Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1987-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1987-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, 14131 Prague, Czech Republic
Prokop Závada
Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, 14131 Prague, Czech Republic
Fabian Jähne-Klingberg
Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hanover, Germany
Piotr Krzywiec
Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
Related authors
No articles found.
Piotr Krzywiec, Łukasz Słonka, and Paweł Poprawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-3358, https://doi.org/10.5194/egusphere-2025-3358, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Igneous intrusions that could be associated with volcanic eruptions on Earth’s surface can be also seen on geophysical data at great depths, well beyond the reach of boreholes. Our results show how advance analysis of seismic data together with regional geological information could be used to predict their key characteristics such as lithology, thickness and overall geometry that are necessary in order to understand Earth’s magmatic activity.
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Cited articles
Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N.,
Lohrmann, J., Hoth, S., Van der Zee, W., and Schmatz, J.: Shear localisation
and strain distribution during tectonic faulting – new insights from
granular-flow experiments and high-resolution optical image correlation
techniques, J. Struct. Geol., 27, 283–301, https://doi.org/10.1016/j.jsg.2004.08.008,
2005. a, b, c
Adam, J., Ge, Z., and Sanchez, M.: Post-rift salt tectonic evolution and key
control factors of the Jequitinhonha deepwater fold belt, central Brazil
passive margin: Insights from scaled physical experiments, Mar. Pet. Geol.,
37, 70–100, https://doi.org/10.1016/j.marpetgeo.2012.06.008, 2012. a
Ahlrichs, N., Hübscher, C., Noack, V., Schnabel, M., Damm, V., and
Krawczyk, C. M.: Structural evolution at the northeast North German Basin
margin: From initial Triassic salt movement to Late Cretaceous-Cenozoic
remobilization, Tectonics, 39, e2019TC005927, https://doi.org/10.1029/2019TC005927,
2020. a
Allen, J. and Beaumont, C.: Impact of inconsistent density scaling on physical
analogue models of continental margin scale salt tectonics, J. Geophys. Res.-Sol. Ea., 117, B08103, https://doi.org/10.1029/2012JB009227, 2012. a, b
Allen, M. R., Griffiths, P. A., Craig, J., Fitches, W. R., and Whittington,
R. J.: Halokinetic initiation of Mesozoic tectonics in the southern North
Sea: a regional model, Geol. Mag., 131, 559–561,
https://doi.org/10.1017/S0016756800012164, 1994. a, b
Alves, T. M., Gawthorpe, R. L., Hunt, D. W., and Monteiro, J. H.: Jurassic
tectono-sedimentary evolution of the Northern Lusitanian Basin (offshore
Portugal), Mar. Pet. Geol., 19, 727–754,
https://doi.org/10.1016/S0264-8172(02)00036-3, 2002. a
Athy, L. F.: Density, porosity, and compaction of sedimentary rocks, AAPG
Bull., 14, 1–24, https://doi.org/10.1306/3D93289E-16B1-11D7-8645000102C1865D, 1930. a, b
Augustin, N., Devey, C. W., Van der Zwan, F. M., Feldens, P., Tominaga, M.,
Bantan, R. A., and Kwasnitschka, T.: The rifting to spreading transition in
the Red Sea, Earth Planet. Sc. Lett., 395, 217–230,
https://doi.org/10.1016/j.epsl.2014.03.047, 2014. a
Baldschuhn, R., Binot, F., Fleig, S., Kockel, F., (Hrsg.) unter Mitarbeit von:
Best, G., Brückner-Röhling, S., Deneke, E., Frisch, U., Hoffmann, N.,
Jürgens, U., Krull, P., Röhling, H.-G., Schmitz, J.,
Sattler-Kosinowski, S., Stancu-Kristoff, G., and Zirngast, M.:
Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen
Nordsee-Sektor, Strukturen, Strukturentwicklung, Paläogeographie, Geol.
Jahrb., A, 153, 1–88, 3 CD–ROMs, 2001. a, b, c
Best, G.: Floßtektonik in Norddeutschland: Erste Ergebnisse
reflexionsseismischer Untersuchungen an der Salzstruktur “Oberes
Allertal”, Z. Dtsch. Geol. Ges., 147, 455–464, 1996. a
Bishop, D. J.: Regional distribution and geometry of salt diapirs and
supra-Zechstein Group faults in the western and central North Sea, Mar. Petrol. Geol., 13, 355–364, https://doi.org/10.1016/0264-8172(95)00081-X,
1996. a
Bishop, D. J., Buchanan, P. G., and Bishop, C. J.: Gravity-driven thin-skinned
extension above Zechstein Group evaporites in the western central North Sea:
an application of computer-aided section restoration techniques, Mar. Pet.
Geol., 12, 115–135, https://doi.org/10.1016/0264-8172(95)92834-J, 1995. a, b
Bodego, A. and Agirrezabala, L. M.: Syn-depositional thin-and thick-skinned
extensional tectonics in the mid-Cretaceous Lasarte sub-basin, western
Pyrenees, Basin Res., 25, 594–612,
https://doi.org/10.1111/bre.12017, 2013. a
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012. a, b
Brun, J.-P. and Fort, X.: Compressional salt tectonics (Angolan margin),
Tectonophysics, 382, 129–150, https://doi.org/10.1016/j.tecto.2003.11.014, 2004. a
Brun, J.-P. and Mauduit, T. P.-O.: Salt rollers: structure and kinematics from
analogue modelling, Mar. Pet. Geol., 26, 249–258,
https://doi.org/10.1016/j.marpetgeo.2008.02.002, 2009. a
Burliga, S., Koyi, H. A., and Chemia, Z.: Analogue and numerical modelling of
salt supply to a diapiric structure rising above an active basement fault,
Geol. Soc. Lond., Spec. Pub., 363, 395–408, https://doi.org/10.1144/SP363.18, 2012. a
Byerlee, J.: Friction of rocks, Pure and applied geophysics, 116, 615–626,
https://doi.org/10.1007/978-3-0348-7182-2_4, 1978. a
Cámara, P.: Inverted turtle salt anticlines in the eastern
Basque-Cantabrian basin, Spain, Mar. Petrol. Geol., 117, 104358,
https://doi.org/10.1016/j.marpetgeo.2020.104358, 2020. a
Chapman, T. J.: The Permian to Cretaceous structural evolution of the Western
Approaches Basin (Melville sub-basin), UK, in: Inversion Tectonics,
Geological Society of London, 44, 177–200
https://doi.org/10.1144/GSL.SP.1989.044.01.11, 1989. a
Clausen, O. R. and Pedersen, P. K.: Late Triassic structural evolution of the
southern margin of the Ringkøbing-Fyn High, Denmark, Mar. Pet. Geol., 16,
653–665, https://doi.org/10.1016/S0264-8172(99)00026-4, 1999. a
Coleman, A. J., Jackson, C. A.-L., and Duffy, O. B.: Balancing sub-and
supra-salt strain in salt-influenced rifts: Implications for extension
estimates, J. Struct. Geol., 102, 208–225, https://doi.org/10.1016/j.jsg.2017.08.006,
2017. a
Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., and Van Wees,
J. D.: Tectonic evolution of the Mid-Polish Trough: modelling implications
and significance for central European geology, Tectonophysics, 252,
179–195, https://doi.org/10.1016/0040-1951(95)00104-2, 1995. a
Dahlen, F. A.: Critical taper model of fold-and-thrust belts and accretionary
wedges, Annu. Rev. Earth Planet. Sci., 18, 55–99, https://doi.org/10.1146/annurev.ea.18.050190.000415, 1990. a, b
Dancer, P. N., Algar, S. T., and Wilson, I. R.: Structural evolution of the
Slyne Trough, in: Petroleum Geology of Northwest Europe: Proceedings of the
5th Conference, Geological Society, London,
5, 445–453, https://doi.org/10.1144/0050445, 1999. a
Dooley, T. P., McClay, K. R., and Pascoe, R.: 3D analogue models of variable
displacement extensional faults: applications to the Revfallet Fault system,
offshore mid-Norway, Geol. Soc. Lond., Spec. Pub., 212, 151–167,
https://doi.org/10.1144/GSL.SP.2003.212.01.10, 2003. a, b
Dooley, T. P., McClay, K. R., Hempton, M., and Smit, D.: Salt tectonics above
complex basement extensional fault systems: results from analogue modelling,
in: Geological Society, London, Petroleum Geology Conference series,
Geological Society of London, 6, 1631–1648, https://doi.org/10.1144/0061631, 2005. a, b, c, d, e
Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P. A., and Luo, G.:
The effects of base-salt relief on salt flow and suprasalt deformation
patterns–Part 1: Flow across simple steps in the base of salt,
Interpretation, 5, 1–23, https://doi.org/10.1190/INT-2016-0087.1, 2017. a, b, c
Duffy, O. B., Gawthorpe, R. L., Docherty, M., and Brocklehurst, S. H.: Mobile
evaporite controls on the structural style and evolution of rift basins:
Danish Central Graben, North Sea, Basin Res., 25, 310–330,
https://doi.org/10.1111/bre.12000, 2013. a
England, P. and McKenzie, D.: A thin viscous sheet model for continental
deformation, Geophys. J. Int., 70, 295–321,
https://doi.org/10.1111/j.1365-246X.1982.tb04969.x, 1982. a
Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., and Bell, R. E.:
Basement structure and its influence on the structural configuration of the
northern North Sea rift, Tectonics, 36, 1151–1177,
https://doi.org/10.1002/2017TC004514, 2017. a
Ferrer, O., Roca, E., Benjumea, B., Muñoz, J. A., Ellouz, N., and Marconi Team: The deep seismic reflection MARCONI-3 profile: Role of extensional
Mesozoic structure during the Pyrenean contractional deformation at the
eastern part of the Bay of Biscay, Mar. Petrol. Geol., 25,
714–730, https://doi.org/10.1016/j.marpetgeo.2008.06.002, 2008. a
Ferrer, O., Jackson, M. P. A., Roca, E., and Rubinat, M.: Evolution of salt
structures during extension and inversion of the Offshore Parentis Basin
(Eastern Bay of Biscay), Geol. Soc. Lond., Spec. Pub., 363, 361–380,
https://doi.org/10.1144/SP363.16, 2012. a
Ferrer, O., Roca, E., and Vendeville, B.: The role of salt layers in the
hangingwall deformation of kinked-planar extensional faults: Insights from 3D
analogue models and comparison with the Parentis Basin, Tectonophysics, 636,
338–350, https://doi.org/10.1016/j.tecto.2014.09.013, 2014. a, b
Ferrer, O., Gratacós, O., Roca, E., and Muñoz, J. A.: Modeling the
interaction between presalt seamounts and gravitational failure in
salt-bearing passive margins: The Messinian case in the northwestern
Mediterranean Basin, Interpretation, 5, 99–117,
https://doi.org/10.1190/INT-2016-0096.1, 2017. a, b
Fort, X., Brun, J.-P., and Chauvel, F.: Salt tectonics on the Angolan margin,
synsedimentary deformation processes, AAPG Bull., 88, 1523–1544,
https://doi.org/10.1306/06010403012, 2004. a, b, c, d
Gaullier, V., Brun, J. P., Gue, G., and Lecanu, H.: Raft tectonics: the
effects of residual topography below a salt décollement, Tectonophysics,
228, 363–381, https://doi.org/10.1016/0040-1951(93)90349-O, 1993. a
Ge, H., Jackson, M. P. A., and Vendeville, B. C.: Kinematics and dynamics of
salt tectonics driven by progradation, AAPG Bull., 81, 398–423,
https://doi.org/10.1306/522B4361-1727-11D7-8645000102C1865D, 1997. a, b, c
Ge, Z., Gawthorpe, R. L., Rotevatn, A., and Thomas, M. B.: Impact of normal
faulting and pre-rift salt tectonics on the structural style of
salt-influenced rifts: The Late Jurassic Norwegian Central Graben, North
Sea, Basin Res., 29, 674–698, https://doi.org/10.1111/bre.12219,
2017. a, b, c
Ge, Z., Rosenau, M., Warsitzka, M., and Gawthorpe, R. L.: Overprinting translational domains in passive margin salt basins: insights from analogue modelling, Solid Earth, 10, 1283–1300, https://doi.org/10.5194/se-10-1283-2019, 2019a. a, b
Geil, K.: The development of salt structures in Denmark and adjacent areas:
the role of basin floor dip and differential pressure, First Break, 9,
https://doi.org/10.3997/1365-2397.1991022, 1991. a, b, c
Geluk, M. C.: Stratigraphy and tectonics of Permo-Triassic basins in the
Netherlands and surrounding areas, PhD thesis, Utrecht University, 152 pp., 2005. a
Gemmer, L., Ings, S. J., Medvedev, S., and Beaumont, C.: Salt tectonics driven
by differential sediment loading: stability analysis and finite-element
experiments, Basin Res., 16, 199–218,
https://doi.org/10.1111/j.1365-2117.2004.00229.x, 2004. a
Gibbs, A. D.: Clyde Field growth fault secondary detachment above basement
faults in North Sea, AAPG Bull., 68, 1029–1039,
https://doi.org/10.1306/AD4616BF-16F7-11D7-8645000102C1865D, 1984. a
Griffiths, P. A., Allen, M. R., Craig, J., Fitches, W. R., and Whittington,
R. J.: Distinction between fault and salt control of Mesozoic sedimentation
on the southern margin of the Mid-North Sea High, Geol. Soc. Lond., Spec.
Pub., 91, 145–159, https://doi.org/10.1144/GSL.SP.1995.091.01.08, 1995. a, b
Heaton, R. C., Jackson, M. P. A., Bamahmoud, M., and Nani, A. S. O.:
Superposed Neogene extension, contraction, and salt canopy emplacement in
the Yemeni Red Sea, in: Salt tectonics: a global perspective, edited by:
Jackson, M. P. A., Roberts, D. G., and Snelson, S., 65, 333–351,
AAPG Mem., 1995. a
Høiland, O., Kristensen, J., and Monsen, T.: Mesozoic evolution of the
Jæren High area, Norwegian Central North Sea, in: Petroleum Geology of
Northwest Europe: Proceedings of the 4th Conference,
The Geological Society, London, Geological Society, London,
4, 1189–1195, https://doi.org/10.1144/0041189, 1993. a
Hudec, M. R. and Jackson, M. P. A.: Terra infirma: understanding salt
tectonics, Earth-Sci. Rev., 82, 1–28,
https://doi.org/10.1016/j.earscirev.2007.01.001, 2007. a
Hudec, M. R., Jackson, M. P. A., and Schultz-Ela, D. D.: The Paradox of
Minibasin Subsidence into Salt, Geol. Soc. Am. Bull., 121,
201–221, https://doi.org/10.1130/B26275.1, 2009. a
Hughes, M. and Davison, I.: Geometry and growth kinematics of salt pillows in
the southern North Sea, Tectonophysics, 228, 239–254,
https://doi.org/10.1016/0040-1951(93)90343-I, 1993. a, b, c, d
Jackson, C. A.-L., Jackson, M. P. A., and Hudec, M. R.: Understanding the
kinematics of salt-bearing passive margins: A critical test of competing
hypotheses for the origin of the Albian Gap, Santos Basin, offshore Brazil,
GSA Bull., 127, 1730–1751, https://doi.org/10.1130/B31290.1, 2015. a
Jackson, C. A.-L., Elliott, G. M., Royce-Rogers, E., Gawthorpe, R. L., and Aas,
T. E.: Salt thickness and composition influence rift structural style,
northern North Sea, offshore Norway, Basin Res., 31, 514–538,
https://doi.org/10.1111/bre.12332, 2019. a
Jackson, M. P. A. and Cramez, C.: Seismic recognition of salt welds in salt
tectonics regimes, in: Gulf of Mexico salt tectonics, associated processes
and exploration potential: Gulf Coast Section SEPM Foundation, 10th Annual
Research Conference, SEPM Society for Sedimentary Geology,
66–71, https://doi.org/10.5724/gcs.89.10.0066, 1989. a
Jackson, M. P. A. and Talbot, C. J.: External shapes, strain rates, and
dynamics of salt structures, Geological Society of America Bulletin, 97,
305–323, https://doi.org/10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2, 1986. a
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R.: Fundamentals of Rock
Mechanics, Blackwell Publishing, 4 Edn., 488 pp., 2007. a
Jammes, S., Manatschal, G., Lavier, L., and Masini, E.: Tectonosedimentary
evolution related to extreme crustal thinning ahead of a propagating ocean:
Example of the western Pyrenees, Tectonics, 28, TC4012, https://doi.org/10.1029/2008TC002406,
2009. a
Jammes, S., Manatschal, G., and Lavier, L.: Interaction between prerift salt
and detachment faulting in hyperextended rift systems: The example of the
Parentis and Mauléon basins (Bay of Biscay and western Pyrenees), AAPG
Bull., 94, 957–975, https://doi.org/10.1306/12090909116, 2010. a, b
Jensen, L. and Sørensen, K.: Tectonic framework and halokinesis of the
Nordkapp Basin, Barents Sea, in: Structural and Tectonic Modelling and its
Application to Petroleum Geology, edited by: Larsen, R. M., Brekke, H.,
Larsen, B. T., and Talleraas, E., Elsevier,
1, 109–120, https://doi.org/10.1016/B978-0-444-88607-1.50012-7, 1992. a
Jenyon, M. K.: Basin-edge diapirism and updip salt flow in Zechstein of
southern North Sea, AAPG Bull., 69, 53–64,
https://doi.org/10.1306/AD461B88-16F7-11D7-8645000102C1865D, 1985. a
Kockel, F. E., (mit Beiträgen von Baldschuhn, R., Best, G., Binot, F.,
Frisch, U., Gross, U., Jürgens, U., Röhling, H.-G., and
Sattler-Kosinowski, S.: Structural and Palaeogeographical Development of the
German North Sea Sector, Beitr. Reg. Geol. Erde, 26, 96 pp., 1995. a
Koyi, H., Talbot, C. J., and Tørudbakken, B. O.: Salt Tectonics in the
Northeastern Nordkapp Basin, Southwestern Barents Sea, in: Salt tectonics: a
global perspective, edited by: Jackson, M. P. A., Roberts, D. G., and Snelson,
S., AAPG Mem., 65, 437–447, 1995. a
Krézsek, C., Adam, J., and Grujic, D.: Mechanics of fault and expulsion
rollover systems developed on passive margins detached on salt: insights from
analogue modelling and optical strain monitoring, Geol. Soc. Lond., Spec.
Pub., 292, 103–121, https://doi.org/10.1144/SP292.6, 2007. a, b
Krzywiec, P.: Triassic-Jurassic evolution of the Pomeranian segment of the
Mid-Polish Trough – basement tectonics and subsidence patterns, Geol.
Quart., 50, 139–150, 2006a. a
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments of
the Mid-Polish Trough – lateral variations in timing and structural style,
Geol. Quart., 50, 151–168, 2006b. a
Krzywiec, P.: Mesozoic and Cenozoic evolution of salt structures within the
Polish basin: An overview, Geol. Soc. Lond., Spec. Pub., 363, 381–394,
https://doi.org/10.1144/SP363.17, 2012. a, b
Krzywiec, P., Peryt, T. M., Kiersnowski, H., Pomianowski, P., Czapowski, G.,
and Kwolek, K.: Permo-Triassic Evaporites of the Polish Basin and Their
Bearing on the Tectonic Evolution and Hydrocarbon System, an Overview, in:
Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic
Margins, edited by: Soto, J. I., Flinch, J. F., and Tari, G.,
Elsevier, Amsterdam, Netherlands, 1 Edn., 243–261,
https://doi.org/10.1016/B978-0-12-809417-4.00012-4, 2017. a
Kusznir, N. J., Stovba, S. M., Stephenson, R. A., and Poplavskii, K. N.: The
formation of the northwestern Dniepr-Donets Basin: 2-D forward and reverse
syn-rift and post-rift modelling, Tectonophysics, 268, 237–255,
https://doi.org/10.1016/S0040-1951(96)00230-2, 1996. a
Labaume, P. and Teixell, A.: Evolution of salt structures of the Pyrenean rift
(Chaînons Béarnais, France): From hyper-extension to tectonic inversion,
Tectonophysics, 228451, https://doi.org/10.1016/j.tecto.2020.228451, 2020. a, b, c, d
Lagabrielle, Y., Labaume, P., and de Saint Blanquat, M.: Mantle exhumation,
crustal denudation, and gravity tectonics during Cretaceous rifting in the
Pyrenean realm (SW Europe): Insights from the geological setting of the
lherzolite bodies, Tectonics, 29, TC4012, https://doi.org/10.1029/2009TC002588, 2010. a
Lagabrielle, Y., Asti, R., Duretz, T., Clerc, C., Fourcade, S., Teixell, A.,
Labaume, P., Corre, B., and Saspiturry, N.: A review of cretaceous
smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How
pre-rift salt controls the modes of continental rifting and mantle
exhumation, Earth-Sci. Rev., 201, 103071,
https://doi.org/10.1016/j.earscirev.2019.103071, 2020. a
LaVision, A.: StrainMaster Manual for DaVis 10.0., LaVision GmbH, Goettingen,
2018. a
Lewis, M. M., Jackson, C. A.-L., and Gawthorpe, R. L.: Salt-influenced normal
fault growth and forced folding: The Stavanger Fault System, North Sea,
J. Struct. Geol., 54, 156–173, https://doi.org/10.1016/j.jsg.2013.07.015,
2013. a
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue
material properties on the geometry, kinematics, and dynamics of convergent
sand wedges, J. Struct. Geol., 25, 1691–1711,
https://doi.org/10.1016/S0191-8141(03)00005-1, 2003. a
Loncke, L., Vendeville, B. C., Gaullier, V., and Mascle, J.: Respective
contributions of tectonic and gravity-driven processes on the structural
pattern in the Eastern Nile deep-sea fan: insights from physical
experiments, Basin Res., 22, 765–782,
https://doi.org/10.1111/j.1365-2117.2009.00436.x, 2010. a
Lopez-Mir, B., Muñoz, J. A., and Senz, J. G.: Restoration of basins driven
by extension and salt tectonics: Example from the Cotiella Basin in the
central Pyrenees, J. Struct. Geol., 69, 147–162,
https://doi.org/10.1016/j.jsg.2014.09.022, 2014. a, b
López-Mir, B., Muñoz, J. A., and García-Senz, J.: Extensional
salt tectonics in the partially inverted Cotiella post-rift basin
(south-central Pyrenees): structure and evolution, Int. J. Earth Sci., 104, 419–434, https://doi.org/10.1007/s00531-014-1091-9, 2015. a, b, c
Lymer, G., Vendeville, B. C., Gaullier, V., Chanier, F., and Gaillard, M.:
Using salt tectonic structures as proxies to reveal post-rift crustal
tectonics: The example of the Eastern Sardinian margin (Western Tyrrhenian
Sea), Mar. Petrol. Geol., 214–231,
https://doi.org/10.1016/j.marpetgeo.2018.05.037, 2018. a, b
Martín-Martín, J., Vergés, J., Saura, E., Moragas, M., Messager,
G., Baqués, V., Razin, P., Grélaud, C., Malaval, M., Joussiaume, R.,
et al.: Diapiric growth within an Early Jurassic rift basin: The Tazoult
salt wall (central High Atlas, Morocco), Tectonics, 36, 2–32,
https://doi.org/10.1002/2016TC004300, 2017. a
Maystrenko, Y. P., Bayer, U., and Scheck-Wenderoth, M.: Structure and
evolution of the Glueckstadt Graben due to salt movements, Int. J. Earth
Sci., 94, 799–814, https://doi.org/10.1007/s00531-005-0003-4, 2005. a, b
Maystrenko, Y. P., Bayer, U., and Scheck-Wenderoth, M.: Structure and
Evolution of the Glueckstadt Graben in Relation to the Other PostPermian
Subbasins of the Central European Basin System, in: Permo-Triassic Salt
Provinces of Europe, North Africa and the Atlantic Margins, edited by: Soto,
J. I., Flinch, J. F., and Tari, G., Elsevier, Amsterdam,
Netherlands, 1 Edn., 203–220, https://doi.org/10.1016/B978-0-12-809417-4.00010-0, 2017. a
McClay, K., Dooley, T., and Zamora, G.: Analogue models of delta systems above
ductile substrates, Geological Society, London, Special Publications, 216,
411–428, https://doi.org/10.1144/GSL.SP.2003.216.01.27, 2003. a
McClay, K., Munõz, J.-A., and García-Senz, J.: Extensional salt tectonics
in a contractional orogen: A newly identified tectonic event in the Spanish
Pyrenees, Geology, 32, 737–740, https://doi.org/10.1130/G20565.1, 2004. a
Mianaekere, V. and Adam, J.: “Halo-kinematic” sequence-stratigraphic
analysis of minibasins in the deepwater contractional province of the
Liguro-Provençal basin, Western Mediterranean, Mar. Petrol.
Geol., 104307, https://doi.org/10.1016/j.marpetgeo.2020.104307,
2020. a
Mitchell, D. J. W., Allen, R. B., Salama, W., and Abouzakm, A.:
Tectonostratigraphic framework and hydrocarbon potential of the Red Sea,
J. Petrol. Geol., 15, 187–210,
https://doi.org/10.1111/j.1747-5457.1992.tb00962.x, 1992. a
Mohr, M., Kukla, P. A., Urai, J., and Bresser, G.: Multiphase salt tectonic
evolution in NW Germany: seismic interpretation and retro-deformation, Int.
J. Earth Sci., 94, 917–940, https://doi.org/10.1007/s00531-005-0039-5, 2005. a, b
Moragas, M., Vergés, J., Nalpas, T., Saura, E., Martín-Martín,
J. D., Messager, G., and Hunt, D. W.: The impact of syn-and post-extension
prograding sedimentation on the development of salt-related rift basins and
their inversion: Clues from analogue modelling, Mar. Petrol. Geol., 88, 985–1003, https://doi.org/10.1016/j.marpetgeo.2017.10.001, 2017. a, b, c
Mukherjee, S., Talbot, C. J., and Koyi, H. A.: Viscosity estimates of salt in
the Hormuz and Namakdan salt diapirs, Persian Gulf, Geol. Mag.,
147, 497–507, https://doi.org/10.1017/S001675680999077X, 2010. a
Nalpas, T. and Brun, J.-P.: Salt flow and diapirism related to extension at
crustal scale, Tectonophysics, 228, 349–362,
https://doi.org/10.1016/0040-1951(93)90348-N, 1993. a, b, c
Nilsen, K. T., Johansen, J. T., and Vendeville, B. C.: Influence of regional
tectonics on halokinesis in the Nordkapp Basin, Barents Sea, in: Salt
tectonics: a global perspective, edited by: Jackson, M. P. A., Roberts, D. G.,
and Snelson, S., AAPG Mem., 65, 413–436, 1996. a
O’Sullivan, C. M., Childs, C. J., Saqab, M. M., Walsh, J. J., and Shannon,
P. M.: The influence of multiple salt layers on rift-basin development; The
Slyne and Erris basins, offshore NW Ireland, Basin Res., 33, 2018–2048,
https://doi.org/10.1111/bre.12546, 2021. a
Panien, M., Schreurs, G., and Pfiffner, A.: Mechanical behaviour of granular
materials used in analogue modelling: insights from grain characterisation,
ring-shear tests and analogue experiments, J. Struct. Geol., 28, 1710–1724,
https://doi.org/10.1016/j.jsg.2006.05.004, 2006. a
Pascoe, R., Hooper, R., Storhaug, K., and Harper, H.: Evolution of extensional
styles at the southern termination of the Nordland Ridge, Mid-Norway: a
response to variations in coupling above Triassic salt, in: Geological
Society, London, Petroleum Geology Conference Series,
Geological Society of London, London, 5, 83–90, https://doi.org/10.1144/0050083, 1999. a
Peel, F. J.: The engines of gravity-driven movement on passive margins:
Quantifying the relative contribution of spreading vs. gravity sliding
mechanisms, Tectonophysics, 633, 126–142,
https://doi.org/10.1016/j.tecto.2014.06.023, 2014. a
Pena dos Reis, R., Pimentel, N., Fainstein, R., Reis, M., and Rasmussen, B.:
Influence of Salt Diapirism on the Basin Architecture and Hydrocarbon
Prospects of the Western Iberian Margin, in: Permo-Triassic Salt Provinces
of Europe, North Africa and the Atlantic Margins, edited by: Soto, J. I.,
Flinch, J. F., and Tari, G., Elsevier,
313–329, https://doi.org/10.1016/B978-0-12-809417-4.00015-X, 2017. a
Penge, J., Munns, J. W., Taylor, B., and Windle, T. M. F.: Rift–raft
tectonics: examples of gravitational tectonics from the Zechstein basins of
northwest Europe, in: Geological Society, London, Petroleum Geology
Conference series, edited by Fleet, A. J. and Boldy, S. A. R., Geological Society, London, 5,
201–213, 1999. a, b, c, d, e, f, g, h
Petersen, K., Clausen, O. R., and Korstgård, J. A.: Evolution of a
salt-related listric growth fault near the D-1 well, block 5605, Danish North
Sea: displacement history and salt kinematics, J. Struct. Geol., 14, 565–577, https://doi.org/10.1016/0191-8141(92)90157-R, 1992. a
Pichel, L. M., Jackson, C. A.-L., Peel, F., and Dooley, T. P.: Base-salt
relief controls salt-tectonic structural style, São Paulo Plateau, Santos
Basin, Brazil, Basin Res., 32, 453–484, https://doi.org/10.1111/bre.12375, 2020. a
Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K.,
and Von Nicolai, C.: Salt tectonics on passive margins: examples from
Santos, Campos and Kwanza basins, Geological Society, London, Special
Publications, 363, 207–244, https://doi.org/10.1144/SP363.10, 2012. a, b
Radies, D., Stollhofen, H., Hollmann, G., and Kukla, P.: Synsedimentary faults
and amalgamated unconformities: insights from 3D-seismic and core analysis of
the Lower Triassic Middle Buntsandstein, Ems Trough, north-western Germany,
Int. J. Earth Sci., 94, 863–875, https://doi.org/10.1007/s00531-005-0009-y, 2005. a
Rasmussen, E. S., Lomholt, S., Andersen, C., and Vejbæk, O. V.: Aspects of
the structural evolution of the Lusitanian Basin in Portugal and the shelf
and slope area offshore Portugal, Tectonophysics, 300, 199–225,
https://doi.org/10.1016/S0040-1951(98)00241-8, 1998. a
Rojo, L. A., Cardozo, N., Escalona, A., and Koyi, H.: Structural style and
evolution of the Nordkapp Basin, Norwegian Barents Sea, AAPG Bulletin, 103,
2177–2217, https://doi.org/10.1306/01301918028, 2019. a
Rojo, L. A., Koyi, H., Cardozo, N., and Escalona, A.: Salt tectonics in
salt-bearing rift basins: Progradational loading vs extension, J. Struct. Geol., 141, 104193,
https://doi.org/10.1016/j.jsg.2020.104193, 2020. a
Roma, M., Vidal-Royo, O., McClay, K., Ferrer, O., and Muñoz, J. A.:
Tectonic inversion of salt-detached ramp-syncline basins as illustrated by
analog modeling and kinematic restoration, Interpretation, 6, 127–144,
https://doi.org/10.1190/INT-2017-0073.1, 2018. a, b, c
Rowan, M. G. and Lindsø, S.: Salt tectonics of the Norwegian Barents Sea
and northeast Greenland shelf, in: Permo-Triassic Salt Provinces of Europe,
North Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F.,
and Tari, G., Elsevier, 265–286,
https://doi.org/10.1016/B978-0-12-809417-4.00013-6, 2017. a
Rowan, M. G., Peel, F. J., Vendeville, B. C., and Gaullier, V.: Salt tectonics
at passive margins: Geology versus models – Discussion, Mar. Pet. Geol.,
37, 184–194, https://doi.org/10.1016/j.marpetgeo.2012.04.007, 2012. a
Rudolf, M., Boutelier, D., Rosenau, M., Schreurs, G., and Oncken, O.:
Rheological benchmark of silicone oils used for analog modeling of short-and
long-term lithospheric deformation, Tectonophysics, 684, 12–22,
https://doi.org/10.1016/j.tecto.2015.11.028, 2016. a, b, c
Saspiturry, N., Razin, P., Baudin, T., Serrano, O., Issautier, B., Lasseur, E.,
Allanic, C., Thinon, I., and Leleu, S.: Symmetry vs. asymmetry of a
hyper-thinned rift: example of the Mauléon Basin (Western Pyrenees,
France), Mar. Petrol. Geol., 104, 86–105,
https://doi.org/10.1016/j.marpetgeo.2019.03.031, 2019. a
Saura, E., Ardèvol i Oró, L., Teixell, A., and Vergés, J.: Rising
and falling diapirs, shifting depocenters, and flap overturning in the
Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin,
southern Pyrenees), Tectonics, 35, 638–662, https://doi.org/10.1002/2015TC004001,
2016. a, b, c
Schléder, Z., Urai, J. L., Nollet, S., and Hilgers, C.:
Solution-precipitation creep and fluid flow in halite: a case study of
Zechstein (Z1) rocksalt from Neuhof salt mine (Germany), Int. J. Earth
Sci., 97, 1045–1056, https://doi.org/10.1007/s00531-007-0275-y, 2008. a
Schultz-Ela, D. D.: Excursus on gravity gliding and gravity spreading, J.
Struct. Geol., 23, 725–731, https://doi.org/10.1016/S0191-8141(01)00004-9, 2001. a, b
Seni, S. J. and Jackson, M. P. A.: Sedimentary Record of Cretaceous and
Tertiary Salt Movement, East Texas Basin: Times, Rates, and Volumes of Salt
Flow and Their Implications for Nuclear Waste Isolation and Petroleum
Exploration, in: The University of Texas at Austin Bureau of Economic
Geology Report of Invesitgations, Bureau of Economic
Geology, 139, 89 pp., University of Texas of Austin, 1984. a
Sornette, A., Davy, P., and Sornette, D.: Fault growth in brittle-ductile
experiments and the mechanics of continental collisions, J. Geophys. Res.-Sol. Ea., 98, 12111–12139,
https://doi.org/10.1029/92JB01740, 1993. a
Stewart, S. A.: Detachment-controlled triangle zones in extension and
inversion tectonics, Interpretation, 2, 29–38,
https://doi.org/10.1190/INT-2014-0026.1, 2014. a, b
Stewart, S. A. and Clark, J. A.: Impact of salt on the structure of the
Central North Sea hydrocarbon fairways, Geological Society, London,
Petrol. Geol. Conf. Ser., 5, 179–200, https://doi.org/10.1144/0050179,
1999. a, b, c, d
Stewart, S. A. and Coward, M. P.: Genetic interpretation and mapping of salt
structures, First Break, 14, 135–141, https://doi.org/10.3997/1365-2397.1996009,
1996. a
Stewart, S. A., Harvey, M. J., Otto, S. C., and Weston, P. J.: Influence of
salt on fault geometry: examples from the UK salt basins, Geol. Soc. Lond.,
Spec. Pub., 100, 175–202, https://doi.org/10.1144/GSL.SP.1996.100.01.12, 1996. a, b, c
Stovba, S. M. and Stephenson, R. A.: Style and timing of salt tectonics in the
Dniepr-Donets Basin (Ukraine): implications for triggering and driving
mechanisms of salt movement in sedimentary basins, Mar. Pet. Geol., 19,
1169–1189, https://doi.org/10.1016/S0264-8172(03)00023-0, 2003. a
Stovba, S. M., Stephenson, R. A., and Kivshik, M.: Structural features and
evolution of the Dniepr-Donets Basin, Ukraine, from regional seismic
reflection profiles, Tectonophysics, 268, 127–147,
https://doi.org/10.1016/S0040-1951(96)00222-3, 1996. a
Strozyk, F., Urai, J. L., van Gent, H., de Keijzer, M., and Kukla, P. A.:
Regional variations in the structure of the Permian Zechstein 3 intrasalt
stringer in the northern Netherlands: 3D seismic interpretation and
implications for salt tectonic evolution, Interpretation, 2, 101–117,
https://doi.org/10.1190/INT-2014-0037.1, 2014. a
Strozyk, F., Reuning, L., Scheck-Wenderoth, M., and Tanner, D. C.: The
tectonic history of the Zechstein Basin in the Netherlands and Germany, in:
Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic
Margins, edited by: Soto, J. I., Flinch, J. F., and Tari, G., 221–241,
Elsevier, Amsterdam, Netherlands, 1 Edn.,
https://doi.org/10.1016/B978-0-12-809417-4.00011-2, 2017. a
Tanveer, M. and Korstgård, J. A.: Structural evolution of the Feda Graben
area–A new model, Mar. Pet. Geol., 26, 990–999,
https://doi.org/10.1016/j.marpetgeo.2008.04.010, 2009. a
Teixell, A., Labaume, P., and Lagabrielle, Y.: The crustal evolution of the
west-central Pyrenees revisited: inferences from a new kinematic scenario,
Comptes Rendus Geosci., 348, 257–267, https://doi.org/10.1016/j.crte.2015.10.010,
2016. a
Thomas, D. W. and Coward, M. P.: Mesozoic regional tectonics and South Viking
Graben formation: evidence for localized thin-skinned detachments during rift
development and inversion, Mar. Petrol. Geol., 13, 149–177,
https://doi.org/10.1016/0264-8172(95)00034-8, 1996. a, b, c
Troudi, H., Tari, G., Alouani, W., and Cantarella, G.: Styles of salt
tectonics in Central Tunisia: an overview, in: Permo-Triassic Salt
Provinces of Europe, North Africa and the Atlantic Margins, edited by: Soto,
J. I., Flinch, J. F., and Tari, G., Elsevier,
543–561, https://doi.org/10.1016/B978-0-12-809417-4.00026-4, 2017. a
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University Press,
third edn., 2014. a
Tvedt, A. B. M., Rotevatn, A., Jackson, C. A.-L., Fossen, H., and Gawthorpe,
R. L.: Growth of normal faults in multilayer sequences: a 3D seismic case
study from the Egersund Basin, Norwegian North Sea, J. Struct. Geol., 55,
1–20, https://doi.org/10.1016/j.jsg.2013.08.002, 2013. a, b, c
Tvedt, A. B. M., Rotevatn, A., and Jackson, C. A. L.: Supra-salt normal fault
growth during the rise and fall of a diapir: Perspectives from 3D seismic
reflection data, Norwegian North Sea, J. Struct. Geol., 91,
1–26, https://doi.org/10.1016/j.jsg.2016.08.001, 2016. a
Urai, J. L., Schléder, Z., Spiers, C. J., and Kukla, P. A.: Flow and
Transport Properties of Salt Rocks, in: Dynamics of Complex
Intracontinental Basins: The Central European Basin System, edited by:
Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S.,
Springer-Verlag, Berlin, Heidelberg, 277–290, 2008. a, b, c, d
Vackiner, A. A., Antrett, P., Strozyk, F., Back, S., Kukla, P., and Stollhofen,
H.: Salt kinematics and regional tectonics across a Permian gas field: a
case study from East Frisia, NW Germany, Int. J. Earth Sci., 102,
1701–1716, https://doi.org/10.1007/s00531-013-0887-3, 2013. a, b
Van Gent, H., Urai, J. L., and De Keijzer, M.: The internal geometry of salt
structures – A first look using 3D seismic data from the Zechstein of the
Netherlands, J. Struct. Geol., 33, 292–311,
https://doi.org/10.1016/j.jsg.2010.07.005, 2011. a
Van Keken, P. E., Spiers, C. J., Van den Berg, A. P., and Muyzert, E. J.: The
effective viscosity of rocksalt: implementation of steady-state creep laws in
numerical models of salt diapirism, Tectonophysics, 225, 457–476,
https://doi.org/10.1016/0040-1951(93)90310-G, 1993. a, b, c
Van Winden, M., de Jager, J., Jaarsma, B., and Bouroullec, R.: New insights
into salt tectonics in the northern Dutch offshore: a framework for
hydrocarbon exploration, in: Mesozoic Resource Potential in the Southern
Permian Basin, edited by: Kilhams, B., Kukla, P. A., Mazur, S., McKie, T.,
Mijnlieff, H. F., and Van Ojik, K., Geol. Soc. (Lond.)
Spec. Publ., 469, 99–117, https://doi.org/10.1144/SP469.9, 2018. a
Vejbæk, O. V.: The Horn Graben, and its relationship to the Oslo Graben
and the Danish Basin, Tectonophysics, 178, 29–49,
https://doi.org/10.1016/0040-1951(90)90458-K, 1990. a, b
Vendeville, B. C.: Salt tectonics driven by sediment progradation: Part I –
Mechanics and kinematics, AAPG Bull., 89, 1071–1079,
https://doi.org/10.1306/03310503063, 2005. a, b
Vendeville, B. C. and Jackson, M. P. A.: The rise of diapirs during
thin-skinned extension, Mar. Pet. Geol., 9, 331–354,
https://doi.org/10.1016/0264-8172(92)90047-I, 1992. a
Vendeville, B. C., Ge, H., and Jackson, M. P. A.: Scale models of salt
tectonics during basement-involved extension, Petroleum Geoscience, 1,
179–183, https://doi.org/10.1144/petgeo.1.2.179, 1995. a, b, c
Vergés, J., Moragas, M., Martín-Martín, J. D., Saura, E.,
Casciello, E., Razin, P., Grélaud, C., Malaval, M., Joussiame, R.,
Messager, G., et al.: Salt tectonics in the Atlas mountains of Morocco, in:
Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic
Margins, edited by Soto, J. I., Flinch, J. F., and Tari, G., 563–579,
Elsevier, https://doi.org/10.1016/B978-0-12-809417-4.00027-6, 2017. a
Wagner, R., Leszczyński, K., Pokorski, J., and Gumulak, K.: Palaeotectonic
cross-sections through the Mid-Polish Trough, Geol. Quart., 46,
293–306, 2002. a
Walker, I. M. and Cooper, W. G.: The structural and stratigraphic evolution of
the northeast margin of the Sole Pit Basin, in: Proceedings of the 3rd
Conference on Petroleum geology of North West Europe, edited by: Brooks, J.
and Glennie, K. W., Graham & Trotman, London, 1, 263–275, 1987. a
Warsitzka, M., Kley, J., and Kukowski, N.: Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading, Solid Earth, 6, 9–31, https://doi.org/10.5194/se-6-9-2015, 2015. a, b
Warsitzka, M., Kley, J., Jähne-Klingberg, F., and Kukowski, N.: Dynamics
of prolonged salt movement in the Glückstadt Graben (NW Germany) driven
by tectonic and sedimentary processes, Int. J. Earth Sci., 106, 131–155,
https://doi.org/10.1007/s00531-016-1306-3, 2017.
a, b
Warsitzka, M., Kukowski, N., and Kley, J.: Salt flow direction and velocity
during subsalt normal faulting and syn-kinematic sedimentation –
implications from analytical calculations, Geophys. J. Int., 213, 115–134, https://doi.org/10.1093/gji/ggx552, 2018. a, b
Warsitzka, M., Závada, P., Jähne-Klingberg, F., and Krzywiec, P.:
Analog laboratory experiments of gravity gliding in salt-bearing rift
basins [data set], https://doi.org/10.1594/PANGAEA.931848, 2021a. a
Warsitzka, M., Závada, P., Krýza, O., Pohlenz, A., and Rosenau, M.:
Ring-shear test data of quartz sand – silicate cenospheres mixtures used
for analogue experiments at the Institute of Geophysics of the Czech Academy
of Science, Prague, https://doi.org/10.5880/fidgeo.2021.024, 2021b. a
Watts, A. B., Karner, G., and Steckler, M. S.: Lithospheric flexure and the
evolution of sedimentary basins, Philos T. R. Soc. S.-A., 305,
249–281, https://doi.org/10.1098/rsta.1982.0036, 1982. a
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian fluid
dynamics without inertia for quantitative modelling of rock flow due to
gravity (including the concept of rheological similarity), Phys. Earth Planet. Int., 43, 316–330,
https://doi.org/10.1016/0031-9201(86)90021-X, 1986. a, b, c, d, e
Withjack, M. O. and Callaway, S.: Active normal faulting beneath a salt layer:
an experimental study of deformation patterns in the cover sequence, AAPG
Bull., 84, 627–651, https://doi.org/10.1306/C9EBCE73-1735-11D7-8645000102C1865D, 2000. a, b
Wong, T. E., Batjes, D. A. J., de Jager, J., and van Wetenschappen, K. N. A.:
Geology of the Netherlands, Amsterdam: Royal Netherlands Academy of Arts
and Sciences, 354 pp., 2007. a
Zoback, M. L. and Mooney, W. D.: Lithospheric buoyancy and continental
intraplate stresses, Int. Geol. Rev., 45, 95–118,
https://doi.org/10.2747/0020-6814.45.2.95, 2003. a
Zwaan, F., Schreurs, G., and Adam, J.: Effects of sedimentation on rift
segment evolution and rift interaction in orthogonal and oblique extensional
settings: Insights from analogue models analysed with 4D X-ray computed
tomography and digital volume correlation techniques, Global Planet. Change, 171, 110–133, https://doi.org/10.1016/j.gloplacha.2017.11.002, 2018. a
Zwaan, F., Schreurs, G., and Buiter, S. J. H.: A systematic comparison of experimental set-ups for modelling extensional tectonics, Solid Earth, 10, 1063–1097, https://doi.org/10.5194/se-10-1063-2019, 2019. a, b
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
A new analogue modelling approach was used to simulate the influence of tectonic extension and...