., Aichholzer, S., Zerlauth, M., Pilser, R., and Fügenschuh, B.:
Geometry, amount, and sequence of thrusting in the Subalpine Molasse of
western Austria and southern Germany, European Alps, Tectonics, 34,
1–30, https://doi.org/10.1002/2014TC003550, 2015.
Peresson, H. and Decker, K.: Far-field effects of Late Miocene subduction in
the Eastern Carpathians: E-W compression and inversion of structures in the
Alpine-Carpathian-Pannonian region, Tectonics, 16, 38–56,
https://doi.org/10.1029/96TC02730, 1997.
Pfiffner, O. A.: Evolution of the North Alpine Foreland Basin in the Central
Alps, in: Foreland Basins, edited by: Allen, P. A. and Homewood, P., Blackwell Publishing Ltd., Oxford, UK, 219–228, 1986.
Pfiffner, O. A.: Geologie der Alpen, 1st edn., Haupt, Bern, Stuttgart, Wien,
2009.
Pfiffner, O. A.: Structural Map of the Helvetic Zone of the Swiss Alps,
including Vorarlberg (Austria) and Haute Savoie (France), 1:100 000, Federal Office of Topography swisstopo, Geol. Spec. Map, 128 (Explanatory
notes), 2011.
Pfiffner, O. A., Erard, P. F., and Stäuble, M.: Two cross sections
through the Swiss Molasse Basin (lines E4-E6, W1, W7-W10), in: Deep structure
of the Swiss Alps. Results of NRP 20, edited by: Pfiffner, O. A., Lehner, P.,
Heitzmann, P., Mueller, S., and Steck, A., Birkhäuser, Basel,
Boston, Berlin, 64–72, 1997.
Philippe, Y., Colletta, B., Deville, E., and Mascle, A.: The Jura
fold-and-thrust belt: a kinematic model based on map-balancing, in: Peri
Thetys Memoir 2: Structure and prospects of Alpine Basins and Forelands,
edited by: Ziegler, P. A. and Horvàth, F., Muséum
national d'Histoire naturelle, Paris, 235–261, 1996.
Pippèrr, M. and Reichenbacher, B.: Late Early Miocene
palaeoenvironmental changes in the North Alpine Foreland Basin, Palaeogeogr.
Palaeocl., 468, 485–502,
https://doi.org/10.1016/j.palaeo.2017.01.002, 2017.
Qorbani, E., Bianchi, I., and Bokelmann, G.: Slab detachment under the
Eastern Alps seen by seismic anisotropy, Earth Planet. Sci. Lett., 409,
96–108, https://doi.org/10.1016/j.epsl.2014.10.049, 2015.
Ratschbacher, L., Frisch, W., Linzer, H.-G., and Merle, O.: Lateral extrusion
in the eastern Alps, PArt 2: Structural analysis, Tectonics, 10,
257–271, https://doi.org/10.1029/90TC02623, 1991.
Reiners, P. W. and Brandon, M. T.: Using Thermochronology to Understand
Orogenic Erosion, Annu. Rev. Earth Planet. Sci., 34, 419–466,
https://doi.org/10.1146/annurev.earth.34.031405.125202, 2006.
Rosenberg, C. L. and Berger, A.: On the causes and modes of exhumation and
lateral growth of the Alps, Tectonics, 28, TC6001,
https://doi.org/10.1029/2008TC002442, 2009.
Rosenberg, C. L. and Kissling, E.: Three-dimensional insight into
Central-Alpine collision: Lower-plate or upper-plate indentation?, Geology,
41, 1219–1222, https://doi.org/10.1130/G34584.1, 2013.
Rosenberg, C. L., Berger, A., Bellahsen, N., and Bousquet, R.: Relating
orogen width to shortening, erosion, and exhumation during Alpine collision,
Tectonics, 34, 1306–1328, https://doi.org/10.1002/2014TC003736, 2015.
Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt,
K., Rabaute, A., and Brun, J.-P.: Relating collisional kinematics to
exhumation processes in the Eastern Alps, Earth-Sci. Rev., 176, 311–344, https://doi.org/10.1016/j.earscirev.2017.10.013, 2018.
Rutsch, R.: Molasse und Quartär im Gebiet des Siegfriedblattes
Rüeggisberg (Kanton Bern), Beiträge zur Geol. Karte der Schweiz, Geologische Kommission der Schweizerischen Naturforschenden Gesellschaft, Bern, NF 87, 89 pp., 1947.
Sommaruga, A., Mosar, J., Schori, M., and Gruber, M.: The Role of the Triassic Evaporites Underneath the North Alpine Foreland, in Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F., and Tari, G., Elsevier, 447–466, 2017.
Schegg, R. and Leu, W.: Analysis of erosion events and palaeogeothermal
gradients in the North Alpine Foreland Basin of Switzerland, Geol. Soc.
London, Spec. Publ., 141, 137–155, https://doi.org/10.1144/GSL.SP.1998.141.01.09,
1998.
Schlunegger, F. and Castelltort, S.: Immediate and delayed signal of slab
breakoff in Oligo/Miocene Molasse deposits from the European Alps, Sci.
Rep., 6, 31010, https://doi.org/10.1038/srep31010, 2016.
Schlunegger, F. and Kissling, E.: Slab rollback orogeny in the Alps and
evolution of the Swiss Molasse basin, Nat. Commun., 6, 8605,
https://doi.org/10.1038/ncomms9605, 2015.
Schlunegger, F. and Mosar, J.: The last erosional stage of the Molasse Basin
and the Alps, Int. J. Earth Sci., 100, 1147–1162,
https://doi.org/10.1007/s00531-010-0607-1, 2011.
Schlunegger, F. and Norton, K. P.: Headward retreat of streams in the Late
Oligocene to Early Miocene Swiss Alps, Sedimentology, 60, 85–101, https://doi.org/10.1111/sed.12010, 2013.
Schlunegger, F. and Norton, K. P.: Climate vs. tectonics: the competing
roles of Late Oligocene warming and Alpine orogenesis in constructing
alluvial megafan sequences in the North Alpine foreland basin, Basin Res.,
27, 230–245, https://doi.org/10.1111/bre.12070, 2015.
Schlunegger, F., Matter, A., and Mange, M. A.: Alluvial fan sedimentation and
structure of the southern Molasse Basin margin, Lake Thun area, Switzerland,
Eclogae Geol. Helv., 86, 717–750, 1993.
Schlunegger, F., Burbank, D. W., Matter, A., Engesser, B., and Mödden,
C.: Magnetostratigraphic calibration of the Oligocence to Middle Miocene
(30-15 Ma) mammal biozones and depositional sequences of the Swiss Molasse
Basin, Eclogae Geol. Helv., 89, 753–788, 1996.
Schlunegger, F., Matter, A., Burbank, D. W., and Klaper, E. M.:
Magnetostratigraphic constraints on relationships between evolution of the
central Swiss Molasse basin and Alpine orogenic events, Geol. Soc. Am.
Bull., 109, 225–241, https://doi.org/10.1130/0016-7606(1997)109<0225:MCORBE>2.3.CO;2, 1997.
Schlunegger, F., Rieke-Zapp, D., and Ramseyer, K.: Possible environmental
effects on the evolution of the Alps-Molasse Basin system, Swiss J. Geosci.,
100, 383–405, https://doi.org/10.1007/s00015-007-1238-9, 2007.
Schlunegger, F., Anspach, O., Bieri, B., Böning, P., Kaufmann, Y., Lahl,
K., Lonschinski, M., Mollet, H., Sachse, D., Schubert, C., Stöckli, G., and Zander, I.: Geological Atlas of Switzerland 1:25000, Map sheet
Schüpfheim (LK 1169), Federal Office of Topography swisstopo, Wabern,
Switzerland, 2016.
Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., and
Kissling, E.: Geophysical-geological transect and tectonic evolution of the
Swiss-Italian Alps, Tectonics, 15, 1036–1064, https://doi.org/10.1029/96TC00433,
1996.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geol. Helv.,
97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmid, S. M., Scharf, A., Handy, M. R., and Rosenberg, C. L.: The Tauern
Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and
a tectonometamorphic synthesis, Swiss J. Geosci., 106, 1–32,
https://doi.org/10.1007/s00015-013-0123-y, 2013.
Schmid, S. M., Kissling, E., Diehl, T., van Hinsbergen, D. J. J., and Molli,
G.: Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of
the Alps–Apennines orogenic system, Swiss J. Geosci., 110, 581–612,
https://doi.org/10.1007/s00015-016-0237-0, 2017.
Schönborn, G.: Alpine tectonics and kinematic models of the central
Southern Alps, Mem. di Sci. Geol. Padova, 44, 229–393, 1992.
Schuller, V., Frisch, W., and Herzog, U.: Critical taper behaviour and
out-of-sequence thrusting on orogenic wedges – an example of the Eastern
Alpine Molasse Basin, Terra Nov., 27, 231–237, https://doi.org/10.1111/ter.12152,
2015.
Sinclair, H. D.: Flysch to molasse transition in peripheral foreland basins:
The role of the passive margin versus slab breakoff, Geology, 25, 1123–1126,
https://doi.org/10.1130/0091-7613(1997)025<1123:FTMTIP>2.3.CO;2, 1997.
Sinclair, H. D. and Allen, P. A.: Vertical versus horizontal motions in the
Alpine orogenic wedge: stratigraphic response in the foreland basin, Basin
Res., 4, 215–232, https://doi.org/10.1111/j.1365-2117.1992.tb00046.x, 1992.
Sinclair, H. D., Coakley, B. J., Allen, P. A., and Watts, A. B.: Simulation
of Foreland Basin Stratigraphy using a diffusion model of mountain belt
uplift and erosion: An example from the central Alps, Switzerland,
Tectonics, 10, 599–620, https://doi.org/10.1029/90TC02507, 1991.
Sommaruga, A.: Décollement tectonics in the Jura forelandfold-and-thrust
belt, Mar. Petrol. Geol., 16, 111–134, https://doi.org/10.1016/S0264-8172(98)00068-3,
1999.
Sommaruga, A., Eichenberger, U., and Marillier, F.: Seismic Atlas of the
Swiss Molasse Basin, Matériaux pour la Géologie la Suisse - Géophysique, 44, Swiss Geophysical Commission, Federal Office of Topography swisstopo, Wabern, ISBN 978-3-302-40064-82012, 2012.
Spiegel, C., Kuhlemann, J., Dunkl, I., and Frisch, W.: Paleogeography and
catchment evolution in a mobile orogenic belt: the Central Alps in
Oligo–Miocene times, Tectonophysics, 341, 33–47,
https://doi.org/10.1016/S0040-1951(01)00187-1, 2001.
Stampfli, G. M. and Marchant, R. H.: Geodynamic evolution of the Tethyan
margins of the Western Alps, in: Deep structure of the Swiss Alps: Results of
NRP 20, edited by: Pfiffner, O. A., Lehner, P., Heitzmann, P., Mueller, S., and Steck, A., Birkhäuser, Basel, Boston, Berlin, 223–240, 1997.
Stäuble, M. and Pfiffner, O. A.: Processing, interpretation and modeling
of seismic reflection data in the Molasse Basin of eastern Switzerland,
Eclogae Geol. Helv., 84, 151–175, https://doi.org/10.5169/seals-166767, 1991.
Strunck, P. and Matter, A.: Depositional evolution of the western Swiss
Molasse, Eclogae Geol. Helv., 95, 197–222,
https://doi.org/10.5169/seals-168955, 2002.
Ustaszewski, K. and Schmid, S. M.: Latest Pliocene to recent thick-skinned
tectonics at the Upper Rhine Graben – Jura Mountains junction, Swiss J.
Geosci., 100, 293–312, https://doi.org/10.1007/s00015-007-1226-0, 2007.
Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler, M., Kissling,
E., and Spakman, W.: A map-view restoration of the
Alpine-Carpathian-Dinaridic system for the Early Miocene, Swiss J. Geosci.,
101, 273–294, https://doi.org/10.1007/s00015-008-1288-7, 2008.
Valla, P. G., van der Beek, P. A., Shuster, D. L., Braun, J., Herman, F.,
Tassan-Got, L., and Gautheron, C.: Late Neogene exhumation and relief
development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from
low-temperature thermochronology modeling and 4He∕3He thermochronometry, J. Geophys. Res., 117, F01004, https://doi.org/10.1029/2011JF002043, 2012.
Vermeesch, P.: Three new ways to calculate average (U–Th)/He ages, Chem.
Geol., 249, 339–347, https://doi.org/10.1016/j.chemgeo.2008.01.027, 2008.
Vernon, A. J., van der Beek, P. A., Sinclair, H. D., Persano, C., Foeken, J., and Stuart, F. M.: Variable late Neogene exhumation of the central European
Alps: Low-temperature thermochronology from the Aar Massif, Switzerland, and
the Lepontine Dome, Italy, Tectonics, 28, TC5004,
https://doi.org/10.1029/2008TC002387, 2009.
Vollmayr, T.: Strukturelle Ergebnisse der Kohlenwasserstoffexploration im
Gebiet von Thun, Schweiz, Eclogae Geol. Helv., 85, 531–539, 1992.
von Hagke, C. and Malz, A.: Triangle zones – Geometry, kinematics,
mechanics, and the need for appreciation of uncertainties, Earth-Sci.
Rev., 177, 24–42, https://doi.org/10.1016/j.earscirev.2017.11.003, 2018.
von Hagke, C., Cederbom, C. E., Oncken, O., Stöckli, D. F., Rahn, M. K., and Schlunegger, F.: Linking the northern Alps with their foreland: The
latest exhumation history resolved by low-temperature thermochronology,
Tectonics, 31, TC5010, https://doi.org/10.1029/2011TC003078, 2012.
von Hagke, C., Oncken, O., and Evseev, S.: Critical taper analysis reveals
lithological control of variations in detachment strength: An analysis of
the Alpine basal detachment (Swiss Alps), Geochem., Geophy. Geosy., 15, 176–191, https://doi.org/10.1002/2013GC005018, 2014a.
von Hagke, C., Oncken, O., Ortner, H., Cederbom, C. E., and Aichholzer, S.:
Late Miocene to present deformation and erosion of the Central Alps –
Evidence for steady state mountain building from thermokinematic data,
Tectonophysics, 632, 250–260, https://doi.org/10.1016/j.tecto.2014.06.021, 2014b.
Wehrens, P., Baumberger, R., Berger, A., and Herwegh, M.: How is strain
localized in a meta-granitoid, mid-crustal basement section? Spatial
distribution of deformation in the central Aar massif (Switzerland), J.
Struct. Geol., 94, 47–67, https://doi.org/10.1016/j.jsg.2016.11.004, 2017.
Weidmann, M., Homewood, P., Morel, R., Berchten, J.-D., Bucher, H., Burri,
M., Cornioley, J.-D., Escher, P., Rück, P., Tabotta, A., and Zahner, P.:
Geological Atlas of Switzerland 1:25 000, Map sheet Châtel-St-Denis (LK 1244), Federal Office of Topography swisstopo, Wabern, Switzerland, 1993.
Weisenberger, T. B., Rahn, M. K., van der Lelij, R., Spikings, R. A., and
Bucher, K.: Timing of low-temperature mineral formation during exhumation
and cooling in the Central Alps, Switzerland, Earth Planet. Sci. Lett.,
327–328, 1–8, https://doi.org/10.1016/j.epsl.2012.01.007, 2012.
Whipple, K. X.: The influence of climate on the tectonic evolution of
mountain belts, Nat. Geosci., 2, 97–104, https://doi.org/10.1038/ngeo413, 2009.
Willett, S. D. and Schlunegger, F.: The last phase of deposition in the
Swiss Molasse Basin: from foredeep to negative-alpha basin, Basin Res.,
22, 623–639, https://doi.org/10.1111/j.1365-2117.2009.00435.x, 2010.
Willett, S. D., Schlunegger, F., and Picotti, V.: Messinian climate change
and erosional destruction of the central European Alps, Geology, 34, 613–616, https://doi.org/10.1130/G22280.1, 2006.
Wolf, R. A., Farley, K. A., and Silver, L. T.: Helium diffusion and
low-temperature thermochronometry of apatite, Geochim. Cosmochim. Ac., 60, 4231–4240, https://doi.org/10.1016/S0016-7037(96)00192-5, 1996.
Zaugg, A., Löpfe, R., Kriemler, M., and Kempf, T.: Geological Atlas of
Switzerland 1:25 000, Federal Office of Topography swisstopo, Wabern,
Switzerland, 2011.
Zhao, L., Paul, A., Malusà, M. G., Xu, X., Zheng, T., Solarino, S.,
Guillot, S., Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli,
S., Wang, Q., and Zhu, R.: Continuity of the Alpine slab unraveled by
high-resolution P wave tomography, J. Geophys. Res.-Sol. Ea., 121,
8720–8737, https://doi.org/10.1002/2016JB013310, 2016.
Zweigel, J., Aigner, T., and Luterbacher, H.: Eustatic versus tectonic controls on Alpine foreland basin fill: sequence stratigraphy and subsidence analysis in the SE German Molasse, in Cenozoic Foreland basins of Western Europe, edited by: Mascle, A., Puigdefàbregas, C., Luterbacher, H. P., and Fernàndez, M., Geological Society Special Publications, 134, 299–323, https://doi.org/10.1144/GSL.SP.1998.134.01.14, 1998.
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Based on thermochronological data, we infer thrusting along-strike the northern rim of the...