Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2573-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2573-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
Università degli Studi di Perugia, Dipartimento di Fisica e Geologia, Piazza dell'Università 1, 06123 Perugia, Italy
CRUST Centro inteRUniversitario per l'analisi SismoTettonica
tridimensionale, Italy
Universita degli Studi “G. d'Annunzio” di Chieti-Pescara, DiSPUTer, via dei Vestini 31, 66100 Chieti, Italy
CRUST Centro inteRUniversitario per l'analisi SismoTettonica
tridimensionale, Italy
Cristina Pauselli
Università degli Studi di Perugia, Dipartimento di Fisica e Geologia, Piazza dell'Università 1, 06123 Perugia, Italy
CRUST Centro inteRUniversitario per l'analisi SismoTettonica
tridimensionale, Italy
Harry M. Jol
University of Wisconsin – Eau Claire, Department of Geography and
Anthropology, 105 Garfield Avenue, Eau Claire, WI, 54702, USA
Francesco Brozzetti
Universita degli Studi “G. d'Annunzio” di Chieti-Pescara, DiSPUTer, via dei Vestini 31, 66100 Chieti, Italy
CRUST Centro inteRUniversitario per l'analisi SismoTettonica
tridimensionale, Italy
Related authors
Elham Safarzadeh, Maurizio Ercoli, Filippo Carboni, Francesco Mirabella, Assel Akimbekova, and Massimiliano Rinaldo Barchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-941, https://doi.org/10.5194/egusphere-2025-941, 2025
Short summary
Short summary
This study presents a new geological model of the Fano-Pesaro offshore area, refining its tectonic framework. We identified multiple fault detachments at different depths, influencing thrust system dynamics and deformation. This work highlights the importance of integrating seismic and borehole data, even legacy, to build reliable subsurface models. These findings contribute to improved seismic hazard assessment and support offshore energy development and carbon storage projects.
Elham Safarzadeh, Maurizio Ercoli, Filippo Carboni, Francesco Mirabella, Assel Akimbekova, and Massimiliano Rinaldo Barchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-941, https://doi.org/10.5194/egusphere-2025-941, 2025
Short summary
Short summary
This study presents a new geological model of the Fano-Pesaro offshore area, refining its tectonic framework. We identified multiple fault detachments at different depths, influencing thrust system dynamics and deformation. This work highlights the importance of integrating seismic and borehole data, even legacy, to build reliable subsurface models. These findings contribute to improved seismic hazard assessment and support offshore energy development and carbon storage projects.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Cited articles
Amicucci, L., Barchi, M. R., Montone, P., and Rubilani, N.: The Vallo di
Diano and Auletta extensional basins in the southern Apennines (Italy): a
simple model for a complex setting, Terra Nova, 20, 475–482,
https://doi.org/10.1111/j.1365-3121.2008.00841.x, 2008.
Amodio Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G.,
Ippolito, F., Liguori, V., Lorenzoni, S., Paglionico, A., Perrone, V.,
Piccarreta, G., Russo, M., Scandone, P., Zanettin-Lorenzoni, E., and
Zuppetta, A.: L'Arco calabro peloritano nell'orogene appenninico-maghrebide,
Mem. Soc. Geol. It., 17, 1–60, 1976.
Anchuela, Ó. P., Lafuente, P., Arlegui, L., Liesa, C. L., and Simon, J.
L.: Geophysical characterization of buried active faults: the Concud Fault
(Iberian Chain, NE Spain), Int. J. Earth. Sci. (Geol. Rundsch.), 105, 2221–2239, https://doi.org/10.1007/s00531-015-1283-y, 2016.
Annan, A. P.: Ground-penetrating radar workshop notes, Sensors and Software
Inc. Mississauga, ON, Canada, 192 pp., 2001.
Ascione, A., Cinque, A., Santangelo, N., and Tozzi, M.: Il Bacino del Vallo
di Diano e la tettonica trascorrente plio-quaternaria: nuovi vincoli
cronologici e cinematici, Stud. Geol. Camerti, 1992/1, 201–208, 1992a.
Audru, J. C., Bano, M., Begg, J., Berryman, K., Henrys, S., and Niviere, B.:
GPR investigations on active faults in urban areas: the Georisc-NZ project
in Wellington, New Zealand, Comptes Rendus de l'Academie des Sciences – Series IIA, Earth Planet. Sci., 333, 447–454, https://doi.org/10.1016/S1251-8050(01)01663-9, 2001.
Bano, M., Edel, J.-B., Herquel G., and EPGS class 2001/2002: Geophysical
investigation of a recent shallow fault, The Leading Edge, 21, 648–650,
https://doi.org/10.1190/1.1497317, 2002.
Barchi, M. R., Lavecchia, G., Galadini, F., Messina P., Michetti, A. M.,
Peruzza, L., Pizzi, A., Tondi., E., and Vittori, E.: Sintesi delle
conoscenze sulle faglie attive in Italia Centrale: parametrizzazione ai fini
della caratterizzazione della pericolosità sismica, CNR-GNDT, Projects
5.1.2, 6a2, 5.1.1, Esagrafica, Roma, 2000.
Barchi, M. R., Carboni, F., Michele, M., Ercoli, M., Giorgetti, C., Porreca,
M., Azzaro, S., and Chiaraluce, L.: The influence of subsurface geology on the distribution of earthquakes during the 2016–2017 Central Italy seismic
sequence, Tectonophysics, 807, 228797,
https://doi.org/10.1016/j.tecto.2021.228797, 2021.
Bello, S., de Nardis, R., Scarpa, R., Brozzetti, F., Cirillo, D., Ferrarini, F., di Lieto, B., Arrowsmith, R. J., and Lavecchia, G.: Fault Pattern and
Seismotectonic Style of the Campania – Lucania 1980 Earthquake (Mw6.9,
Southern Italy): New Multidisciplinary Constraints, Front. Earth
Sci., 8, 652, https://doi.org/10.3389/feart.2020.608063, 2021.
Benson, A. K.: Applications of ground penetrating radar in assessing some
geological hazards: examples of groundwater contamination, faults, cavities,
J. Appl. Geophys., 33, 177–193,
https://doi.org/10.1016/0926-9851(95)90040-3, 1995.
Beres, M., Huggenberger, P., Green, A. G., and Horstmeyer, H.: Using two-
and three-dimensional georadar methods to characterize glaciofluvial
architecture, Sediment. Geol., 129, 1–24, 1999.
Boncio, P., Pizzi, A., Brozzetti, F., Pomposo, G., Lavecchia, G., Di Naccio,
D., and Ferrarini, F.: Coseismic ground deformation of the 6 april 2009
L'Aquila earthquake (central Italy, Mw6.3), Geophys. Res. Lett., 37, L06308, https://doi.org/10.1029/2010GL042807, 2010.
Brandes, C., Igel, J., Loewer, M., Tanner, D., C., Lang, J., Müller, K.,
and Winsemann, J.: Visualisation and analysis of shear-deformation bands in
unconsolidated Pleistocene sand using ground-penetrating radar: Implications
for paleoseismological studies, Sediment. Geol., 367, 135–145,
https://doi.org/10.1016/j.sedgeo.2018.02.005, 2018.
Bricheva, S. S., Dubrovin, I. O., Lunina, O. V., Denisenko, I. A., Matasov,
V. M., Turova, I. V., Entin, A. L., Panin, A. V., and Deev, E. V.: Numerical
simulation of ground-penetrating radar data for studying the geometry of
fault zone, Near Surf. Geophys., 19, 261–277,
https://doi.org/10.1002/nsg.12153, 2021.
Bristow, C. S. and Jol, H. M.: GPR in sediments: advice on data collection,
basic processing and interpretation, a good practice guide, in: Ground
Penetrating Radar in Sediments, edited by: Bristow C. S. and Jol H. M., Geol. Soc. Spec. Publ., 211, 1–7, https://doi.org/10.1144/GSL.SP.2001.211.01.02, 2003.
Brozzetti, F.: The Campania-Lucania extensional fault system (southern
Italy): a suggestion for a uniform model of active extension in the Italian
Apennines, Tectonics, 30, TC5009,
https://doi.org/10.1029/2010TC002794, 2011.
Brozzetti, F. and Lavecchia, G.: Seismicity and related extensional stress
field: the case of the Norcia Seismic Zone (Central Italy), Ann. Tectonicae,
8, 36–57, 1994.
Brozzetti, F., Lavecchia, G., Mancini, G., Milana G., and Cardinali, M.:
Analysis of the 9 September 1998 Mw5.6 Mercure earthquake sequence (southern Apennines, Italy), a multidisciplinary approach, Tectonophysics, 476, 210–225, https://doi.org/10.1016/j.tecto.2008.12.007, 2009.
Brozzetti, F., Cirillo, D., Liberi, F., Faraca, E., and Piluso, E.: The Crati Valley Extensional System: field and subsurface evidences, Rend. Online Soc. Geol. It., 21, 159–161, 2012.
Brozzetti, F., Cirillo, D., de Nardis, R., Lavecchia, G., and Cardinali, M.:
Detailed mapping of active faults in the Calabro-Lucania Region, Report
INGV-DPC 2014–2015 project S1 ”Base-knowledge improvement for assessing the
seismogenic potential of Italy, available at:
https://sites.google.com/site/ingvdpcprojects1/home (last access: 11 June 2021), 2015.
Brozzetti, F., Cirillo, D., de Nardis, R., Cardinali, M., Lavecchia, G.,
Orecchio, B., Presti D., and Totaro, C.: Newly identified active faults in
the Pollino seismic gap, southern Italy, and their seismotectonic
significance, J. Struct. Geol., 94, 13–31,
https://doi.org/10.1016/j.jsg.2016.10.005, 2017a.
Brozzetti, F., Cirillo, D., Liberi, F., Piluso, E., Faraca, E., De Nardis,
R., and Lavecchia, G.: Structural style of Quaternary extension in the Crati
Valley (Calabrian Arc): Evidence in support of an east-dipping detachment
fault, It. Journ. of Geosci., 136, 434–453,
https://doi.org/10.3301/IJG.2017.11, 2017b.
Brozzetti, F., Boncio, P., Cirillo, D., Ferrarini, F., de Nardis, R., Testa,
A., Liberi, F., and Lavecchia, G.: High resolution field mapping and
analysis of the August–October 2016 coseismic surface faulting (Central
Italy Earthquakes): slip distribution, parameterization and comparison with
global earthquakes, Tectonics, 38, 417–439,
https://doi.org/10.1029/2018TC005305, 2019.
Brozzetti, F., Mondini, A. C., Pauselli, C., Mancinelli, P., Cirillo, D.,
Guzzetti, F., and Lavecchia, G.: Mainshock anticipated by intra-sequence
ground deformations: Insights from multiscale field and SAR interferometric
measurements, Geosciences (Switzerland), 10, 186,
https://doi.org/10.3390/geosciences10050186, 2020.
Bubeck, A., Wilkinson, M., Roberts, G. P., Cowie, P. A., McCaffrey, K. J. W.,
Phillips, R., and Sammonds, P.: The tectonic geomorphology of bedrock scarps
on active normal faults in the Italian Apennines mapped using combined
ground penetrating radar and terrestrial laser scanning, Geomorphology, 237,
38–51, https://doi.org/10.1016/j.geomorph.2014.03.011, 2015.
Busby, J. P. and Merritt, J. W.: Quaternary deformation mapping with ground
penetrating radar, J. Appl. Geophys., 41, 75–91,
https://doi.org/10.1016/S0926-9851(98)00050-0, 1999.
Cai, J., McMechan, G. A., and Fisher, M. A.: Application of ground penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region, Bull. Seism. Soc. Am., 86, 1459–1470, 1996.
Calamita, F., Pizzi, A., and Roscioni, M.: I fasci di faglie recenti ed
attive di M. Vettore – M. Bove e di M. Castello – M. Cardosa (Appennino
Umbro-Marchigiano), in: Studi Geologici Camerti; Università di Camerino:
Camerino, Italy, 81–95, available at: http://193.204.8.201:8080/jspui/handle/1336/552 (last access: 9 February 2021), 1992.
Carpentier, S. F. A., Green, A. G., Langridge, R., Boschetti, S., Doetsch, J., Abacherli, A. N., Horstmeyer, H., and Finnemore, M.: Flower structures and Riedel shears at a step over zone along
the Alpine Fault (New Zealand) inferred from 2-D and 3-D GPR images, J.
Geophys. Res., 117, B02406, https://doi.org/10.1029/2011JB008749,
2012a.
Carpentier, S. F. A., Green, A. G., Doetsch, J., Dorn, C., Kaiser, A. E.,
Campbell, F., Horstmeyer, H., and Finnemore, M.: Recent deformation of
Quaternary sediments as inferred from GPR images and shallow P-wave velocity
tomograms: Northwest Canterbury Plains, New Zealand, J. Appl. Geophys., 8,
2–15, https://doi.org/10.1016/j.jappgeo.2011.09.007, 2012b.
Cello, G., Tondi, E., Micarelli, L., and Mattioni, L.: Active tectonics and
earthquake sources in the epicentral area of the 1857 Basilicata earthquake
(southern Italy), J. Geodyn., 36, 37–50,
https://doi.org/10.1016/S0264-3707(03)00037-1, 2003.
Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M.,
Casarotti, E., Cattaneo, M., De Gori, P., Chiarabba, C., Monachesi, G.,
Lombardi, A., Valoroso, L., Latorre, D., and Marzorati, S.: The 2016 Central
Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and
Source Models, Seismol. Res. Lett., 88, 757–771,
https://doi.org/10.1785/0220160221, 2017.
Christie, M., Tsoflias, G. P., Stockli, D. F., and Black, R.: Assessing fault
displacement and off-fault deformation in an extensional tectonic setting
using 3-D ground-penetrating radar imaging, J. Appl. Geophys., 68, 9–16,
https://doi.org/10.1016/j.jappgeo.2008.10.013, 2009.
Cinti, F. R., Cucci, L., Pantosti, D., D'Addezio, G., and Meghraoui, M.: A
major seismogenic fault in a “silent area”: the Castrovillari fault
(southern Apennines, Italy), Geophys. J. Int., 130, 595–605, 1997.
Cinti, F. R., Moro, M., Pantosti, D., Cucci, L., and D'Addezio, G.: New
constraints on the seismic history of the Castrovillari fault in the Pollino
gap (Calabria, southern Italy), J. Seismol., 6, 199–217,
https://doi.org/10.1023/A:1015693127008, 2002.
Cinti, F. R., Pauselli, C., Livio, F., Ercoli, M., Brunori, C. A., Ferrario,
F., Volpe, R., Civico, R., Pantosti, D., Pinzi, S., De Martini, P. M.,
Ventura, G., Alfonsi, L., Gambillara, R., and Michetti, A. M.: Integrating
multidisciplinary, multi-scale geological and geophysical data to image the
Castrovillari fault (Northern Calabria, Italy), Geophys. J. Int., 203,
1847–1863, https://doi.org/10.1093/gji/ggv404, 2015a.
Cinti, F. R., Alfonsi, L., D'Alessio, A., Marino, S., and Brunori, C. A.: Faulting and Ancient Earthquakes at Sybaris archaeological site, Ionian Calabria, Southern Italy, Seism. Res. Lett., 86, 245–254, https://doi.org/10.1785/02201401071, 2015b.
Cinti, F. R., De Martini, P. M., Pantosti, D., Baize, S., Smedile, A., Villani, F., Civico, R., Pucci, S., Lombardi, A. M., Sapia, V., Pizzimenti, L., Caciagli, M., and Brunori, C. A.: 22-kyr-long record of surface faulting along the source of the 30 October 2016 earthquake (central Apennines, Italy), from
integrated paleoseismic data sets. J. Geophys. Res.-Sol. Ea., 124, 9021–9048, https://doi.org/10.1029/2019JB017757, 2019.
Cirillo, D.: Digital Field Mapping and Drone-Aided Survey for Structural
Geological Data Collection and Seismic Hazard Assessment: Case of the 2016
Central Italy Earthquakes, Appl. Sci., 10,
5233, https://doi.org/10.3390/app10155233, 2020.
Cirillo, D., Totaro, C., Lavecchia, G., Orecchio, B., de Nardis, R., Presti, D., Ferrarini, F., Bello, S., and Brozzetti, F.: Structural complexities and tectonic barriers controlling recent seismic activity of the Pollino area (Calabria-Lucania, Southern Italy) – constraints from stress inversion and 3D fault model building, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-76, in review, 2021.
Conyers, L. B.: Ground-penetrating Radar for Geoarchaeology, Wiley-Blackwell,
London, Wiley Online Library, 160 pp., https://doi.org/10.1002/9781118949993, 2016.
Daniels, D. J.: Ground Penetrating Radar: Radar, Sonar and amp; Navigation,
Institution of Engineering and Technology, London, IEE Press, 752 pp.,
https://doi.org/10.1002/0471654507.eme152, 2004.
Davis, J. L. and Annan, A. P.: Ground penetrating radar for high resolution
mapping of soil and rock stratigraphy, Geophys. Prospect., 37, 531–551,
1989.
Demanet, F., Renardy, D., Vanneste, K., Jongmans, D., Camelbeeck, T., and
Meghraoui, M.: The use of geophysical prospecting for imaging active faults
in the Roer Graben, Belgium, Geophysics, 66, 78–89,
https://doi.org/10.1190/1.1444925, 2001.
Dujardin, J. R. and Bano, M.: Topographic migration of GPR data: Examples
from Chad and Mongolia, C. R. Geosci., 345, 73–80,
https://doi.org/10.1016/j.crte.2013.01.003, 2013.
Ercoli, M., Pauselli, C., Frigeri, A., Forte, E., and Federico, C.:
“Geophysical paleoseismology” through high resolution GPR data: A case of
shallow faulting imaging in Central Italy, J. Appl. Geophys.,
90, 27–40, https://doi.org/10.1016/j.jappgeo.2012.12.001, 2013a.
Ercoli, M., Pauselli, C., Forte, E., Frigeri, A., and Federico, C.: The Mt. Pollino Fault (southern Apennines, Italy): GPR signature of Holocenic
earthquakes in “silent” area, 7th Int. Work. Adv. Gr. Penetrating
Radar, IEEE, 1–6, https://doi.org/10.1109/IWAGPR.2013.6601510, 2013b.
Ercoli, M., Pauselli, C., Frigeri, A., Forte, E., and Federico, C.: 3-D GPR
data analysis for high-resolution imaging of shallow subsurface faults: The
Mt Vettore case study, Central Apennines, Italy, Geoph. J. Int., 198,
609–621, https://doi.org/10.1093/gji/ggu156, 2014.
Ercoli, M., Pauselli, C., Cinti, F. R., Forte, E., and Volpe, R.: Imaging of
an active fault: Comparison between 3D GPR data and outcrops at the
Castrovillari fault, Calabria, Italy, Interpretation, 3, SY57–SY66,
https://doi.org/10.1190/INT-2014-0234.1, 2015.
Ercoli, M., Di Matteo, L., Pauselli, C., Mancinelli, P., Frapiccini, S.,
Talegalli, L., and Cannata, A.: Integrated GPR and laboratory water content
measures of sandy soils: From laboratory to field scale, Constr. Build. Mater., 159, 734–744, https://doi.org/10.1016/j.conbuildmat.2017.11.082, 2018.
Ercoli, M., Forte, E., Porreca, M., Carbonell, R., Pauselli, C., Minelli, G., and Barchi, M. R.: Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy, Solid Earth, 11, 329–348, https://doi.org/10.5194/se-11-329-2020, 2020.
Ferrarini, F., de Nardis, R., Brozzetti, F., Cirillo, D., Arrowsmith, J. R.,
and Lavecchia, G.: Multiple Lines of Evidence for a Potentially Seismogenic
Fault Along the Central-Apennine (Italy) Active Extensional Belt–An
Unexpected Outcome of the MW6.5 Norcia 2016 Earthquake, Front. Earth Sci.,
9, 642243, https://doi.org/10.3389/feart.2021.642243, 2021.
Ferrario, M. F. and Livio, F.: Characterizing the distributed faulting
during the 30 October 2016, Central Italy earthquake: A reference for fault
displacement hazard assessment, Tectonics, 37, 1256–1273,
https://doi.org/10.1029/2017TC004935, 2018.
Filice, F. and Seeber, L.: The Culmination of an Oblique Time-Transgressive
Arc Continent Collision: The Pollino Massif Between Calabria and the
Southern Apennines, Italy, Tectonics, 38, 3261–3280,
https://doi.org/10.1029/2017TC004932, 2019.
Filice, F., Liberi, F., Cirillo, D., Pandolfi, L., Marroni, M., and Piluso, E.: Geological map of the central sector of the Catena Costiera (Northern Calabria), Rend. Online Soc. Geol. It., 29, 55–58, 2013.
Filice, F., Liberi, F., Cirillo, D., Pandolfi, L., Marroni, M., and Piluso
E.: Geology map of the central area of Catena Costiera: insights into the
tectono-metamorphic evolution of the Alpine belt in Northern Calabria,
J. Maps, 11, 114–125, https://doi.org/10.1080/17445647.2014.944877, 2015.
Forte, E. and Pipan, M.: Review of multi-offset GPR applications: Data
acquisition, processing and analysis, Signal Process., 132, 210–220,
https://doi.org/10.1016/j.sigpro.2016.04.011, 2017.
Frigeri, A. and Ercoli, M.: The ScanMars Subsurface Radar Sounding
Experiment on AMADEE-18, Astrobiology, 20, 1338–1352,
https://doi.org/10.1089/ast.2019.2037, 2020.
Gafarov, K., Ercoli, M., Cirillo, D., Pauselli, C., and Brozzetti, F.:
Extending surface geology data through GPR prospections: Quaternary faulting
signature from the Campotenese area (Calabria-Italy), 17th
International Conference on Ground Penetrating Radar (GPR), Rapperswil, 1–4, https://doi.org/10.1109/ICGPR.2018.8441611, 2018.
Galadini, F. and Galli, P.: Paleoseismology of silent faults in the Central
Apennines (Italy): the Mt. Vettore and Laga Mts. Faults, Ann. Geophys.-Italy, 46, 815–836, https://doi.org/10.4401/ag-3457, 2003.
Galadini, F., Meletti, C., and Vittori, E.: Major active faults in Italy:
available surficial data, Netherlands J. Geosci., 80, 273–296, 2001.
Galli, P.: Recurrence times of central-southern Apennine faults (Italy):
Hints from paleoseismology, Terra Nova, 32, 399–407,
https://doi.org/10.1111/ter.12470, 2020.
Galli, P., Galderisi, A., Peronace, E., Giaccio, B., Hajdas, I., Messina,
P., Pileggi, D., and Polpletta, F.: The awakening of the dormant Mount
Vettore fault (2016 central Italy earthquake, Mw6.6): Paleoseismic clues on its millennial silences, Tectonics, 38, 687–705,
https://doi.org/10.1029/2018TC005326, 2019.
Geoportale Nazionale: Lidar data 1 m resolution, Ministero dell'Ambiente e
della Tutela del Territorio e del Mare – Creative Commons License (Cc BY-SA
3.0 IT), http://www.pcn.minambiente.it/mattm/ (last access: 11 June 2021), 2018.
Ghisetti, F. and Vezzani, L.: Structural Map of Mt. Pollino (Southern
Italy), 1:50 000 Scale, SELCA, Firenze, Italy, 1983.
Goodman, D. and Piro, S.: GPR Remote Sensing, in: Archaeology Springer Science
& Business Media, ISBN 978 3 642 31856 6, https://doi.org/10.1007/978-3-642-31857-3, 2013.
Goodman, D., Hongo, H., Higashi, N., Inaoka, H., and Nishimura, Y.: GPR
surveying over burial mounds: correcting for topography and the tilt of the
GPR antenna, Near Surf. Geophys., 5, 383–388,
https://doi.org/10.3997/1873-0604.2007020, 2007.
Grandjaquet, C. L. and Grandjaquet, M. J.: Geologie de la zone de
Diamante-Verbicaro (Calabre), Geol. Romana, 1, 297–312, 1962.
Grasmueck, M.: 3-D ground-penetrating radar applied to fracture imaging in
gneiss, Geophysics, 61, 1050–1064, https://doi.org/10.1190/1.1444026,
1996.
Grasmueck, M., Weger, R., and Horstmeyer, H.: Full-resolution 3D GPR
imaging, Geophysics, 70, K12–K19, 2005.
Green, A. G., Gross, R., Holliger, K., Horstmeyer, H., and Baldwin, J.:
Results of 3-D georadar surveying and trenching the San Andreas fault near
its northern landward limit, Tectonophysics, 368, 7–23,
https://doi.org/10.1016/S0040-1951(03)00147-1, 2003.
Gross, R., Green, A. G., Holliger, K., Horstmeyer, H., and Baldwin, J.:
Shallow geometry and displacements on the San Andreas Fault near Point Arena
based on trenching and 3-D georadar surveying, Geophys. Res. Lett.,
29, 1973, https://doi.org/10.1029/2002GL015534, 2002.
Gross, R., Green, A. G., Horstmeyer, H., Holliger, K., and Baldwin, J.: 3-D
georadar images of an active fault: efficient data acquisition, processing
and interpretation strategies, Subsurf. Sens. Technol. Appl., 4, 19–40,
https://doi.org/10.1023/A:1023059329899, 2003.
Gross, R., Green, A. G., Horstmeyer, H., and Begg, J. H.: Location and
geometry of the Wellington Fault (New Zealand) defined by detailed
three-dimensional georadar data, J. Geophys. Res., 109, B05401,
https://doi.org/10.1029/2003JB002615, 2004.
Heincke, B., Green, A. G., van der Kruk, J., and Willenberg, H.:
Semblance-based topographic migration (SBTM): A method for identifying
fracture zones in 3D georadar data, Near Surf. Geophys., 4, 79–88,
https://doi.org/10.3997/1873-0604.2005034, 2006.
Huggenberger, P.: Radar facies: recognition of facies patterns and
heterogeneities within Pleistocene Rhine gravels, NE Switzerland, In Braided
Rivers, edited by: Best, J. L. and Bristow, C. S., Geol. Soc. London Spec. Publ., 75, 163–176, 1993.
Iannace, A., D'Errico, M., and Vitale, S.: Carta Geologica dell'area
compresa tra Maratea, Castrovillari e Sangineto, in: Analisi Dello Strain Finito in 3D Dell'Unità Pollino-Ciagola (Confine Calabro-lucano, Italia Meridionale), edited by: Vitale, S., and Iannace, A., Studi Geologici Camerti, Nuova Serie, 2, 153–167, ISSN 0392-0631, 2004.
Iannace, A., Garcia Tortosa, F. J., and Vitale, S.: The Triassic
metasedimentary successions across the boundary between Southern Apennines
and Calabria–Peloritani Arc (Northern Calabria, Italy), Geol. J., 40,
155–171, https://doi.org/10.1002/gj.1001, 2005.
Iannace, A., Vitale, S., D'Errico, M., Mazzoli, S., Di Staso, A., Macaione,
E., Messina, A., Reddy, S. M., Somma, R., Zamparelli, V., Zattin, M., and
Bonardi, G.: The carbonate tectonic units of northern Calabria (Italy): a
record of Apulian palaeomargin evolution and Miocene convergence,
continental crust subduction, and exhumation of HP–LT rocks, J. Geol. Soc.
Lond., 164, 1165–1186, https://doi.org/10.1144/0016-76492007-017, 2007.
Imposa, S., De Guidi, G., Grassi, S., Scudero, S., Barreca, G., Patti, G.,
and Boso, D.: Applying geophysical techniques to investigate a segment of a
creeping fault in the urban area of San Gregorio di Catania, southern flank
of Mt. Etna (Sicily–Italy), J. Appl. Geophys., 123, 153–163,
https://doi.org/10.1016/j.jappgeo.2015.10.008, 2015.
INGV – Istituto Nazionale di Geofisica e Vulcanologia: Open Data Portal, Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set], available at: https://data.ingv.it/en/, (last access: 11 June 2021), February 2020.
Jewell, C. J. and Bristow, C. S.: GPR studies in the Piano di Pezza area of
the Ovindoli-Pezza Fault, Central Apennines, Italy: Extending palaeoseismic
trench investigations with high resolution GPR profiling, Near Surf.
Geophys., 4, 147–153, https://doi.org/10.3997/1873-0604.2005040, 2006.
Jol, H. M.: Ground Penetrating Radar: Theory and Applications, Elsevier Science, Amsterdam, Netherlands, 544 pp., ISBN 978 0 44453 348 7, 2009.
Lehmann, F. and Green, A. G.: Topographic migration of georadar data:
Implications for acquisition and processing, Geophysics, 65, 836–848,
https://doi.org/10.1190/1.1444781, 2000.
Liberi, F., Morten, L., and Piluso, E.: Geodynamic significance of the
ophiolites within the Calabrian Arc, Island Arc, 15, 26–43,
https://doi.org/10.1111/j.1440-1738.2006.00520.x, 2006.
Liberty, L. M., Hemphill-Haley, M. A., and Madin, I. P.: The Portland Hills
Fault: uncovering a hidden fault in Portland, Oregon using high resolution
geophysical methods, Tectonophysics, 368, 89–103,
https://doi.org/10.1016/S0040-1951(03)00152-5, 2003.
Liner, C. L. and Liner, J. L.: Application of GPR to a site investigation
involving shallow faults, The Leading Edge, 16, 1649–1651,
https://doi.org/10.1190/1.1437545, 1997.
Malik, J. N., Sahoo, A. K., and Shah, A. A.: Ground-penetrating radar
investigation along Pinjore Garden Fault: implication toward identification
of shallow subsurface deformation along active fault, NW Himalaya, Curr.
Sci., 93, 1422–1427, 2007.
Malik, J. N., Kumar, A., Satuluri, S., Puhan, B., and Mohanty, A.:
Ground-Penetrating Radar Investigations along Hajipur Fault: Himalayan Frontal Thrust-Attempt to Identify Near Subsurface Displacement, NW Himalaya, India, Int. J. Geophys., 2021, 608269, https://doi.org/10.1155/2012/608269, 2012.
Maschio, L., Ferranti, L., and Burrato, P.: Active extension in Val d'Agri
area, southern Apennines, Italy: Implications for the geometry of the
seismogenic belt, Geophys. J. Int., 162, 591–609,
https://doi.org/10.1111/j.1365-246X.2005.02597.x, 2005.
Matoš, B., Zajc, M., Kordić, B., Tomljenović, B., and Gosar, A.:
Quaternary fault activity in the SW Pannonian Basin: GPR surveying in the
Bilogora Mt. (NE Croatia), Geol. Q., 61, 18–36, https://doi.org/10.7306/gq.1308, 2017.
McCalpin, J. P.: Paleoseismology, 2nd Edition, International Geophysics
Series, 95, Elsevier Publishing, 647 pp., plus additional website content, available at: https://www.elsevier.com/de-de (last access: 11 June 2021), ISBN 978-0-12-373576-8, 2009.
McCann, W. R., Nishenko, S. P., Sykes, I. R., and Krause, J.: Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure Appl. Geophys., 117, 1082–1147, 1979.
McClymont, A. F., Green, A. G., Villamor, P., Horstmeyer, H., Grass, C., and
Nobes, D. C.: Characterization of the shallow structures of active fault
zones using 3-D GPR data, J. Geophys. Res., 113, B10315,
https://doi.org/10.1029/2007JB005402, 2008.
McClymont, A. F., Villamor, P., and Green, A. G.: Fault displacement
accumulation and slip rate variability within the Taupo Rift (New Zealand)
based on trench and 3-D ground-penetrating radar data, Tectonics, 28,
TC4005, https://doi.org/10.1029/2008TC002334, 2009.
McClymont, A. F., Green, A. G., Kaiser, A., Horstmeyer, H., and Langridge, R.: Shallow fault segmentation of the Alpine fault zone, New Zealand revealed
from 2- and 3-D GPR surveying, J. Appl. Geophys., 70, 343–354,
https://doi.org/10.1016/j.jappgeo.2009.08.003, 2010.
Michele, M., Chiaraluce, L., Di Stefano, R., and Waldhauser, F.: Fine-scale
structure of the 2016–2017 Central Italy seismic sequence from data
recorded at the Italian National Network, J. Geophys. Res.-Sol. Ea., 125, e2019JB018440, https://doi.org/10.1029/2019JB018440, 2020.
Michetti, A. M., Ferreli, L., Serva, L., and Vittori, E.: Geological
evidence for strong historical earthquakes in an ”aseismic” region: The
Pollino case (Southern Italy), J. Geodyn., 24, 67–86,
https://doi.org/10.1016/S0264-3707(97)00018-5, 1997.
Michetti, A. M., Ferreli, L., Esposito, E., Porfido, S., Blumetti, A. M.,
Vittori, E., Serva, L., and Roberts, G. P.: Ground Effects during the 9 September 1998, Mw=5.6 Lauria, Earthquake and the Seismic Potential of the seismic Pollino Region in Southern Italy, Seismol. Res. Lett., 71, 31–46, https://doi.org/10.1785/gssrl.71.1.31, 2000.
Mogi K.: Two Kinds of Seismic Gaps, in: Earthquake Prediction
and Seismicity Patterns, Contributions to Current Research in Geophysics, edited by: Wyss M., Birkhäuser, Basel, https://doi.org/10.1007/978-3-0348-6430-5_4, 1979.
Napolitano, F., De Siena, L., Gervasi, A., Guerra, I., Scarpa, R., and La
Rocca, M.: Scattering and absorption imaging of a highly fractured
fluid-filled seismogenetic volume in a region of slow deformation, Geosci.
Front., 11, 989–998, https://doi.org/10.1016/j.gsf.2019.09.014, 2020.
Napolitano, F., Galluzzo, D., Gervasi, A., Scarpa, R., and La Rocca, M.:
Fault imaging at Mt Pollino (Italy) from relative location of
microearthquakes, Geophys. J. Int., 224,
637–648, https://doi.org/10.1093/gji/ggaa407, 2021.
Nobes, D. C., Jol, H. M., and Duffy, B.: Geophysical imaging of disrupted
coastal dune stratigraphy and possible mechanisms, Haast, South Westland,
New Zealand, New Zeal. J. Geol. Geop., 59, 426–435,
https://doi.org/10.1080/00288306.2016.1168455, 2016.
Oddone, E.: Gli elementi fisici del grande terremoto marsicano-fucense del
13 gennaio 1915, Boll. Soc. Sismol. Ital., 19, 71–216, 1915.
Ogniben, L.: Schema introduttivo alla geologia del confine calabro-lucano,
Mem. Soc. Geol. It., 8, 453–763, 1969.
Overgaard, T. and Jakobsen, P. R.: Mapping of glaciotectonic deformation in
an ice marginal environment with ground penetrating radar, J. Appl. Geophys., 47, 191–197, https://doi.org/10.1016/S0926-9851(01)00064-7,
2001.
Pantosti, D. and Valensise, G.: Faulting mechanism and complexity of the
November 23, 1980, Campania-Lucania earthquake, inferred from surface
observations, J. Geophys. Res., 95, 15319–15341,
https://doi.org/10.1029/JB095iB10p15319, 1990.
Passarelli, L., Hainzl, S., Cesca, S., Maccaferri, F., Mucciarelli, M.,
Roessler, D., Corbi, F., Dahm, T., and Rivalta, E.: Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy,
Geophys. J. Int., 201, 1553–1567,
https://doi.org/10.1093/gji/ggv111, 2015.
Pastori, M., Margheriti, L., De Gori, P., Govoni, A., Lucente, F. P.,
Moretti, M., Marchetti, A., Di Giovambattista, R., Anselmi, M., De Luca, P.,
Nardi, A., Agostinetti, N. P., Latorre, D., Piccinini, D., Passarelli, L.,
and Chiarabba. C.: The 2011–2014 Pollino Seismic Swarm: Complex Fault
Systems Imaged by 1D Refined Location and Shear Wave Splitting Analysis at
the Apennines–Calabrian Arc Boundary, Front. Earth Sci., 9, 618293, https://doi.org/10.3389/feart.2021.618293, 2021.
Patacca, E. and Scandone, P.: Geological interpretation of the CROP-04
seismic line (Southern Apennines, Italy), Boll. Soc. Geol. It., Ital. J.
Geosci., 7, 297–315, 2007.
Pauselli, C., Federico, C., Frigeri, A., Orosei, R., Barchi, M. R., and
Basile, G.: Ground Penetrating Radar investigations to study active faults
in the Norcia Basin (Central Italy), J. Appl. Geophys., 72, 39–45,
https://doi.org/10.1016/j.jappgeo.2010.06.009, 2010.
Pauselli, C., Ercoli, M. Volpe, R. Federico, C. Mazzocca, M., and Speziali,
L.: 2D and 3D GPR images of selected fault planes (Calabro-Lucania border),
Report DPC-INGV-S1 Project ”Base-knowledge improvement for assessing the
seismogenic potential of Italy”, deliverable D18/c1.1, Agreement
INGV-DPC 2014–2015, 49 pp., available at: https://sites.google.com/site/ingvdpcprojects1/documents (last access: 11 June 2021), 2015.
Plafker, G. and Galloway, J. P.: Lessons Learned from the Lorna Prieta,
California, Earthquake of October 17, 1989, USGS Numbered Series Circular
1045, 48 pp., https://doi.org/10.3133/cir1045, 1989.
Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P.,
and Vannucci, P.: The Italian CMT dataset from 1977 to present, Phys. Earth
Plan. Int., 159, 286–303, 2006.
Porreca, M., Minelli, G., Ercoli, M., Brobia, A., Mancinelli, P., Cruciani,
F., Giorgetti, C., Carboni, F., Mirabella, F., Cavinato, G., Cannata, A.,
Pauselli, C., and Barchi, M. R.: Seismic reflection profiles and subsurface
geology of the area interested by the 2016–2017 earthquake sequence (Central
Italy), in: The 2016 Central Italy Seismic Sequence: Insights, implications
and lessons learned, Tectonics, 37, 1116–1137,
https://doi.org/10.1002/2017TC004915, 2018.
Porreca, M., Fabbrizzi, A., Azzaro, S., Pucci, S., Del Rio, L., Pierantoni,
P. P., Giorgetti, C., Roberts, G., and Barchi, M. R.: 3D geological
reconstruction of the M. Vettore seismogenic fault system (Central
Apennines, Italy): Cross-cutting relationship with the M. Sibillini thrust,
J. Struct. Geol., 131, 103938,
https://doi.org/10.1016/j.jsg.2019.103938, 2020.
Pousse-Beltran, L., Vassallo, R., Audemard, F., Jouanne, F., Oropeza, J.,
Garambois, S., and Aray, J.: Earthquake geology of the last millennium along
the Boconó Fault, Venezuela, Tectonophysics, 747–748, 40–53,
https://doi.org/10.1016/j.tecto.2018.09.010, 2018.
Pucci, S., Pizzimenti, L., Civico, R., Villani, F., Brunori, C. A., and Pantosti, D.: High resolution morphometric analysis of the Cordone del Vettore normal fault scarp (2016 central Italy seismic sequence): Insights into age, earthquake recurrence and throw rates, Geomorphology, 388, pp. 107784, https://doi.org/10.1016/j.geomorph.2021.107784, 2021.
Quitzow, H. W.: Der Deckenbau des Kalabrischen Massivs und seiner
Rangebiete, Beitr. geol. Westl. Mediterrangebiete Abh. Ges. Wiss. Göttingen, Math.-Phis. Kl., 3, 63–179, 1935.
Reiss, S., Reicherter, K. R., and Reuther, C. D.: Visualization and
characterization of active normal faults and associated sediments by
high-resolution GPR Geological Society, London, Special Publications, 211,
247–255, https://doi.org/10.1144/GSL.SP.2001.211.01.20, 2003.
Roberts, G. P., Raithatha, B., Sileo, G., Pizzi, A., Pucci, S., Walker, J. F., Wilkinson, M., McCaffrey, K., Phillips, R. J., Michetti, A. M., Guerrieri, L., Blumetti, A. M., Vittori, E., Cowie, P., Sammonds, P., Galli, P., Boncio, P., Bristow, C., and Walters, R.: Shallow subsurface structure of the 2009 April 6 Mw6.3 L'Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar, Geophys. J. Int., 183, 774–790, https://doi.org/10.1111/j.1365-246X.2010.04713.x, 2010.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The
Italian earthquake catalogue CPTI15, B. Earthq. Eng., 18,
2953–2984, https://doi.org/10.1007/s10518-020-00818-y, 2020.
Salvi, S., Cinti, F. R., Colini, L., D'Addezio, G., Doumaz, F., and
Pettinelli, E.: Investigation of the active Celano-L'Aquila fault system,
Abruzzi (central Apennines, Italy) with combined ground-penetrating radar
and palaeoseismic trenching, Geophys. J. Int., 155, 805–818,
https://doi.org/10.1111/j.1365-246X.2003.02078.x, 2003.
Sangree, J., B. and Widmier, J. M.: Interpretation of depositional facies
from seismic data, Geophysics, 44, 131–60, https://doi.org/10.1190/1.1440957, 1979.
Sapia, V., Villani, F., Fischanger, F., Lupi, M., Baccheschi, P., Pantosti, D., Pucci, S., Civico, R., Sciarra, A., Smedile, A., Romano, V., De Martini, P. M., Murgia, F., Materni, V., Giannattasio, F., Pizzimenti, L., Ricci, T., Brunori, C. A., Coco, I., and Improta, L.: 3-D deep electrical resistivity tomography of the major basin related to the 2016 Mw 6.5 central Italy earthquake fault, Tectonics, 40, e2020TC006628, https://doi.org/10.1029/2020TC006628, 2021.
Schiattarella, M., Torrente, M., and Russo, F.: Analisi strutturale ed
osservazioni morfotettoniche nel bacino del Mercure (Confine
calabro-lucano), Il Quaternaio, 7, 613–626, 1994.
Scognamiglio, L., Tinti, E., and Quintiliani, M.: Time Domain Moment Tensor
(TDMT), Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set],
https://doi.org/10.13127/TDMT, available at: http://terremoti.ingv.it/tdmt (last access: 11 June 2021), 2006.
Servizio Geologico d'Italia: 220 Verbicaro and 221 Castrovillari Sheets of
the Carta Geologica D'Italia, 1:100 000 Scale, Rome, 1970.
Shaikh, M. A., Maurya, D. M., Mukherjee, S., Vanik, N. P., Padmalal, A., and
Chamyal, L. S.: Tectonic evolution of the intra-uplift
Vigodi-Gugriana-Khirasra-Netra Fault System in the seismically active
Kachchh rift basin, India: Implications for the western continental margin
of the Indian plate, J. Struct. Geol., 140, 104124,
https://doi.org/10.1016/j.jsg.2020.104124, 2020.
Sketsiou, P., De Siena, L., Gabrielli, S., and Napolitano, F.: 3-D attenuation image of fluid storage and tectonic interactions across the Pollino fault network, Geophys. J. Int., 226, 536–547,
https://doi.org/10.1093/gji/ggab109, 2021.
Slater, L. and Niemi, T. M.: Ground-penetrating radar investigation of active
faults along the Dead Sea Transform and implications for seismic hazards
within the city of Aqaba, Jordan, Tectonophysics, 368, 33–50,
https://doi.org/10.1016/S0040-1951(03)00149-5, 2003.
Smith, D. G. and Jol, H. M.: Wasatch fault (Utah), detected and displacement
characterized by ground penetrating radar, Environ. Eng. Geosci., 1,
489–496, 1995.
Spina, V., Galli, P., Tondi, E., and Mazzoli, S.: Fault propagation in a
seismic gap area (northern Calabria, Italy): implications for seismic
hazard, Tectonophysics, 476, 357–369, 2009.
Stirling, M., Goded, T., Berryman, K., and Litchfield, N.: Selection of
Earthquake Scaling Relationships for Seismic-Hazard Analysis, B. Seismol. Soc. Am., 103, 2993–3011, https://doi.org/10.1785/0120130052, 2013.
Tangari, A. C., Scarciglia, F., Piluso, E., Marinangeli, L., and Pompilio,
L.: Role of weathering of pillow basalt, pyroclastic input and geomorphic
processes on the genesis of the Monte Cerviero upland soils (Calabria,
Italy), Catena, 171, 299–315, https://doi.org/10.1016/j.catena.2018.07.015, 2018.
Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., and
Nannipieri, L.: Release of a 10-m-resolution DEM for the Italian territory:
Comparison with global-coverage DEMs and anaglyph-mode exploration via the
web, Computers & Geosciences, 38, 168–170,
https://doi.org/10.1016/j.cageo.2011.04.018, 2012.
Tertulliani A. and Cucci, L.: New insights on the strongest historical
earthquake in the Pollino region (southern Italy), Seismol. Res. Lett.,
85, 743–751, https://doi.org/10.1785/0220130217, 2014.
Testa, A., Boncio, P., Di Donato, M., Mataloni, G., Brozzetti, F., and
Cirillo, D.: Mapping the geology of the 2016 Central Italy earthquake fault
(Mt. Vettore – Mt. Bove fault, Sibillini Mts.): geological details on the
Cupi – Ussita and Mt. Bove – Mt. Porche segments and overall pattern of
coseismic surface faulting, Geological Field Trips and Maps, Italian
Geological Society and of the Geological Survey of Italy, 11, 1–13,
https://doi.org/10.3301/GFT.2019.03, 2019.
Tortorici, L., Monaco, C., Tansi, C., and Cocina, O.: Recent and active
tectonics in the Calabrian arc (Southern Italy), Tectonophysics, 243,
37–55, https://doi.org/10.1016/0040-1951(94)00190-K, 1995.
Totaro, C., Koulakov, I., Orecchio, B., and Presti, D.: Detailed crustal
structure in the area of the southern Apennines–Calabrian Arc border from
local earthquake tomography, J. Geodyn., 82, 87–97,
https://doi.org/10.1016/j.jog.2014.07.004, 2014.
Totaro, C., Seeber, L., Waldhauser, F., Steckler, M., Gervasi, A., Guerra,
I., Orecchio, B., and Presti, D.: An intense earthquake swarm in the
southernmost Apennines: fault architecture from high-resolution hypocenters
and focal mechanisms, Bull. Seismol. Soc. Am., 105, 1–6,
https://doi.org/10.1785/0120150074, 2015.
Tronicke, J., Villamor, P., and Green, A. G.: Detailed shallow geometry and
vertical displacement estimates of the Maleme Fault Zone, New Zealand, using
2D and 3D georadar, Near Surf. Geophys., 4, 155–161,
https://doi.org/10.3997/1873-0604.2005041, 2006.
Utzi, E. C.: Ground Penetrating Radar, Elsevier, 209 pp.,
https://doi.org/10.1016/B978-0-08-102216-0.00001-1, 2017.
Vanneste, K., Verbeeck, K., and Petermans, T.: Pseudo-3-D imaging of a
low-slip-rate, active normal fault using shallow geophysical methods: the
Geleen fault in the Belgian Mass River valley, Geophysics, 73, B1–B9,
https://doi.org/10.1190/1.2816428, 2008.
Vezzani, L., Festa, A., and Ghisetti, F.C.: Geology and tectonic evolution
of the Central-Southern Apennines, Italy, Special Paper of the Geological
Society of America, 469, 1–58, https://doi.org/10.1130/SPE469, 2010.
Villani, F. and Pierdominici, S.: Late Quaternary tectonics of the Vallo di
Diano basin, (Southern Apennines, Italy), Quat. Sci. Rev., 29, 3167–3183,
https://doi.org/10.1016/j.quascirev.2010.07.003, 2010.
Villani, F., Pucci, S., Civico, R., De Martini, P. M., Cinti, F. R., and
Pantosti, D.: Surface faulting of the 30 October 2016 Mw6.5 central Italy earthquake: Detailed analysis of a complex coseismic rupture, Tectonics, 37, 3378–3410, https://doi.org/10.1029/2018TC005175, 2018.
Villani, F., Maraio, S., Bruno, P. P., Improta, L., Wood, K., Pucci, S., Civico, R., Sapia, V., De Martini, P. M., Brunori, C. A., Doglioni, C., and Pantosti, D.: High-resolution seismic profiling in the hanging wall of the southern fault section ruptured during the 2016 Mw6.5 central Italy earthquake, Tectonics, 40, e2021TC006786, https://doi.org/10.1029/2021TC006786, 2021.
Wallace, S. C., Nobes, D. C., Davis, K. J., Burbank, D. W., and White, A.:
Three-dimensional GPR imaging of the Benmore anticline and step-over of the
Ostler Fault, South Island, New Zealand, Geophys. J. Int.,
180, 465–474, https://doi.org/10.1111/j.1365-246X.2009.04400.x, 2010.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface
displacement, Bull. Seismol. Soc. Am., 84, 974–1002, 1994.
Xu, G., Xu, C., Wen, Y., and Jiang, G.: Source Parameters of the 2016–2017 Central Italy Earthquake Sequence from the Sentinel-1, ALOS-2 and GPS Data, Remote Sens., 9, 1182, https://doi.org/10.3390/rs9111182, 2017.
Yalciner, C. C., Altunel, E., Bano, M., Meghraoui, M., Karabacak, V., and
Akyuz, H. S.: Application of GPR to normal faults in the Büyük
Menderes Graben, Western Turkey, J. Geodyn., 65, 218–227,
https://doi.org/10.1016/j.jog.2012.05.011, 2013.
Zajc, M., Celarc, B., and Gosar, A.: GPR Study of a Thrust-Fault in an
Active Limestone Quarry, (SW Slovenia), J. Environ. Eng. Geoph., 23, 457–468, https://doi.org/10.2113/JEEG23.4.457, 2018.
Zhang, D., Li, J., Liu, S., and Wang, G.: Multi-frequencies GPR measurements
for delineating the shallow subsurface features of the Yushu strike slip
fault, Acta Geophysica, 67, 501–515,
https://doi.org/10.1007/s11600-019-00271-9, 2019.
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary...