Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1987-2021
https://doi.org/10.5194/se-12-1987-2021
Method article
 | 
30 Aug 2021
Method article |  | 30 Aug 2021

Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting

Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec

Related authors

Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading
M. Warsitzka, J. Kley, and N. Kukowski
Solid Earth, 6, 9–31, https://doi.org/10.5194/se-6-9-2015,https://doi.org/10.5194/se-6-9-2015, 2015
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Selective inversion of rift basins in lithospheric-scale analogue experiments
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023,https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023,https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023,https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023,https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023,https://doi.org/10.5194/se-14-369-2023, 2023
Short summary

Cited articles

Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., Van der Zee, W., and Schmatz, J.: Shear localisation and strain distribution during tectonic faulting – new insights from granular-flow experiments and high-resolution optical image correlation techniques, J. Struct. Geol., 27, 283–301, https://doi.org/10.1016/j.jsg.2004.08.008, 2005. a, b, c
Adam, J., Ge, Z., and Sanchez, M.: Post-rift salt tectonic evolution and key control factors of the Jequitinhonha deepwater fold belt, central Brazil passive margin: Insights from scaled physical experiments, Mar. Pet. Geol., 37, 70–100, https://doi.org/10.1016/j.marpetgeo.2012.06.008, 2012. a
Ahlrichs, N., Hübscher, C., Noack, V., Schnabel, M., Damm, V., and Krawczyk, C. M.: Structural evolution at the northeast North German Basin margin: From initial Triassic salt movement to Late Cretaceous-Cenozoic remobilization, Tectonics, 39, e2019TC005927, https://doi.org/10.1029/2019TC005927, 2020. a
Allen, J. and Beaumont, C.: Impact of inconsistent density scaling on physical analogue models of continental margin scale salt tectonics, J. Geophys. Res.-Sol. Ea., 117, B08103, https://doi.org/10.1029/2012JB009227, 2012. a, b
Allen, M. R., Griffiths, P. A., Craig, J., Fitches, W. R., and Whittington, R. J.: Halokinetic initiation of Mesozoic tectonics in the southern North Sea: a regional model, Geol. Mag., 131, 559–561, https://doi.org/10.1017/S0016756800012164, 1994. a, b
Download
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.