Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1777-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1777-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
3D crustal stress state of Germany according to a data-calibrated geomechanical model
Steffen Ahlers
CORRESPONDING AUTHOR
Engineering Geology, Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Andreas Henk
Engineering Geology, Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Tobias Hergert
Engineering Geology, Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Karsten Reiter
Engineering Geology, Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Birgit Müller
Technical Petrophysics, Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Luisa Röckel
Technical Petrophysics, Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Oliver Heidbach
Seismic Hazard and Risk Dynamics, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Institute for Applied Geosciences, TU Berlin, 10587 Berlin, Germany
Sophia Morawietz
Seismic Hazard and Risk Dynamics, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Institute for Applied Geosciences, TU Berlin, 10587 Berlin, Germany
Magdalena Scheck-Wenderoth
Basin Modelling, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Department of Geology, Geochemistry of Petroleum and Coal, Faculty of Georesources and Material Engineering, RWTH Aachen University, Aachen, Germany
Denis Anikiev
Basin Modelling, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Related authors
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Ángela María Gómez-García, Álvaro González, Mauro Cacace, Magdalena Scheck-Wenderoth, and Gaspar Monsalve
Solid Earth, 15, 281–303, https://doi.org/10.5194/se-15-281-2024, https://doi.org/10.5194/se-15-281-2024, 2024
Short summary
Short summary
We compute a realistic three-dimensional model of the temperatures down to 75 km deep within the Earth, below the Caribbean Sea and northwestern South America. Using this, we estimate at which rock temperatures past earthquakes nucleated in the region and find that they agree with those derived from laboratory experiments of rock friction. We also analyse how the thermal state of the system affects the spatial distribution of seismicity in this region.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Michal Kruszewski, Alessandro Verdecchia, Oliver Heidbach, Rebecca M. Harrington, and David Healy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1889, https://doi.org/10.5194/egusphere-2023-1889, 2023
Preprint archived
Short summary
Short summary
In this study, we investigate the evolution of fault reactivation potential in the greater Ruhr region (Germany) in respect to a future utilization of deep geothermal resources. We use analytical and numerical approaches to understand the initial stress conditions on faults as well as their evolution in space and time during geothermal fluid production. Using results from our analyses, we can localize areas more favorable for geothermal energy use based on fault reactivation potential.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Cameron Spooner, Magdalena Scheck-Wenderoth, Mauro Cacace, and Denis Anikiev
Solid Earth Discuss., https://doi.org/10.5194/se-2020-202, https://doi.org/10.5194/se-2020-202, 2020
Revised manuscript not accepted
Short summary
Short summary
By comparing long term lithospheric strength to seismicity patterns across the Alpine region, we show that most seismicity occurs where strengths are highest within the crust. The lower crust appears largely aseismic due to energy being dissipated by ongoing creep from low viscosities. Lithospheric structure appears to exert a primary control on seismicity distribution, with both forelands display a different distribution patterns, likely reflecting their different tectonic settings.
Denis Anikiev, Adrian Lechel, Maria Laura Gomez Dacal, Judith Bott, Mauro Cacace, and Magdalena Scheck-Wenderoth
Adv. Geosci., 49, 225–234, https://doi.org/10.5194/adgeo-49-225-2019, https://doi.org/10.5194/adgeo-49-225-2019, 2019
Short summary
Short summary
We have developed a first Germany-wide 3D data-based density and temperature model integrating geoscientific observations and physical processes. The model can serve as a reference for local detailed studies dealing with temperature, pressure, stress, subsidence and sedimentation. Our results help to improve subsurface utilization concepts, reveal current geomechanical conditions crucial for hazard assessment and gather information on viable resources such groundwater and deep geothermal energy.
Cameron Spooner, Magdalena Scheck-Wenderoth, Hans-Jürgen Götze, Jörg Ebbing, György Hetényi, and the AlpArray Working Group
Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019, https://doi.org/10.5194/se-10-2073-2019, 2019
Short summary
Short summary
By utilising both the observed gravity field of the Alps and their forelands and indications from deep seismic surveys, we were able to produce a 3-D structural model of the region that indicates the distribution of densities within the lithosphere. We found that the present-day Adriatic crust is both thinner and denser than the European crust and that the properties of Alpine crust are strongly linked to their provenance.
Nora Koltzer, Magdalena Scheck-Wenderoth, Mauro Cacace, Maximilian Frick, and Judith Bott
Adv. Geosci., 49, 197–206, https://doi.org/10.5194/adgeo-49-197-2019, https://doi.org/10.5194/adgeo-49-197-2019, 2019
Short summary
Short summary
In this study we investigate groundwater flow in the deep subsurface of the Upper Rhine Graben. We make use of a 3-D numerical model covering the entire Upper Rhine Graben. The deep hydrodynamics are characterized by fluid flow from the graben flanks towards its center and in the southern half of the graben from south to north. Moreover, local heterogeneities in the shallow flow field arise from the interaction between regional groundwater flow and the heterogeneous sedimentary configuration.
Maximilian Frick, Magdalena Scheck-Wenderoth, Mauro Cacace, and Michael Schneider
Adv. Geosci., 49, 9–18, https://doi.org/10.5194/adgeo-49-9-2019, https://doi.org/10.5194/adgeo-49-9-2019, 2019
Short summary
Short summary
The study presented in this paper aims at reproducing findings from chemical and isotopic groundwater sample analysis along with quantifying the influence of regional (cross-boundary) flow for the area of Berlin, Germany. For this purpose we built 3-D models of the subsurface, populating them with material parameters (e.g. porosity, permeability) and solving them for coupled fluid and heat transport. Special focus was given to the setup of boundary conditions, i.e. fixed pressure at the sides.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Nasrin Haacke, Maximilian Frick, Magdalena Scheck-Wenderoth, Michael Schneider, and Mauro Cacace
Adv. Geosci., 45, 177–184, https://doi.org/10.5194/adgeo-45-177-2018, https://doi.org/10.5194/adgeo-45-177-2018, 2018
Short summary
Short summary
The main goal of this study was to understand how different realizations of the impact of groundwater pumping activities in a major urban center would affect the results of 3-D numerical models. In detail we looked at two model scenarios which both rely on the same geological structural model but differ in the realization of the groundwater boundary conditions. The results show, that it is necessary to use groundwater wells as an active parameter to reproduce local movement patterns.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Sippel, and Manfred R. Strecker
Solid Earth, 9, 139–158, https://doi.org/10.5194/se-9-139-2018, https://doi.org/10.5194/se-9-139-2018, 2018
Short summary
Short summary
We examined the thermal gradient as an index of the thermal field in the Atlantic. While the thermal anomaly in the South Atlantic should be equilibrated, the thermal disturbance in the North Atlantic causes thermal effects in the present day. Characteristics of the lithosphere ultimately determine the thermal field. The thermal gradient nonlinearly decreases with depth and varies significantly both laterally and with time, which has implications for methods of thermal history reconstruction.
Judith Sippel, Christian Meeßen, Mauro Cacace, James Mechie, Stewart Fishwick, Christian Heine, Magdalena Scheck-Wenderoth, and Manfred R. Strecker
Solid Earth, 8, 45–81, https://doi.org/10.5194/se-8-45-2017, https://doi.org/10.5194/se-8-45-2017, 2017
Short summary
Short summary
The Kenya Rift is a zone along which the African continental plate is stretched as evidenced by strong earthquake and volcanic activity. We want to understand the controlling factors of past and future tectonic deformation; hence, we assess the structural and strength configuration of the rift system at the present-day. Data-driven 3-D numerical models show how the inherited composition of the crust and a thermal anomaly in the deep mantle interact to form localised zones of tectonic weakness.
Moritz O. Ziegler, Oliver Heidbach, John Reinecker, Anna M. Przybycin, and Magdalena Scheck-Wenderoth
Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, https://doi.org/10.5194/se-7-1365-2016, 2016
Short summary
Short summary
Subsurface engineering relies on sparsely distributed data points of the stress state of the earth's crust. 3D geomechanical--numerical modelling is applied to estimate the stress state in the entire volume of a large area. We present a multi-stage approach of differently sized models which provide the stress state in an area of interest derived from few and widely scattered data records. Furthermore we demonstrate the changes in reliability of the model depending on different input parameters.
T. Hergert, O. Heidbach, K. Reiter, S. B. Giger, and P. Marschall
Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, https://doi.org/10.5194/se-6-533-2015, 2015
Short summary
Short summary
A numerical model integrating the structure and mechanical properties of a sedimentary sequence in the Alpine foreland is presented to show that topography, tectonic faults and, most of all, spatialy variable rock properties affect the state of stress at depth. The tectonic forces acting on the sequence are primarily taken up by the stiff rock units leaving the weaker units in a stress shadow.
P. Klitzke, J. I. Faleide, M. Scheck-Wenderoth, and J. Sippel
Solid Earth, 6, 153–172, https://doi.org/10.5194/se-6-153-2015, https://doi.org/10.5194/se-6-153-2015, 2015
Short summary
Short summary
We introduce a regional 3-D structural model of the Barents Sea and Kara Sea region which is the first to combine information on five sedimentary units and the crystalline crust as well as the configuration of the lithospheric mantle. By relating the shallow and deep structures for certain tectonic subdomains, we shed new light on possible causative basin-forming mechanisms that we discuss.
K. Reiter and O. Heidbach
Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, https://doi.org/10.5194/se-5-1123-2014, 2014
Y. Cherubini, M. Cacace, M. Scheck-Wenderoth, and V. Noack
Geoth. Energ. Sci., 2, 1–20, https://doi.org/10.5194/gtes-2-1-2014, https://doi.org/10.5194/gtes-2-1-2014, 2014
K. Fischer and A. Henk
Solid Earth, 4, 347–355, https://doi.org/10.5194/se-4-347-2013, https://doi.org/10.5194/se-4-347-2013, 2013
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Tectonics
Oblique rifting triggered by slab tearing: the case of the Alboran rifted margin in the eastern Betics
Tectonic interactions during rift linkage: insights from analog and numerical experiments
Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
Numerical simulation of contemporary kinematics at the northeastern Tibetan Plateau and its implications for seismic hazard assessment
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
The topographic signature of temperature-controlled rheological transitions in an accretionary prism
Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023, https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Mousumi Roy
Solid Earth, 13, 1415–1430, https://doi.org/10.5194/se-13-1415-2022, https://doi.org/10.5194/se-13-1415-2022, 2022
Short summary
Short summary
This study investigates one of the key processes that may lead to the destruction and destabilization of continental tectonic plates: the infiltration of buoyant, hot, molten rock (magma) into the base of the plate. Using simple calculations, I suggest that heating during melt–rock interaction may thermally perturb the tectonic plate, weakening it and potentially allowing it to be reshaped from beneath. Geochemical, petrologic, and geologic observations are used to guide model parameters.
Liming Li, Xianrui Li, Fanyan Yang, Lili Pan, and Jingxiong Tian
Solid Earth, 13, 1371–1391, https://doi.org/10.5194/se-13-1371-2022, https://doi.org/10.5194/se-13-1371-2022, 2022
Short summary
Short summary
We constructed a three-dimensional numerical geomechanics model to obtain the continuous slip rates of active faults and crustal velocities in the northeastern Tibetan Plateau. Based on the analysis of the fault kinematics in the study area, we evaluated the possibility of earthquakes occurring in the main faults in the area, and analyzed the crustal deformation mechanism of the northeastern Tibetan Plateau.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022, https://doi.org/10.5194/se-13-535-2022, 2022
Short summary
Short summary
The local topographic slope of an accretionary prism is often used to determine the effective friction on subduction megathrust. We investigate how the brittle–ductile and the smectite–illite transitions affect the topographic slope of an accretionary prism and its internal deformation to provide clues to determine the origin of observed low topographic slopes in subduction zones. We finally discuss their implications in terms of the forearc basin and forearc high genesis and nature.
Anthony Jourdon, Charlie Kergaravat, Guillaume Duclaux, and Caroline Huguen
Solid Earth, 12, 1211–1232, https://doi.org/10.5194/se-12-1211-2021, https://doi.org/10.5194/se-12-1211-2021, 2021
Short summary
Short summary
The borders between oceans and continents, called margins, can be convergent, divergent, or horizontally sliding. The formation of oceans occurs in a divergent context. However, some divergent margin structures display an accommodation of horizontal sliding during the opening of oceans. To study and understand how the horizontal sliding part occurring during divergence influences the margin structure, we performed 3D high-resolution numerical models evolving during tens of millions of years.
Cited articles
Adams, J. and Bell, J. S.: Crustal stresses in Canada, in: Neotectonics of
North America, edited by: Slemmons, D. B., Engdahl, E. R., Zoback, M. D.,
and Blackwell, D. D., Geol. Soc. Am. USA, 1, 367–386,
https://doi.org/10.1130/DNAG-CSMS-NEO.367, 1991.
Ahlers, S., Hergert, T., and Henk, A.: Numerical Modelling of Salt-Related
Stress Decoupling in Sedimentary Basins–Motivated by Observational Data
from the North German Basin, Geosciences, 9, 19,
https://doi.org/10.3390/geosciences9010019, 2019.
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel,
L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.:
Crustal stress state of Germany – Results of a 3D geomechnical model, TUdatalib [data set],
https://doi.org/10.48328/tudatalib-437, 2021.
Aichholzer, C., Duringer, P., Orciani, S., and Genter, A.: New stratigraphic
interpretation of the Soultz-sous-Forêts 30-year-old geothermal wells
calibrated on the recent one from Rittershoffen (Upper Rhine Graben,
France), Geothermal Energy, 4, 1–26,
https://doi.org/10.1186/s40517-016-0055-7, 2016.
Altmann, J. B., Müller, B., Müller, T. M., Heidbach, O., Tingay, M.,
and Weißhardt, A.: Pore pressure stress coupling in 3D and consequences
for reservoir stress states and fault reactivation, Geothermics, 52,
195–205, https://doi.org/10.1016/j.geothermics.2014.01.004, 2014.
Amadei, B. and Stephansson, O.: Rock Stress and Its Measurement, Springer
Netherlands, Dordrecht, 490 pp., https://doi.org/10.1007/978-94-011-5346-1,
1997.
Anderson, E. M.: The dynamics of faulting, Trans. Edin.
Geol. Soc., 8, 387–402, https://doi.org/10.1144/transed.8.3.387,
1905.
Andeweg, B.: Cenozoic tectonic evolution of the Iberian Peninsula: Effects
and causes of changing stress fields, Ph. D. thesis, Faculty of Earth
Sciences, Vrije Universiteit, Amsterdam, 178 pp., 2002.
Angelier, J.: Determination of the mean principal directions of stresses for
a given fault population, Tectonophysics, 56, T17–T26,
https://doi.org/10.1016/0040-1951(79)90081-7, 1979.
Anikiev, D., Lechel, A., Gomez Dacal, M. L., Bott, J., Cacace, M., and
Scheck-Wenderoth, M.: A three-dimensional lithospheric-scale thermal model
of Germany, Adv. Geosci., 49, 225–234,
https://doi.org/10.5194/adgeo-49-225-2019, 2019.
Asch, K.: The 1:5 Million International Geological Map of Europe and
Adjacent Areas (IGME5000), Bundesanstalt für Geowissenschaften und
Rohstoffe, Hannover, 2005.
Azzola, J., Valley, B., Schmittbuhl, J., and Genter, A.: Stress
characterization and temporal evolution of borehole failure at the
Rittershoffen geothermal project, Solid Earth, 10, 1155–1180,
https://doi.org/10.5194/se-10-1155-2019, 2019.
Bada, G., Horváth, F., Cloetingh, S., Coblentz, D. D., and Tóth, T.:
Role of topography-induced gravitational stresses in basin inversion: The
case study of the Pannonian basin, Tectonics, 20, 343–363,
https://doi.org/10.1029/2001TC900001, 2001.
Bada, G., Cloetingh, S., Gerner, P., and Horváth, F.: Sources of recent
tectonic stress in the Pannonian region: Inferences from finite element
modelling, Geophys. J. Int., 134, 87–101,
https://doi.org/10.1046/j.1365-246x.1998.00545.x, 1998.
Baumgärtner, J., Rummel, F., and Zhaotan, C.: Wireline hydraulic
fracturing stress measurements in the Falkenberg granite massif, Geol. Jb.,
39, 83–99, 1987.
Behr, H. J., Duerbaum, H. J., Bankwitz, P., Bankwitz, E., Benek, R., Berger,
H. J., Brause, H., Conrad, W., Foerste, K., Frischbutter, A., Gebrande, H.,
Giese, P., Goethe, W., Guertler, J., Haenig, D., Haupt, M., Heinrichs, T.,
Horst, W., Hurtig, E., and Kaempf, H.: Crustal structure of the
Saxothuringian Zone; results of the deep seismic profile MVE-90(East), Z.
Geol. Wissenschaft., 22, 647–770, 1994.
Bell, J. S.: Petro geoscience 2, In situ stresses in sedimentary rocks (part
2): Applications of stress measurements, Geosci. Can., 23, 135–153,
1996.
Bell, J. S.: Practical methods for estimating in situ stresses for borehole
stability applications in sedimentary basins, J. Petrol. Sci. Eng., 38,
111–119, https://doi.org/10.1016/S0920-4105(03)00025-1, 2003.
BGR: Abriss der Standortauswahl und Darstellung der angewandten
geowissenschaftlichen Kriterien bei den Endlagerprojekten in den Ländern
Schweiz, Frankreich, Schweden, Belgien und USA, Hannover, 126 pp., 2015.
Bokelmann, G. and Bianchi, I.: Imaging the Variscan suture at the KTB deep
drilling site, Germany, Geophys. J. Int., 213, 2138–2146,
https://doi.org/10.1093/gji/ggy098, 2018.
Bormann, P., Bankwitz, P., Apitz, E., Bankwitz, E., and Franzke, H. J.:
Komplexinterpretation des Profilnetzes ZENTROSEIS – G4 Bericht der SAG
Tiefenerkundung – Abschlussbericht, Zentralinstitut für Physik der Erde,
Potsdam, 162 pp., 1986.
Brady, B. H. and Brown, E. T.: Rock Mechanics for underground mining, 3th,
Springer Netherlands, Dordrecht, 628 pp.,
https://doi.org/10.1007/978-1-4020-2116-9, 2004.
Brooke-Barnett, S., Flottmann, T., Paul, P. K., Busetti, S., Hennings, P.,
Reid, R., and Rosenbaum, G.: Influence of basement structures on in situ
stresses over the Surat Basin, southeast Queensland, J. Geophys. Res., 120,
4946–4965, https://doi.org/10.1002/2015JB011964, 2015.
Brückl, E., Behm, M., Decker, K., Grad, M., Guterch, A., Keller, G. R.,
and Thybo, H.: Crustal structure and active tectonics in the Eastern Alps,
Tectonics, 29, TC2011, https://doi.org/10.1029/2009TC002491, 2010.
Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., and Baumgärtner, J.:
Estimation of the complete stress tensor to 8 km depth in the KTB scientific
drill holes: Implications for crustal strength, J. Geophys. Res., 102,
18453–18475, https://doi.org/10.1029/96JB02942, 1997.
Buchmann, T. J. and Connolly, P. T.: Contemporary kinematics of the Upper
Rhine Graben: A 3D finite element approach, Glob. Planet. Change, 58,
287–309, https://doi.org/10.1016/j.gloplacha.2007.02.012, 2007.
Cacace, M.: Stress and Strain modelling of the Central European Basin
System, Ph. D. thesis, Freie Universität Berlin, Berlin, 167 pp.,
https://doi.org/10.17169/refubium-16643, 2008.
Cazes, M., Torreilles, G., Bois, C., Damotte, B., Galdeano, A., Hirn, A.,
Mascle, A., Matte, P., van Ngoc, P., and Raoult, J. F.: Structure de la
croute hercynienne du Nord de la France; premiers resultats du profil ECORS,
B. Soc. Geol. Fr., 8, 925–941,
https://doi.org/10.2113/gssgfbull.I.6.925, 1985.
Cornet, F. H. and Burlet, D.: Stress field determinations in France by
hydraulic tests in boreholes, J. Geophys. Res.-Sol. Ea., 97, 11829–11849,
https://doi.org/10.1029/90JB02638, 1992.
Cornet, F. H. and Röckel, T.: Vertical stress profiles and the
significance of “stress decoupling”, Tectonophysics, 581, 193–205,
https://doi.org/10.1016/j.tecto.2012.01.020, 2012.
Cornet, F. H., Bérard, T., and Bourouis, S.: How close to failure is a
granite rock mass at a 5 km depth?, Int. J. Rock Mech. Min, 44, 47–66,
https://doi.org/10.1016/j.ijrmms.2006.04.008, 2007.
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.1243862,
2021.
Diebold, P., Naef, H., and Ammann, M.: NTB 90-04: Zur Tektonik der zentralen
Nordschweiz - Interpretation aufgrund regionaler Seismik,
Oberflächengeologie und Tiefbohrungen, Nagra, Wettingen, 277 pp., 1991.
Diederichs, M., Kaiser, P., and Eberhardt, E.: Damage initiation and
propagation in hard rock during tunnelling and the influence of near-face
stress rotation, Int. J. Rock Mech. Min, 41, 785–812,
https://doi.org/10.1016/j.ijrmms.2004.02.003, 2004.
Fischer, K. and Henk, A.: A workflow for building and calibrating 3-D
geomechanical models – a case study for a gas reservoir in the North German
Basin, Solid Earth, 4, 347–355, https://doi.org/10.5194/se-4-347-2013,
2013.
Franke, W.: Tectonostratigraphic units in the Variscan belt of central
Europe, GSA Special Papers, 230, 67–90, https://doi.org/10.1130/SPE230-p67,
1989.
Franke, W.: The Variscan orogen in Central Europe: Construction and
collapse, in: European Lithosphere Dynamics, edited by: Gee, D. R. and
Stephenson, R., Geological Society of London, London, 333–343,
https://doi.org/10.1144/GSL.MEM.2006.032.01.20, 2006.
Freeman, R. and Mueller, S. (Eds.): A continent revealed: The European
geotraverse, Cambridge Univ. Pr, Cambridge, 275 pp., 1992.
GeORG-Projektteam: Geopotentiale des tieferen Untergrundes im
Oberrheingraben: Fachlich-Technischer Abschlussbericht des INTERREG-Projekts
GeORG, Teil 4, Freiburg i. Br., 104 pp., 2013.
Geothermieatlas Bayern: Grundgebirge (Prä-Perm) (Verbreitung und
Tiefenlage), Bayerisches Staatsministerium für Wirtschaft,
Landesentwicklung und Energie, available at:
https://www.stmwi.bayern.de/fileadmin/ (last access: 2 August 2021), 2004.
Goelke, M. and Coblentz, D.: Origins of the European regional stress field,
Tectonophysics, 266, 11–24, https://doi.org/10.1016/S0040-1951(96)00180-1,
1996.
Grad, M., Brückl, E., Majdański, M., Behm, M., and Guterch, A.:
Crustal structure of the Eastern Alps and their foreland: seismic model
beneath the CEL10/Alp04 profile and tectonic implications, Geophys. J. Int.,
177, 279–295, https://doi.org/10.1111/j.1365-246X.2008.04074.x, 2009a.
Grad, M., Tiira, T., and ESC Working Group: The Moho depth map of the
European Plate, Geophys. J. Int., 176, 279–292,
https://doi.org/10.1111/j.1365-246X.2008.03919.x, 2009b.
Grote, R.: Die rezente horizontale Hauptspannungsrichtung im Rotliegenden
und Oberkarbon in Norddeutschland, Erdöl-Erdgas-Kohle, 114, 478–483,
1998.
Grünthal, G. and Stromeyer, D.: The recent crustal stress field in
Central Europe sensu lato and its quantitative modelling, Geol.
Mijnbouw, 73, 173–180, 1994.
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs,
K., and Wenzel, F.: Plate boundary forces are not enough: Second- and
third-order stress patterns highlighted in the World Stress Map database,
Tectonics, 26, TC6014, https://doi.org/10.1029/2007TC002133, 2007.
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and
Müller, B.: Global crustal stress pattern based on the World Stress Map
database release 2008, Tectonophysics, 482, 3–15,
https://doi.org/10.1016/j.tecto.2009.07.023, 2010.
Heidbach, O., Hergert, T., Reiter, K., and Giger, S.: NAB 13-88: Local
Stress field sensitivity analysis – Case study Nördlich Langen,
Wettingen, 50 pp., 2014.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Team: World Stress Map Database Release 2016 v1.1, GFZ Data Services [data set], https://doi.org/10.5880/WSM.2016.001, 2016.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J.,
Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L.,
and Zoback, M.: The World Stress Map database release 2016: Crustal stress
pattern across scales, Tectonophysics, 744, 484–498,
https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Heinemann, B.: Results of scientific investigations at the HDR test site
Soultz-sous-Forêts: Alsace (1987–1992), SOCOMINE report, 126 pp., 1994.
Heinrichs, T., Giese, P., Bankwitz, P., and Bankwitz, E.: Dekorp
3/MVE-90(West) – preliminary geological interpretation of a deep
near-vertical reflection profile between the Rhenish and the Bohemian
Massifs, Germany, Z. Geol. Wissenschaft., 22, 771–801, 1994.
Henk, A.: Perspectives of Geomechanical Reservoir Models – Why Stress is
Important, Oil Gas: European Magazine, 125, OG20–OG24, 2009.
Hergert, T.: Numerical modelling of the absolute stress state in the Marmara
region – a contribution to seismic hazard assessment, Dissertation,
Universität Karlsruhe, https://doi.org/10.5445/IR/1000012170, 2009.
Hergert, T. and Heidbach, O.: Geomechanical model of the Marmara Sea
region-II, 3-D contemporary background stress field, Geophys. J. Int., 185,
1090–1102, https://doi.org/10.1111/j.1365-246X.2011.04992.x, 2011.
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., and Marschall, P.:
Stress field sensitivity analysis in a sedimentary sequence of the Alpine
foreland, Northern Switzerland, Solid Earth, 6, 533–552,
https://doi.org/10.5194/se-6-533-2015, 2015.
Hettema, M.: Analysis of mechanics of fault reactivation in depleting
reservoirs, Int. J. Rock Mech. Min, 129, 104290,
https://doi.org/10.1016/j.ijrmms.2020.104290, 2020.
Hillis, R. R. and Nelson, E. J.: In situ stresses in the North Sea and their
applications: Petroleum geomechanics from exploration to development, in:
Petroleum Geology: North-West Europe and Global Perspectives – Proceedings
of the 6th Petroleum Geology Conference, 551–564,
https://doi.org/10.1144/0060551, 2005.
Hirschmann, G.: KTB – The structure of a Variscan terrane boundary: seismic
investigation – drilling – models, Tectonophysics, 264, 327–339,
https://doi.org/10.1016/S0040-1951(96)00171-0, 1996.
Hurtig, E., Cermak, V., Haenel, R., and Zui, V.: Geothermal atlas of Europe,
Haack, Gotha, Germany, 156 pp., 1992.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. W.: Fundamentals of rock
mechanics, 4th Edn., Blackwell Publ, Malden, MA, 475 pp., 2011.
Janik, T., Grad, M., Guterch, A., Vozár, J., Bielik, M., Vozárova,
A., Hegedűs, E., Kovács, C. A., Kovács, I., and Keller, G. R.:
Crustal structure of the Western Carpathians and Pannonian Basin: Seismic
models from CELEBRATION 2000 data and geological implications, J. Geodyn.,
52, 97–113, https://doi.org/10.1016/j.jog.2010.12.002, 2011.
Jarosiński, M., Beekman, F., Bada, G., and Cloetingh, S.: Redistribution
of recent collision push and ridge push in Central Europe: insights from FEM
modelling, Geophys. J. Int., 167, 860–880,
https://doi.org/10.1111/j.1365-246X.2006.02979.x, 2006.
Kaiser, A., Reicherter, K., Huebscher, C., Gajewski, D., Marotta, A. M., and
Bayer, U.: Variation of the present-day stress field within the North German
Basin; insights from thin shell FE modeling based on residual GPS
velocities, Tectonophysics, 397, 55–72,
https://doi.org/10.1016/j.tecto.2004.10.009, 2005.
Kirsch, M., Kroner, U., Hallas, P., and Stephan, T.: 3D Model of the
Erzgebirge – Crustal-Scale 3D Modelling of the Allochthonous Domain of the
Saxo-Thuringian Zone, available at: https://tu-freiberg.de/geo/tectono/3d-erzgebirge (last access: 30 April 2019),
2017.
Klee, G. and Rummel, F.: Hydrofrac stress data for the European HDR research
project test site Soultz-Sous-Forets, Int. J. Rock Mech. Min, 30, 973–976,
https://doi.org/10.1016/0148-9062(93)90054-H, 1993.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Kley, J., Franzke, H.-J., Jähne, F., Krawczyk, C., Lohr, T., Reicherter,
K., Scheck-Wenderoth, M., Sippel, J., Tanner, D., and van Gent, H.: Strain
and Stress, in: Dynamics of complex intracontinental basins: The Central
European Basin System, edited by: Littke, R., Bayer, U., Gajewski, D., and
Nelskamp, S., Springer, Berlin Heidelberg, 97–124,
https://doi.org/10.1007/978-3-540-85085-4_3, 2008.
Konstantinovskaya, E., Malo, M., and Castillo, D. A.: Present-day stress
analysis of the St. Lawrence Lowlands sedimentary basin (Canada) and
implications for caprock integrity during CO2 injection operations,
Tectonophysics, 518-521, 119–137,
https://doi.org/10.1016/j.tecto.2011.11.022, 2012.
Korsch, R. J. and Schäfer, A.: The Permo-Carboniferous Saar-Nahe Basin,
south-west Germany and north-east France: basin formation and deformation in
a strike-slip regime, Geol. Rundsch., 84, 293–318,
https://doi.org/10.1007/BF00260442, 1995.
Kossmat, F.: Gliederung des variszischen Gebirgsbaus, Abh. Sächs. Geol.
Landesamtes, 1, 1–39, 1927.
Krawczyk, C. M., Rabbel, W., Willert, S., Hese, F., Götze, H.-J.,
Gajewski, D., and SPP-Geophysics Group: Crustal structures and properties in
the Central European Basin system from geophysical evidence, in: Dynamics of
complex intracontinental basins: The Central European basin system, edited
by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer, Berlin,
Heidelberg, 67–95, https://doi.org/10.1007/978-3-540-85085-4_3, 2008.
Kristiansen, T. G.: Drilling Wellbore Stability in the Compacting and
Subsiding Valhall Field, IADC/SPE Drilling Conference, 2-4 March, Dallas,
Texas, https://doi.org/10.2118/87221-MS, 2004.
Kroner, U., Romer, R. L., and Linnemann, U.: The Saxo-Thuringian Zone of the
Variscan Orogen as part of Pangea, in: Pre-Mesozoic geology of
Saxo-Thuringia: From the Cadomian active margin to the Variscan orogen,
edited by: Linnemann, U. and Romer, R. L., Schweizerbart, Stuttgart, 3–16,
2010.
Levi, N., Habermueller, M., Exner, U., Piani, E., Wiesmayr, G., and Decker,
K.: The stress field in the frontal part of the Eastern Alps (Austria) from
borehole image log data, Tectonophysics, 769, 228175,
https://doi.org/10.1016/j.tecto.2019.228175, 2019.
Lindner, H., Scheibe, K., Seidel, K., and Hoffmann, N.: Berechnung von
Relief, Tiefenlage und Magnetisierung des magnetisch wirksamen Kristallins
für das Norddeutsche Becken, Z. Angew. Geol., 50, 65–74, 2004.
Linnemann, U., D'Lemos, R., Drost, K., Jeffries, T., Gerdes, A., Romer, R.
L., Samson, S. D., and Strachan, R. A.: Cadomian tectonics, in: The Geology
of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic
and Cenozoic, edited by: McCann, T., Geol. Soc. Lond.,
103–154, https://doi.org/10.1144/CEV1P.3, 2008.
Ljunggren, C., Chang, Y., Janson, T., and Christiansson, R.: An overview of
rock stress measurement methods, Int. J. Rock Mech. Min, 40, 975–989,
https://doi.org/10.1016/j.ijrmms.2003.07.003, 2003.
Mardia, K. V.: Statistics of Directional Data: Probability and Mathematical
Statistics, Academic Press, London, 380 pp., 1972.
Marotta, A. M., Bayer, U., Thybo, H., and Scheck, M.: Origin of the regional
stress in the North German Basin – results from numerical modelling,
Tectonophysics, 360, 245–264,
https://doi.org/10.1016/S0040-1951(02)00358-X, 2002.
Maystrenko, Y. P. and Scheck-Wenderoth, M.: 3D lithosphere-scale density
model of the Central European Basin System and adjacent areas,
Tectonophysics, 601, 53–77, https://doi.org/10.1016/j.tecto.2013.04.023,
2013.
Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V.,
and Lewandowski, M.: Is the Teisseyre-Tornquist Zone an ancient plate
boundary of Baltica?, Tectonics, 34, 2465–2477,
https://doi.org/10.1002/2015TC003934, 2015.
McCann, T. (Ed.): The Geology of Central Europe Volume 1: Precambrian and
Palaeozoic; Volume 2: Mesozoic and Cenozoic, Geol. Soc.
Lond., 1449 pp., https://doi.org/10.1144/CEV2P, 2008.
Meissner, R. and Bortfeld, R. K.: DEKORP-Atlas: Results of Deutsches
Kontinentales Reflexionsseismisches Programm, Springer Berlin Heidelberg,
Berlin, Heidelberg, 21 pp., https://doi.org/10.1007/978-3-642-75662-7, 1990.
Meschede, M. and Warr, L. N.: The Geology of Germany, Springer, 304 pp.,
https://doi.org/10.1007/978-3-319-76102-2, 2019.
Morawietz, S. and Reiter, K.: Stress Magnitude Database Germany v1.0, GFZ Data Services [data set], https://doi.org/10.5880/wsm.2020.004, 2020.
Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M., Rajabi, M.,
Zimmermann, G., Müller, B., and Tingay, M.: An open-access stress
magnitude database for Germany and adjacent regions, Geothermal Energy, 8,
https://doi.org/10.1186/s40517-020-00178-5, 2020.
Nagra: Sondierbohrung Benken: Technical Report NTB 00-01, Nagra, 288 pp.,
2001.
Nagra: Vorschlag geologischer Standortgebiete für das SMA- und das
HAA-Lager, Begründung der Abfallzuteilung, der Barrieresysteme und der
Anforderungen an die Geologie, Bericht zur Sicherheit und technischen
Machbarkeit: NTB 08-05, Nagra, Wettingen, 2008.
Oncken, O.: Transformation of a magmatic arc and an orogenic root during
oblique collision and it's consequences for the evolution of the European
Variscides (Mid-German Crystalline Rise), Geol. Rundschau, 86, 2–20,
https://doi.org/10.1007/s005310050118, 1997.
Oncken, O., Plesch, A., Weber, J., Ricken, W., and Schrader, S.: Passive
margin detachment during arc-continent collision (Central European
Variscides), in: Orogenic Processes: Quantification and Modelling in the
Variscan Belt, edited by: Franke, W., Haak, V., Oncken, O., and Tanner, D.,
London, 199–216, https://doi.org/10.1144/GSL.SP.2000.179.01.13, 2000.
Peterek, A., Rauche, H., Schröder, B., Franzke, H.-J., Bankwitz, P., and
Bankwitz, E.: The late-and post-Variscan tectonic evolution of the Western
Border fault zone of the Bohemian massif (WBZ), Geol. Rundsch., 86,
191–202, https://doi.org/10.1007/s005310050131, 1997.
Pharaoh, T.: The Anglo-Brabant Massif: Persistent but enigmatic
palaeo-relief at the heart of western Europe, P. Geol. Assoc., 129,
278–328, https://doi.org/10.1016/j.pgeola.2018.02.009, 2018.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: Assessment of the
isostatic state and the load distribution of the European Molasse Basin by
means of lithospheric scale 3D structural and 3D gravity modelling, Int. J.
Earth Sci., 104, 1405–1424, https://doi.org/10.1007/s00531-014-1132-4,
2015.
Rajabi, M., Tingay, M., and Heidbach, O.: The present-day state of tectonic
stress in the Darling Basin, Australia: Implications for exploration and
production, Mar. Petrol. Geol., 77, 776–790,
https://doi.org/10.1016/j.marpetgeo.2016.07.021, 2016.
Rajabi, M., Tingay, M., Heidbach, O., Hillis, R., and Reynolds, S.: The
present-day stress field of Australia, Earth-Sci. Rev., 168, 165–189,
https://doi.org/10.1016/j.earscirev.2017.04.003, 2017.
Reicherter, K., Froitzheim, N., Jarosinski, M., Badura, J., Franzke, H.-J.,
Hansen, M., Hubscher, C., Müller, R., Poprawa, P., Reinecker, J.,
Stackebrandt, W., Voigt, T., von Eynatten, H., and Zuchiewicz, W.: Alpine
tectonics north of the Alps, in: The Geology of Central Europe Volume 1:
Precambrian and Palaeozoic, Vol. 2, Mesozoic and Cenozoic, edited by:
McCann, T., Geol. Soc. Lond., 1233–1285,
https://doi.org/10.1144/CEV2P.7, 2008.
Reinhold, K.: Tiefenlage der ”Kristallin-Oberfläche” in Deutschland –
Abschlussbericht, Bundesanstalt für Geowissenschaften und Rohstoffe,
Hannover, 89 pp., 2005.
Reiter, K.: Stress rotation – impact and interaction of rock stiffness and faults, Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, 2021.
Reiter, K. and Heidbach, O.: 3-D geomechanical–numerical model of the
contemporary crustal stress state in the Alberta Basin (Canada), Solid
Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, 2014.
Reiter, K., Heidbach, O., Reinecker, J., Müller, B., and Röckel, T.:
Spannungskarte Deutschland 2015, Erdöl-Erdgas-Kohle, 131, 437–442,
2015.
Reiter, K., Heidbach, O., Müller, B., Reinecker, J., and Röckel, T.:
Stress Map Germany 2016,
https://doi.org/10.5880/WSM.Germany2016_en, 2016.
Röckel, T. and Lempp, C.: Der Spannungszustand im Norddeutschen Becken,
Erdöl-Erdgas-Kohle, 119, 73–80, 2003.
Roth, F. and Fleckenstein, P.: Stress orientations found in NE Germany
differ from the West European trend, Terra Nova, 13, 289–296,
https://doi.org/10.1046/j.1365-3121.2001.00357.x, 2001.
Rupf, I. and Nitsch, E.: Das Geologische Landesmodell von
Baden-Württtemberg: Datengrundlagen, technische Umsetzung und erste
geologische Ergebnisse, Freiburg i. Br., LGRB-Informationen, 21, 81 pp.,
2008.
Scheck-Wenderoth, M. and Lamarche, J.: Crustal memory and basin evolution in
the Central European Basin System – new insights from a 3D structural model,
Tectonophysics, 397, 143–165, https://doi.org/10.1016/j.tecto.2004.10.007,
2005.
Schintgen, T.: The Geothermal Potential of Luxembourg – Geological and
thermal exploration for deep geothermal reservoirs in Luxembourg and the
surroundings, Ph. D. thesis, Universität Potsdam, Potsdam, 313 pp.,
2015.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Ecl. Geolog. Helv.,
97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmitt, D. R., Currie, C. A., and Zhang, L.: Crustal stress determination
from boreholes and rock cores: Fundamental principles, Tectonophysics, 580,
1–26, https://doi.org/10.1016/j.tecto.2012.08.029, 2012.
Sheorey, P. R.: A theory for In Situ stresses in isotropic and transverseley
isotropic rock, Int. J. Rock Mech. Min, 31, 23–34,
https://doi.org/10.1016/0148-9062(94)92312-4, 1994.
Simpson, R. W.: Quantifying Anderson's fault types, J. Geophys. Res., 102,
17909–17919, https://doi.org/10.1029/97JB01274, 1997.
Smart, K. J., Ofoegbu, G. I., Morris, A. P., McGinnis, R. N., and Ferrill,
D. A.: Geomechanical modeling of hydraulic fracturing: Why mechanical
stratigraphy, stress state, and pre-existing structure matter, AAPG
Bull., 98, 2237–2261, https://doi.org/10.1306/07071413118, 2014.
Smith, W. H. F. and Sandwell, D. T.: Global Sea Floor Topography from
Satellite Altimetry and Ship Depth Soundings, Science, 277, 1956–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997.
Sommaruga, A.: Décollement tectonics in the Jura forelandfold-and-thrust
belt, Mar. Petrol. Geol., 16, 111–134,
https://doi.org/10.1016/S0264-8172(98)00068-3, 1999.
Sperner, B., Lorenz, F., Bonjer, K., Hettel, S., Müller, B., and Wenzel,
F.: Slab break-off – abrupt cut or gradual detachment? New insights from the
Vrancea Region (SE Carpathians, Romania), Terra Nova, 13, 172–179,
https://doi.org/10.1046/j.1365-3121.2001.00335.x, 2001.
StandAG: Gesetz zur Suche und Auswahl eines Standortes für ein Endlager
für hochradioaktive Abfälle, 2017.
Stromeyer, D. and Heidbach, O.: Tecplot 360 Add-on GeoStress, GFZ Data
Services, https://doi.org/10.5880/wsm.2017.001, 2017.
Tašárová, Z. A., Fullea, J., Bielik, M., and Środa, P.:
Lithospheric structure of Central Europe: Puzzle pieces from Pannonian Basin
to Trans-European Suture Zone resolved by geophysical-petrological modeling,
Tectonics, 35, 722–753, https://doi.org/10.1002/2015TC003935, 2016.
Tingay, M., Bentham, P., Feyter, A. de, and Kellner, A.: Present-day
stress-field rotations associated with evaporites in the offshore Nile
Delta, GSA Bull., 123, 1171–1180, https://doi.org/10.1130/B30185.1,
available at: https://doi.org/10.1130/B30185.1, 2011.
Turcotte, D. L. and Schubert, G.: Geodynamics, 3rd Edn., Cambridge Univ.
Press, Cambridge, 623 pp., 2014.
Valasek, P. and Mueller, S.: A 3D tectonic model of the Central Alps based
on an integrated interpretation of seismic refraction and NRP 20 reflection
data, in: Deep structure of the Swiss alps: results of NRP 20, edited by:
Pfiffner, O. A., Lehner, P., Heitzmann, P., Mueller, S., and Steck, A.,
Birkhauser Verlag, Basel, 302–325, 1997.
Valley, B. and Evans, K. F.: Stress State at Soultz-Sous-Forêts to 5 km
Depth from wellbore failure and hydraulic observations, in: Thirty-Second
Workshop on Geothermal Reservoir Engineering, 22–24 January 2007.
Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A.,
Schröder, B., Stöckhert, B., Wemmer, K., Zulauf, G., Ahrendt, H.,
Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Lal, N., van den haute, P.,
Vercoutere, C., and Welzel, B.: Post-Variscan thermal and tectonic evolution
of the KTB site and its surroundings, J. Geophys. Res., 102, 18221–18232,
https://doi.org/10.1029/96JB02565, 1997.
Wagner, M., Kissling, E., and Husen, S.: Combining controlled-source
seismology and local earthquake tomography to derive a 3-D crustal model of
the western Alpine region, Geophys. J. Int., 191, 789–802,
https://doi.org/10.1111/j.1365-246X.2012.05655.x, 2012.
Warners-Ruckstuhl, K. N., Govers, R., and Wortel, R.: Tethyan collision
forces and the stress field of the Eurasian Plate, Geophys. J. Int., 195,
1–15, https://doi.org/10.1093/gji/ggt219, 2013.
Wenzel, F. and Brun, J. P.: A deep reflection seismic line across the
Northern Rhine Graben, Earth Planet. Sc. Lett., 104, 140–150,
https://doi.org/10.1016/0012-821X(91)90200-2, 1991.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res., 101, 8741–8743,
https://doi.org/10.1029/96JB00104, 1996.
Ziegler, P. A. and Dèzes, P.: Crustal evolution of Western and Central
Europe, Geological Society, London, Memoirs, 32, 43–56,
https://doi.org/10.1144/GSL.MEM.2006.032.01.03, 2006.
Ziegler, M. O. and Heidbach, O.: Matlab Script Stress2Grid v1.1, GitHub [code], https://doi.org/10.5880/wsm.2017.002, 2017.
Ziegler, M. O. and Heidbach, O.: The 3D stress state from
geomechanical–numerical modelling and its uncertainties: a case study in
the Bavarian Molasse Basin, Geothermal Energy, 8,
https://doi.org/10.1186/s40517-020-00162-z, 2020.
Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., and
Scheck-Wenderoth, M.: A multi-stage 3-D stress field modelling approach
exemplified in the Bavarian Molasse Basin, Solid Earth, 7, 1365–1382,
https://doi.org/10.5194/se-7-1365-2016, 2016.
Ziegler, M. O., Ziebarth, M., and Reiter, K.: Python Script Apple PY v1.0,
GFZ Data Services [code], https://doi.org/10.5880/wsm.2019.001, 2019.
Zoback, M. L.: First- and second-order patterns of stress in the
lithosphere: The World Stress Map Project, J. Geophys. Res.-Sol. Ea., 97,
11703–11728, https://doi.org/10.1029/92JB00132, 1992.
Zulauf, G.: Brittle deformation events at the western border of the Bohemian
Massif (Germany), Geol. Rundsch., 82, 489–504,
https://doi.org/10.1007/BF00212412, 1993.
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Knowledge about the stress state in the upper crust is of great importance for many economic and...