Articles | Volume 13, issue 9
https://doi.org/10.5194/se-13-1393-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-1393-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Benjamin Guillaume
CORRESPONDING AUTHOR
University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
Guido M. Gianni
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Argentina
Department of Geology, Instituto Geofísico Sismológico Ing. Fernando Volponi (IGSV), Universidad Nacional de San Juan, San Juan, Argentina
Jean-Jacques Kermarrec
University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
Khaled Bock
University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
Related authors
No articles found.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Cited articles
Allmendinger, R. W., Smalley Jr, R., Bevis, M., Caprio, H., and Brooks, B.: Bending the Bolivian orocline in real time, Geology, 33, 905–908, 2005. a
Barnes, J. B. and Ehlers, T. A.: End member models for Andean Plateau uplift, Earth-Sci. Rev., 97, 105–132, 2009. a
Berglar, K., Gaedicke, C., Franke, D., Ladage, S., Klingelhoefer, F., and Djajadihardja, Y. S.: Structural evolution and strike-slip tectonics off north-western Sumatra, Tectonophysics, 480, 119–132, 2010. a
Broerse, T., Krstekanić, N., Kasbergen, C., and Willingshofer, E.: Mapping and classifying large deformation from digital imagery: application to analogue models of lithosphere deformation, Geophys. J. Int., 226, 984–1017, 2021. a
Buck, W. R.: Models of Continental Lithospheric Extension, J. Geophys. Res., 96, 20161–20178, https://doi.org/10.1029/91JB01485, 1991. a
Buiter, S. J. and Adrian Pfiffner, O.: Numerical models of the inversion of half-graben basins, Tectonics, 22, https://doi.org/10.1029/2002TC001417, 2003. a
Burbidge, D. R. and Braun, J.: Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method, Geophys. J. Int., 148, 542–561, 2002. a
Bürgman, R. and Dresen, G.: Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations, Annu. Rev. Earth Pl. Sc., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008. a
Byerlee, J.: Friction of rocks. In Rock friction and earthquake prediction, Birkhäuser, Basel, 615–626, 1978. a
Cembrano, J., Hervé, F., and Lavenu, A.: The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile, Tectonophysics, 259, 55–66, 1996. a
Chemenda, A., Lallemand, S., and Bokun, A.: Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modelling, J. Geophys Res.-Sol. Ea., 105, 5567–5581, 2000. a
Cunningham, D.: Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogen, Earth Planet. Sc. Lett., 240, 436–444, 2005. a
Davis, D., Suppe, J., and Dahlen, F. A.: Mechanics of fold‐and‐thrust belts and accretionary wedges, J. Geophys. Res-Sol. Ea., 88, 1153–1172, 1983. a
Del Ventisette, C., Montanari, D., Sani, F., and Bonini, M.: Basin inversion and fault reactivation in laboratory experiments, J. Struct. Geol., 28, 2067–2083, 2006. a
Deng, H., Koyi, H. A., and Zhang, J.: Modelling oblique inversion of pre-existing grabens, Geol. Soc. Lon. Spec. Pub., 487, 263–290, 2020. a
Dhifaoui, R., Strzerzynski, P., Mourgues, R., Rigane, A., Gourmelen, C., and Peigné, D.: Accommodation of compression and lateral extension in a continental crust: Analogical modeling of the Central Atlas (eastern Algeria, Tunisia) and Pelagian sea, Tectonophysics, 817, 229052, https://doi.org/10.1016/j.tecto.2021.229052, 2021. a, b, c
Dhont, D., Chorowicz, J., and Luxey, P.: Anatolian escape tectonics driven by Eocene crustal thickening and Neogene–Quaternary extensional collapse in the eastern Mediterranean region, in: Postcollisional tectonics and magmatism in the Mediterranean region and Asia, edited by: Dilet, Y. and Pavilides, S., Geol. Soc. Spec. Pap., 409, 331–462, 2006. a
Dooley, T. P. and Schreurs, G.: Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results, Tectonophysics, 574, 1–71, 2012. a
Dickinson, W. R.: The Basin and Range Province as a composite extensional domain, Int. Geol. Rev., 44, 1–38, 2002. a
Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F.A., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., and Serpelloni, E.: Mantle dynamics in the Mediterranean, Rev. Geophys., 52, 283–332, 2014. a
Fedorik, J., Zwaan, F., Schreurs, G., Toscani, G., Bonini, L., and Seno, S.: The interaction between strike-slip dominated fault zones and thrust belt structures: Insights from 4D analogue models, J. Struct. Geol., 122, 89–105, 2019. a
Giambiagi, L., Alvarez, P., and Spagnotto, S.: Temporal variation of the stress field during the construction of the central Andes: Constrains from the volcanic arc region (22–26∘ S), Western Cordillera, Chile, during the last 20 Ma, Tectonics, 35, 2014–2033, 2016. a
Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of orogenic wedges: A review, Tectonophysics, 538, 1–66, 2012. a
Guillaume, B., Funiciello, F., and Faccenna, C.: Interplays Between Mantle Flow and Slab Pull at Subduction Zones in 3D, J. Geophys. Res., 126, e2020JB021574, https://doi.org/10.1029/2020JB021574, 2021. a
Guillaume, B., Gianni, G. Kermarrec, J.-J., and Bock, K.: Experimental data of analogue models addressing the influence of crustal strength, tectonic inheritance and stretching/shortening rates on crustal deformation and basin reactivation, GFZ Data Services, [data set], https://doi.org/10.5880/fidgeo.2022.011, 2022. a, b
Gutiérrez Alonso, G., Johnston, S. T., Weil, A. B., Pastor Galán, D., and Fernández Suárez, J.: Buckling an orogen: the Cantabrian Orocline, GSA Today, 22, 4–9, 2012. a
Handin, J.: On the Coulomb–Mohr failure criterion, J. Geophys. Res., 74, 5343–5348, 1969. a
Harland, W. B. and Bayly, M. B.: Tectonic regimes, Geol. Mag., 95, 89–104, 1958. a
Hilde, T. W., Uyeda, S., and Kroenke, L.: Evolution of the western Pacific and its margin, Tectonophysics, 38, 145–165, 1977. a
Hubbert, M. K.: Theory of scaled models as applied to the study of geological structures, Geol. Soc. Am. Bull., 48, 1459–1520, 1937. a
Jaeger, J. C. and Cook, N. G. W.: Fundamentals of Rock Mechanics, Chapman and Hall, Wiley, New York, 585 pp., 1976. a
Johnston, S. T. and Acton, S.: The Eocene southern Vancouver Island orocline – A response to seamount accretion and the cause of fold-and-thrust belt and extensional basin formation, Tectonophysics, 365, 165–183, 2003. a
Jourdon, A., Le Pourhiet, L., Mouthereau, F., and May, D.: Modes of propagation of continental breakup and associated oblique rift structures, J. Geophys. Res., 125, e2020JB019906, https://doi.org/10.1029/2020JB019906, 2020. a
Koyi, H.: Mode of internal deformation in sand wedges, J. Struct. Geol., 17, 293–300, 1995. a
Krézsek, C., Lăpădata, A., Maţenco, L., Arnberger, K., Barbu, V., and Olarua, R.: Strain partitioning at orogenic contacts during rotation, strike–slip and oblique convergence: Paleogene–Early Miocene evolution of the contact between the South Carpathians and Moesia, Glob. Planet. Change, 103, 63–81, 2013. a
Krstekanić, N.,Willingshofer, E., Broerse, T., Matenco, L., Toljić, M., and Stojadinovic, U.: Analogue modelling of strain partitioning along a curved strike-slip fault system during backarc-convex orocline formation: implications for the Cerna-Timok fault system of the Carpatho-Balkanides, J. Struct. Geol., 149, 104386, https://doi.org/10.1016/j.jsg.2021.104386, 2021. a, b
Krstekanić, N., Willingshofer, E., Matenco, L., Toljić, M., and Stojadinovic, U.: The influence of back-arc extension direction on the strain partitioning associated with continental indentation: Analogue modelling and implications for the Circum-Moesian Fault System of South-Eastern Europe, J. Struct. Geol., 159, 104599, https://doi.org/10.1016/j.jsg.2022.104599, 2022. a, b
Le Pourhiet, L., Chamot-Rooke, N., Delescluse, M., May, D. A., Watremez, L., and Pubellier, M.: Continental break-up of the South China Sea stalled by far-field compression, Nat. Geosci., 11, 605–609, 2018. a
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges, J. Struct. Geol., 25, 1691–1711, 2003. a
Lu, H., Tian, X., Yun, K., and Li, H.: Convective removal of the Tibetan Plateau mantle lithosphere by ∼26 Ma, Tectonophysics, 731, 17–34, 2018. a
Mats, V. D.: Late cretaceous and cenozoic stratigraphy of the Baikal Rift sediments, Stratigr. Geol. Correl. 21, 637–651, 2013. a
McClay, K.R.: The geometries and kinematics of inverted faults systems: a review of analogue modelling studies, Geol. Soc. Spec. Publ., 88, 97-118, 1995. a
McClay, K. and Bonora, M.: Analog models of restraining stepovers in strike-slip fault systems, AAPG Bull., 85, 233–260, 2001. a
Molnar, P. and Tapponnier, P.: Active tectonics of Tibet, J. Geophys. Res.-Sol. Ea., 83, 5361–5375, 1978. a
Molnar, P. and Dayem, K. E.: Major intracontinental strike-slip faults and contrasts in lithospheric strength, Geosphere, 6, 444–467, 2010. a
Mouthereau, F., Filleaudeau, P.-Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., Castelltort, S., Christophoul, F., and Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence, Tectonics, 33, 2283–2314, 2014. a
Mugnier, J. L., Baby, P., Colletta, B., Vinour, P., Bale, P., and Leturmy, P.: Thrust geometry controlled by erosion and sedimentation: A view from analogue models, Geology, 25, 427–430, 1997. a
Munteanu, I., Willingshofer, E., Sokoutis, D., Matenco, L., Dinu, C., and Cloetingh, S.: Transfer of deformation in back-arc basins with a laterally variable rheology: Constraints from analogue modelling of the Balkanides–Western Black Sea inversion, Tectonophysics, 602, 223–236, 2013. a
Oncken O., Hindle D., Kley J., Elger K., Victor P., and Schemmann K.: Deformation of the Central Andean Upper Plate System – Facts, Fiction, and Constraints for Plateau Models, in: The Andes, edited by: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V. A., Strecker, M. R., and Wigger, P., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-48684-8_1, 2006. a
Philippon, M., Brun, J.-P., Gueydan, F., and Sokoutis, D.: The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene, Tectonophysics, 631, 176–188, 2014. a
Pfiffner, O. A.: Thick-skinned and thin-skinned tectonics: a global perspective, Geosciences, 7, 71, https://doi.org/10.3390/geosciences7030071, 2017. a
Pinto, L., Muñoz, C., Nalpas, T., and Charrier, R.: Role of sedimentation during basin inversion in analogue modelling, J. Struct. Geol., 32, 554–565, 2010. a
Raleigh, C. B. and Paterson, M. S.: Experimental deformation of serpentinite and its tectonic implications, J. Geophys. Res.-Sol. Ea., 70, 3965–3985, 1965. a
Ramberg, H.: Gravity, deformation and the earth's crust: in theory, experiments and geological applications, Academic Press, London, ISBN: 0125768605 9780125768603, 1981. a
Rosas, F. M., Duarte, J. C., Neves, M. C., Terrinha, P., Silva, S., Matias, L., Gràcia, E., and Bartolome, R.: Thrust–wrench interference between major active faults in the Gulf of Cadiz (Africa–Eurasia plate boundary, offshore SW Iberia): Tectonic implications from coupled analog and numerical modeling, Tectonophysics, 548, 1–21, 2012. a, b
Rosenberg, C. L., Brun, J. P., Cagnard, F., and Gapais, D.: Oblique indentation in the Eastern Alps: Insights from laboratory experiments, Tectonics, 26, https://doi.org/10.1029/2006TC001960, 2007. a, b
Royden, L. H., Burchfiel, B. C., and van der Hilst, R. D.: The geological evolution of the Tibetan Plateau, Science, 321, 1054–1058, 2008. a
Rudolf, M., Boutelier, D., Roseneau, M., Schreurs, G., and Oncken, O.: Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation, Tectonophysics, 684, 12–22, 2016. a
Rudolf, M., Rosenau, M., and Oncken, O.: Influence of Time-dependent Healing on Reactivation of Granular Shear Zones in analogue models: A Community Benchmark, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1670, https://doi.org/10.5194/egusphere-egu22-1670, 202. a
Saint-Carlier, D., Charreau, J., Lavé, J., Blard, P. H., Dominguez, S., Avouac, J. P., and ASTER Team.: Major temporal variations in shortening rate absorbed along a large active fold of the southeastern Tianshan piedmont (China), Earth Planet. Sc. Lett., 434, 333–348, 2016. a
Sani, F., Del Ventisette, C., Montanari, D., Bendkik, A., and Chenakeb, M.: Structural evolution of the Rides Prerifaines (Morocco): structural and seismic interpretation and analogue modelling experiments, Int. J. Earth Sci., 96, 685–706, 2007. a
Saria, E., Calais, E., Stamps, D. S. Delvaux, D., and Hartnady, C. J. H.: Present-day kinematics of the East African Rift, J. Geophys. Res.-Sol. Ea., 119, 3584–3600, 2014. a
Schellart, W. P.: Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling, Tectonophysics, 324, 1–16, 2000. a
Schellart, W. P., Chen, Z., Strak, V., Duarte, J. C., and Rosas, F. M.: Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics, Nat. Commun., 10, 4480, https://doi.org/10.1038/s41467-019-12337-9, 2019. a
Schreurs, G., Buiter, S. J. H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., Cerca, M., Chen, J.-H., Cristallini, E., Cruden, A. R., Cruz, L., Daniel, J.-M., Da Poian, G., Garcia, V. H., Gomes, C. J. S., Grall, C., Guillot, Y., Guzmán, C., Hidayah, T. N., Hilley, G., Klinkmüller, M., Koyi, H. A., Lu, C.-Y., Maillot, B., Meriaux, C., Nilfouroushan, F., Pan, C.-C., Pillot, D., Portillo, R., Rosenau, M., Schellart, W. P., Schlische, R. W., Take, A., Vendeville, B., Vergnaud, M., Vettori, M., Wang, S.-H., Withjack, M. O., Yagupsky, D., and Yamadaw, Y.: Benchmarking analogue models of brittle thrust wedges, J. Struct. Geol., 92, 116–139, 2016. a
Schueller, S.: Localisation de la déformation et fracturation associée, Etude expérimentale et numérique sur des analogues de la lithosphère continentale, PhD thesis, Université de Rennes 1, 250 pp., 2004. a
Şengör, A. M. C. and Kidd, W. S. F.: Post-collisional tectonics of the Turkish–Iranian plateau and a comparison with Tibet, Tectonophysics, 55, 361–376, 1979. a
Şengör, A. M. C., Görür, N., and Şaroğlu, F.: Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study, in: Strike-Slip Deformation, Basin Formation, and Sedimentation, edited by: Biddle, K. T., Christie-Blick, N., SEPM Special Publication, no. 37, 1985. a
Simpson, G.: Mechanics of non-critical fold–thrust belts based on finite element models, Tectonophysics, 499, 142–155, 2011. a
Sokoutis, D., Bonini, M., Medvedev, S., Boccaletti, M., Talbot, C. J., and Koyi, H.: Indentation of a continent with a built-in thickness change: experiment and nature, Tectonophysics, 320, 243–270, 2000. a
Sternai, P., Jolivet, L., Menant, A., and Gerya, T.: Driving the upper plate surface deformation by slab rollback and mantle flow, Earth Planet. Sc. Lett., 405, 110–118, 2014. a
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, 2019. a
Sutherland, R., Davey, F., and Beavan, J.: Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure, Earth Planet. Sc. Lett., 177, 141–151, 2000. a
Takagi, H.: Implications of mylonitic microstructures for the geotectonic evolution of the Median Tectonic Line, central Japan, J. Struct. Geol., 8, 3–14, 1986. a
Tapponnier, P. and Molnar, P.: Slip-line field theory and large-scale continental tectonics, Nature, 264, 319–324, 1976. a
Tatar, M., Hatzfeld, D., Martinod, J., Walpersdorf, A., Ghafori-Ashtiany, M., and Chéry, J.: The present-day deformation of the central Zagros from GPS measurements, Geophys. Res. Lett., 29, 1–4, 2002. a
Thielicke, W., and Sonntag, R.: Particle Image Velocimetry for MATLAB: Accuracy and Enhanced Algorithms in PIVlab, J. Open Res. Softw., 9, Ubiquity Press, Ltd., 2021, https://doi.org/10.5334/jors.334, 2021. a
Twiss, R. J. and Moores, E. M.: Structural Geology, W. H. Freeman and Company, New York, 532 pp., 1992. a
Vendeville, B., Cobbold, P. R., Davy, P., Brun, J.-P., and Choukroune, P.: Physical models of extensional tectonics at various scales, in: Continental Extensional Tectonics, edited by: Coward, M. P., Dewey, J. F., and Hancock, P. L., Geol Soc. Spec. Publ., 28, 95–107, 1987. a
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity), Phys. Earth Planet. In., 43, 316–330, 1986. a
Zoback, M. L.: First- and second- sorder patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res.-Sol. Ea., 97, 11703–11728, 1992. a
Zwaan, F., Schreurs, G., Naliboff, J., and Buiter, S. J. H.: Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models, Tectonophysics, 693, 239–260, https://doi.org/10.1016/j.tecto.2016.02.036, 2016. a
Zwaan, F., Schreurs, G., and Buiter, S. J. H.: A systematic comparison of experimental set-ups for modelling extensional tectonics, Solid Earth, 10, 1063–1097, https://doi.org/10.5194/se-10-1063-2019, 2019. a
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., and Schreurs, G.: Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models, Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, 2021. a, b
Zwaan, F., Schreurs, G., Buiter, S., Ferrer, O., Reitano, R., Rudolf, M., and Willingshofer, E.: Analogue modelling of basin inversion: a review and future perspectives, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2022-8, in review, 2022. a
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Under tectonic forces, the upper part of the crust can break along different types of faults,...
Special issue