Articles | Volume 12, issue 1
https://doi.org/10.5194/se-12-219-2021
https://doi.org/10.5194/se-12-219-2021
Research article
 | 
28 Jan 2021
Research article |  | 28 Jan 2021

Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA

Tieyuan Zhu, Junzhu Shen, and Eileen R. Martin

Related subject area

Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Upper-lithospheric structure of northeastern Venezuela from joint inversion of surface-wave dispersion and receiver functions
Roberto Cabieces, Mariano S. Arnaiz-Rodríguez, Antonio Villaseñor, Elizabeth Berg, Andrés Olivar-Castaño, Sergi Ventosa, and Ana M. G. Ferreira
Solid Earth, 13, 1781–1801, https://doi.org/10.5194/se-13-1781-2022,https://doi.org/10.5194/se-13-1781-2022, 2022
Short summary
A study on the effect of input data length on a deep-learning-based magnitude classifier
Megha Chakraborty, Wei Li, Johannes Faber, Georg Rümpker, Horst Stoecker, and Nishtha Srivastava
Solid Earth, 13, 1721–1729, https://doi.org/10.5194/se-13-1721-2022,https://doi.org/10.5194/se-13-1721-2022, 2022
Short summary
OBS noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
EGUsphere, https://doi.org/10.5194/egusphere-2022-823,https://doi.org/10.5194/egusphere-2022-823, 2022
Short summary
Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde
Carola Leva, Georg Rümpker, and Ingo Wölbern
Solid Earth, 13, 1243–1258, https://doi.org/10.5194/se-13-1243-2022,https://doi.org/10.5194/se-13-1243-2022, 2022
Short summary
Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022,https://doi.org/10.5194/se-13-705-2022, 2022
Short summary

Cited articles

Ajo-Franklin, J., Dou, S., Daley, T., Freifeld, B., Robertson, M., Ulrich, C., Wood, T., Eckblaw, I., Lindsey, N., Martin, E., and Wagner, A.: Time-lapse surface wave monitoring of permafrost thaw using distributed acoustic sensing and a permanent automated seismic source, in: 2017 SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, 2017. a, b
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Tribaldos, V. R., Ulrich, C., Freifeld, B., Daley, T., and add Li, X.: Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection, Sci. Rep.-UK, 9, 1–14, 2019. a, b, c, d
Bansah, K. J.: Imaging and mitigating karst features, 2018. a
Biondi, B., Martin, E., Cole, S., Karrenbach, M., and Lindsey, N.: Earthquakes analysis using data recorded by the Stanford DAS array, in: 2017 SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, 2017. a
Brantley, S. L., Holleran, M. E., Jin, L., and Bazilevskaya, E.: Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): the hypothesis of nested chemical reaction fronts in the subsurface, Earth Surf. Proc. Land., 38, 1280–1298, 2013. a
Download
Short summary
We describe the Fiber Optic foR Environmental SEnsEing (FORESEE) project in Pennsylvania, USA, the first continuous-monitoring distributed acoustic sensing (DAS) fiber array in the eastern USA. With the success of collecting 1 year of continuous DAS recordings using nearly 5 km of telecommunication fiber underneath the university campus, we conclude that DAS along with telecommunication fiber will potentially serve the purpose of continuous near-surface seismic monitoring in populated areas.