Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth
Iris van Zelst
CORRESPONDING AUTHOR
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Fabio Crameri
Undertone Design, Bern, Switzerland
Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Postbox 1028 Blindern, 0315 Oslo, Norway
Adina E. Pusok
Department of Earth Sciences, University of Oxford, UK
Anne Glerum
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
Juliane Dannberg
Department of Geological Sciences, University of Florida, USA
Cedric Thieulot
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Related authors
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023, https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
Short summary
A common simplification in subduction zone models is the use of constant thermal parameters, while experiments have shown that they vary with temperature. We test various formulations of temperature-dependent thermal parameters and show that they change the thermal structure of the subducting slab. We recommend that modelling studies of the thermal structure of subduction zones take the temperature dependence of thermal parameters into account, especially when providing insights into seismicity.
This article is included in the Encyclopedia of Geosciences
Miguel D. Mahecha, Guido Kraemer, and Fabio Crameri
Earth Syst. Dynam., 15, 1153–1159, https://doi.org/10.5194/esd-15-1153-2024, https://doi.org/10.5194/esd-15-1153-2024, 2024
Short summary
Short summary
Our paper examines the visual representation of the planetary boundary concept, which helps convey Earth's capacity to sustain human life. We identify three issues: exaggerated impact sizes, confusing color patterns, and inaccessibility for colour-vision deficiency. These flaws can lead to overstating risks. We suggest improving these visual elements for more accurate and accessible information for decision-makers.
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
This article is included in the Encyclopedia of Geosciences
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
This article is included in the Encyclopedia of Geosciences
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024, https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Short summary
Geodynamic models of mantle convection provide a powerful tool to study the structure and composition of the Earth's mantle. Comparing such models with other datasets is difficult. We explore the use of
This article is included in the Encyclopedia of Geosciences
configurational entropy, which allows us to quantify mixing in models. The entropy may be used to analyse the mixed state of the mantle as a whole and may also be useful to validate numerical models against anomalies in the mantle that are obtained from seismology and geochemistry.
Cedric Thieulot and Wolfgang Bangerth
EGUsphere, https://doi.org/10.5194/egusphere-2024-1668, https://doi.org/10.5194/egusphere-2024-1668, 2024
Short summary
Short summary
One of the main numerical methods in geodynamics is the finite-element method. Many types of elements have been used in the past decades in hundreds of publications. They usually fall under two categories: quadrilaterals and triangles. For the first time we compare results obtained with the most used elements of each type on a series of geodynamical benchmarks and draw conclusions as to which are the best ones and which are to be preferably avoided.
This article is included in the Encyclopedia of Geosciences
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024, https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
Short summary
Numerical models that use simulated particles are a powerful tool for investigating flow in the interior of the Earth, but the accuracy of these models is not fully understood. Here we present two new benchmarks that allow measurement of model accuracy. We then document that better accuracy matters for applications like convection beneath an oceanic plate. Our benchmarks and methods are freely available to help the community develop better models.
This article is included in the Encyclopedia of Geosciences
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023, https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
Short summary
A common simplification in subduction zone models is the use of constant thermal parameters, while experiments have shown that they vary with temperature. We test various formulations of temperature-dependent thermal parameters and show that they change the thermal structure of the subducting slab. We recommend that modelling studies of the thermal structure of subduction zones take the temperature dependence of thermal parameters into account, especially when providing insights into seismicity.
This article is included in the Encyclopedia of Geosciences
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
This article is included in the Encyclopedia of Geosciences
Adina E. Pusok, Dave R. Stegman, and Madeleine Kerr
Solid Earth, 13, 1455–1473, https://doi.org/10.5194/se-13-1455-2022, https://doi.org/10.5194/se-13-1455-2022, 2022
Short summary
Short summary
Sediments play an important role in global volatile and tectonic cycles, yet their effect on subduction dynamics is poorly resolved. In this study, we investigate how sediment properties influence subduction dynamics and obtain accretionary or erosive-style margins. Results show that even a thin layer of sediments can exert a profound influence on the emergent regional-scale subduction dynamics.
This article is included in the Encyclopedia of Geosciences
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022, https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
Short summary
Several alternative gravity modelling techniques and associated numerical codes with their own advantages and limitations are available for the solid Earth community. With upcoming state-of-the-art lithosphere density models and accurate global gravity field data sets, it is vital to understand the differences of the various approaches. In this paper, we discuss the four widely used techniques: spherical harmonics, tesseroid integration, triangle integration, and hexahedral integration.
This article is included in the Encyclopedia of Geosciences
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, https://doi.org/10.5194/se-13-229-2022, 2022
Short summary
Short summary
One of the main numerical methods to solve the mass, momentum, and energy conservation equations in geodynamics is the finite-element method. Four main types of elements have been used in the past decades in hundreds of publications. For the first time we compare results obtained with these four elements on a series of geodynamical benchmarks and applications and draw conclusions as to which are the best ones and which are to be preferably avoided.
This article is included in the Encyclopedia of Geosciences
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930, https://doi.org/10.5194/se-11-1909-2020, https://doi.org/10.5194/se-11-1909-2020, 2020
Short summary
Short summary
This paper presents a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method relies on the assumption that rock layers can be modeled as highly viscous fluids. It shows promising results on simple setups, including models with faults and non-flat topography. While issues still remain, this could open a way to add more physics to reverse time structural modeling.
This article is included in the Encyclopedia of Geosciences
Menno Fraters, Cedric Thieulot, Arie van den Berg, and Wim Spakman
Solid Earth, 10, 1785–1807, https://doi.org/10.5194/se-10-1785-2019, https://doi.org/10.5194/se-10-1785-2019, 2019
Short summary
Short summary
Three-dimensional numerical modelling of geodynamic processes may benefit strongly from using realistic 3-D starting models that approximate, e.g. natural subduction settings in the geological past or at present. To this end, we developed the Geodynamic World Builder (GWB), which enables relatively straightforward parameterization of complex 3-D geometric structures associated with geodynamic processes. The GWB is an open-source community code designed to easily interface with geodynamic codes.
This article is included in the Encyclopedia of Geosciences
Cedric Thieulot
Solid Earth, 9, 1169–1177, https://doi.org/10.5194/se-9-1169-2018, https://doi.org/10.5194/se-9-1169-2018, 2018
Short summary
Short summary
I present the GHOST (Geoscientific Hollow Sphere Tessellation) software which allows for the fast generation of computational meshes in hollow sphere geometries counting up to a hundred million cells. Each mesh is composed of concentric spherical shells made of quadrilaterals or triangles. I focus here on three commonly used meshes used in the geodynamics/geophysics community and further benchmark the gravity and gravitational potential procedures in the simple case of a constant density.
This article is included in the Encyclopedia of Geosciences
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
This article is included in the Encyclopedia of Geosciences
Alexis Plunder, Cédric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 9, 759–776, https://doi.org/10.5194/se-9-759-2018, https://doi.org/10.5194/se-9-759-2018, 2018
Short summary
Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis.
This research was done to validate a hypothesis made on the basis of nonquantitative field data.
This article is included in the Encyclopedia of Geosciences
Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman
Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, https://doi.org/10.5194/se-9-267-2018, 2018
Short summary
Short summary
A nonlinear viscoplastic rheology is implemented and benchmarked in the ASPECT software, allowing for the modeling of lithospheric deformation. We showcase the new functionality with a four-dimensional model of thermomechanically coupled subduction.
This article is included in the Encyclopedia of Geosciences
Cedric Thieulot
Solid Earth, 8, 1181–1191, https://doi.org/10.5194/se-8-1181-2017, https://doi.org/10.5194/se-8-1181-2017, 2017
Short summary
Short summary
I present a new family of analytical flow solutions to the incompressible Stokes equation in a spherical shell. The velocity is tangential to both inner and outer boundaries, the viscosity is radial, and the solution has been designed so that the expressions for velocity, pressure, and body force are simple to implement in (geodynamics) codes. This forms the basis of a numerical benchmark for convection codes, and I have implemented it in two finite-element codes.
This article is included in the Encyclopedia of Geosciences
B. Hillebrand, C. Thieulot, T. Geenen, A. P. van den Berg, and W. Spakman
Solid Earth, 5, 1087–1098, https://doi.org/10.5194/se-5-1087-2014, https://doi.org/10.5194/se-5-1087-2014, 2014
Short summary
Short summary
Our paper demonstrates that the level set method is a viable method for material tracking in multi-material flow models. The different benchmarks illustate several advantages that the level set method provides over tracer-based methods. We therefore conclude that the level set method is well suited for geodynamical modeling.
This article is included in the Encyclopedia of Geosciences
C. Thieulot
Solid Earth Discuss., https://doi.org/10.5194/sed-6-1949-2014, https://doi.org/10.5194/sed-6-1949-2014, 2014
Revised manuscript has not been submitted
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
The influence of viscous slab rheology on numerical models of subduction
Statistical appraisal of geothermal heat flow observations in the Arctic
Increased metamorphic conditions in the lower crust during oceanic transform fault evolution
Thrusts control the thermal maturity of accreted sediments
The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone
The effect of temperature-dependent material properties on simple thermal models of subduction zones
Plume–ridge interactions: ridgeward versus plate-drag plume flow
A corrected finite-difference scheme for the flexure equation with abrupt changes in coefficient
The role of edge-driven convection in the generation ofvolcanism – Part 2: Interaction with mantle plumes, applied to the Canary Islands
The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins
Thermal non-equilibrium of porous flow in a resting matrix applicable to melt migration: a parametric study
A new finite element approach to model microscale strain localization within olivine aggregates
Buoyancy versus shear forces in building orogenic wedges
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024, https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Short summary
We numerically model the influence of an arc on back-arc extension. The arc is simulated by placing a hot region on the overriding plate. We investigate how plate ages and properties of the hot region affect back-arc extension and present regime diagrams illustrating the nature of back-arc extension for these models. We find that back-arc extension occurs not only in the hot region but also, surprisingly, away from it, and a hot region facilitates extension on the overriding plate.
This article is included in the Encyclopedia of Geosciences
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024, https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
Short summary
Continental terranes have various rheological strengths due to the differences in their ages, compositions, and structures. We applied four assumed rheological models to three terranes in a collisional model and obtained four styles of lithosphere deformation patterns of collision, subduction, thickening/delamination, and replacement. These simulation patterns are seen in observed lithosphere deformation patterns and structures in East Asia.
This article is included in the Encyclopedia of Geosciences
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024, https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Short summary
Simulations of subducting tectonic plates often use material properties extrapolated from the behavior of small rock samples in a laboratory to conditions found in the Earth. We explore several typical approaches to simulating these extrapolated material properties and show that they produce very rigid subducting plates with unrealistic dynamics. Our findings imply that subducting plates deform by additional mechanisms that are less commonly implemented in simulations.
This article is included in the Encyclopedia of Geosciences
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024, https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Short summary
Geothermal heat flow influences ice sheet dynamics, making its investigation important for ice-covered regions. Here we evaluate the sparse measurements for their agreement with regional solid Earth models, as well as with a statistical approach. This shows that some points should be excluded from regional studies. In particular, the NGRIP point, which strongly influences heat flow maps and the distribution of high basal melts, should be statistically considered an outlier.
This article is included in the Encyclopedia of Geosciences
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2024-425, https://doi.org/10.5194/egusphere-2024-425, 2024
Short summary
Short summary
Transform faults are conservative plate boundaries, where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, Haas et al. combine high resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.
This article is included in the Encyclopedia of Geosciences
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024, https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
Short summary
Accretion during subduction, in which one tectonic plate moves under another, forms a wedge where sediments can be transformed into hydrocarbons. We utilised realistic computer models to investigate this and, in particular, how accretion affects mobility in the wedge and found that the evolution of the wedge and the thrusts it develops fundamentally control the thermal maturity of sediments. This can help us better understand the history of subduction and the formation of hydrocarbons in wedges.
This article is included in the Encyclopedia of Geosciences
Mengxue Liu, Dinghui Yang, and Rui Qi
Solid Earth, 14, 1155–1168, https://doi.org/10.5194/se-14-1155-2023, https://doi.org/10.5194/se-14-1155-2023, 2023
Short summary
Short summary
The continuous subduction mainly occurs with a relatively cold overriding lithosphere (Tmoho ≤ 450 °C), while slab break-off dominates when the model has a relatively hot procontinental Moho temparature (Tmoho ≥ 500 °C). Hr is more prone to facilitating the deformation of the lithospheric upper part than altering the collision mode. The lithospheric thermal structure may have played a significant role in the development of Himalayan–Tibetan orogenic lateral heterogeneity.
This article is included in the Encyclopedia of Geosciences
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023, https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
Short summary
A common simplification in subduction zone models is the use of constant thermal parameters, while experiments have shown that they vary with temperature. We test various formulations of temperature-dependent thermal parameters and show that they change the thermal structure of the subducting slab. We recommend that modelling studies of the thermal structure of subduction zones take the temperature dependence of thermal parameters into account, especially when providing insights into seismicity.
This article is included in the Encyclopedia of Geosciences
Fengping Pang, Jie Liao, Maxim D. Ballmer, and Lun Li
Solid Earth, 14, 353–368, https://doi.org/10.5194/se-14-353-2023, https://doi.org/10.5194/se-14-353-2023, 2023
Short summary
Short summary
Plume–ridge interaction is an intriguing geological process in plate tectonics. In this paper, we address the respective role of ridgeward vs. plate-drag plume flow in 2D thermomechanical models and compare the results with a compilation of observations on Earth. From a geophysical and geochemical analysis of Earth plumes and in combination with the model results, we propose that the absence of plumes interacting with ridges in the Pacific is largely caused by the presence of plate drag.
This article is included in the Encyclopedia of Geosciences
David Hindle and Olivier Besson
Solid Earth, 14, 197–212, https://doi.org/10.5194/se-14-197-2023, https://doi.org/10.5194/se-14-197-2023, 2023
Short summary
Short summary
By making a change to the way we solve the flexure equation that describes how the Earth's outer layer bends when it is subjected to loading by ice sheets or mountains, we develop new ways of using an old method from geodynamics. This lets us study the Earth's outer layer by measuring a parameter called the elastic thickness, effectively how stiff and springy the outer layer is when it gets loaded and also how the Earth's outer layer gets broken around its edges and in its interior.
This article is included in the Encyclopedia of Geosciences
Antonio Manjón-Cabeza Córdoba and Maxim D. Ballmer
Solid Earth, 13, 1585–1605, https://doi.org/10.5194/se-13-1585-2022, https://doi.org/10.5194/se-13-1585-2022, 2022
Short summary
Short summary
The origin of many volcanic archipelagos on the Earth remains uncertain. By using 3D modelling of mantle flow and melting, we investigate the interaction between the convective mantle near the continental–oceanic transition and rising hot plumes. We believe that this phenomenon is the origin behind some archipelagos, in particular the Canary Islands. Analysing our results, we reconcile observations that were previously enigmatic, such as the complex patterns of volcanism in the Canaries.
This article is included in the Encyclopedia of Geosciences
Adina E. Pusok, Dave R. Stegman, and Madeleine Kerr
Solid Earth, 13, 1455–1473, https://doi.org/10.5194/se-13-1455-2022, https://doi.org/10.5194/se-13-1455-2022, 2022
Short summary
Short summary
Sediments play an important role in global volatile and tectonic cycles, yet their effect on subduction dynamics is poorly resolved. In this study, we investigate how sediment properties influence subduction dynamics and obtain accretionary or erosive-style margins. Results show that even a thin layer of sediments can exert a profound influence on the emergent regional-scale subduction dynamics.
This article is included in the Encyclopedia of Geosciences
Laure Chevalier and Harro Schmeling
Solid Earth, 13, 1045–1063, https://doi.org/10.5194/se-13-1045-2022, https://doi.org/10.5194/se-13-1045-2022, 2022
Short summary
Short summary
Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions and with different flow velocities. Fluid is either in local thermal equilibrium with the host rock or not. We explore the parameters of porous flow and give scaling laws. These allow us to decide whether porous flows are in thermal equilibrium or not. Applied to magmatic systems, moving melts in channels or dikes moderately to strongly deviate from thermal equilibrium.
This article is included in the Encyclopedia of Geosciences
Jean Furstoss, Carole Petit, Clément Ganino, Marc Bernacki, and Daniel Pino-Muñoz
Solid Earth, 12, 2369–2385, https://doi.org/10.5194/se-12-2369-2021, https://doi.org/10.5194/se-12-2369-2021, 2021
Short summary
Short summary
In the first part of this article, we present a new methodology that we have developed to model the deformation and the microstructural evolutions of olivine rocks, which make up the main part of the Earth upper mantle. In a second part, using this methodology we show that microstructural features such as small grain sizes and preferential grain orientations can localize strain at the same intensity and can act together to produce an even stronger strain localization.
This article is included in the Encyclopedia of Geosciences
Lorenzo G. Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M. Schmalholz
Solid Earth, 12, 1749–1775, https://doi.org/10.5194/se-12-1749-2021, https://doi.org/10.5194/se-12-1749-2021, 2021
Short summary
Short summary
We quantify the relative importance of forces driving the dynamics of mountain building using two-dimensional computer simulations of long-term coupled lithosphere–upper-mantle deformation. Buoyancy forces can be as high as shear forces induced by far-field plate motion and should be considered when studying the formation of mountain ranges. The strength of rocks flooring the oceans and the density structure of the crust control deep rock cycling and the topographic elevation of orogens.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aagaard, B., Knepley, M., and Williams, C.: A domain decomposition approach to
implementing fault slip in finite-element models of quasi-static and dynamic
crustal deformation, J. Geophys. Res., 118, 3059–3079,
https://doi.org/10.1002/jgrb.50217, 2013. a, b
Agrusta, R., van Hunen, J., and Goes, S.: The effect of metastable pyroxene on
the slab dynamics, Geophys. Res. Lett., 41, 8800–8808, 2014. a
Aharonov, E., Whitehead, J., Kelemen, P., and Spiegelman, M.: Channeling
instability of upwelling melt in the mantle, J. Geophys. Res.-Sol. Ea., 100, 20433–20450, 1995. a
Ahrens, J., Geveci, B., and Law, C.: ParaView: An End-User Tool for Large Data
Visualization, Visualization Handbook, Elsevier, https://datascience.dsscale.org/wp-content/uploads/2016/06/ParaView.pdf (last access: 24 February 2022), 2005. a
Alboussière, T. and Ricard, Y.: Reflections on dissipation associated with
thermal convection, J. Fluid. Mech., 725, https://doi.org/10.1017/jfm.2013.241, 2013. a
Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., and Ghattas, O.:
Multi-scale dynamics and rheology of mantle flow with plates,
J. Geophys. Res., 117, B10402, https://doi.org/10.1029/2012JB009234, 2012. a, b
Allègre, C. J. and Turcotte, D. L.: Implications of a two-component
marble-cake mantle, Nature, 323, 123–127, 1986. a
Allken, V., Huismans, R., and Thieulot, C.: Three dimensional numerical
modelling of upper crustal extensional systems, J. Geophys. Res., 116,
B10409, https://doi.org/10.1029/2011JB008319, 2011. a
Allken, V., Huismans, R., and Thieulot, C.: Factors controlling the mode of
rift interaction in brittle-ductile coupled systems: a 3D numerical study,
Geochem. Geophy. Geosy., 13, Q05010, https://doi.org/10.1029/2012GC004077, 2012. a
Amestoy, P., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures, ACM Transactions on Mathematical Software, 45, 1–26,
2019. a
Androvandi, S., Davaille, A., Limare, A., Foucquier, A., and Marais, C.: At
least three scales of convection in a mantle with strongly
temperature-dependent viscosity, Phys. Earth Planet. Int., 188, 132–141, https://doi.org/10.1016/j.pepi.2011.07.004, 2011. a
Annesley, T.: Who, what, when, where, how, and why: the ingredients in the
recipe for a successful Methods section, Clin. Chem., 56, 897–901,
https://doi.org/10.1373/clinchem.2010.146589, 2010. a
Arnould, M., Coltice, N., Flament, N., and Mallard, C.: Plate tectonics and
mantle controls on plume dynamics, Earth Planet. Sc. Lett., 547,
116439, https://doi.org/10.1016/j.epsl.2020.116439, 2020. a
Arrial, P.-A., Flyer, N., Wright, G. B., and Kellogg, L. H.: On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison, Geosci. Model Dev., 7, 2065–2076, https://doi.org/10.5194/gmd-7-2065-2014, 2014. a, b
ASPECT: ASPECT – Advanced Solver for Problems in Earth's ConvecTion – GitHub
repository, https://github.com/geodynamics/aspect (last access: 24 February 2022), 2014. a
Association for Computing Machinery: Artifact Review and Badging,
https://www.acm.org/publications/policies/artifact-review-badging (last access: 24 February 2022),
2016. a
Atkins, S., Valentine, A. P., Tackley, P. J., and Trampert, J.: Using pattern
recognition to infer parameters governing mantle convection, Phys. Earth Planet. Int., 257, 171–186, 2016. a
Audisio, R., Stahel, R., Aapro, M., Costa, A., Pandey, M., and Pavlidis, N.:
Successful publishing: how to get your paper accepted, Surg. Oncol., 18,
350–356, https://doi.org/10.1016/j.suronc.2008.09.001, 2009. a
Ayachit, U.: The ParaView Guide: A Parallel Visualization Application,
Kitware, ISBN 978-1-930934-30-6, 2015. a
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient Management
of Parallelism in Object Oriented Numerical Software Libraries, in: Modern
Software Tools in Scientific Computing, edited by: Arge, E., Bruaset, A. M.,
and Langtangen, H. P., Birkhäuser Press, 163–202, 1997. a
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley,
M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan,
P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc Users
Manual, Tech. Rep. ANL-95/11 – Revision 3.15, Argonne National Laboratory,
2021. a
Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., and Naliboff, J.: ASPECT: Advanced Solver for
Problems in Earth's ConvecTion, Computational Infrastructure for Geodynamics, Figshare, https://doi.org/10.6084/M9.FIGSHARE.4865333,
2019. a
Barenblatt, G.: Scaling, Self-similarity, and Intermediate Asymptotics,
Cambridge University Press, https://doi.org/10.1017/CBO9781107050242, 1996.
Bathe, K.-J.: Finite Element Procedures, 2 Edn., ISBN 978-0979004957, 2014. a
Baumann, T. and Kaus, B. J.: Geodynamic inversion to constrain the non-linear
rheology of the lithosphere, Geophys. J. Int., 202,
1289–1316, https://doi.org/10.1093/gji/ggv201, 2015. a, b
Baumann, T., Kaus, B., and Popov, A.: Constraining effective rheology through
parallel joint geodynamic inversion, Tectonophysics, 631, 197–211, 2014. a
Bauville, A. and Baumann, T. S.: geomIO: an open-source MATLAB toolbox to
create the initial configuration of 2D/3D thermo-mechanical simulations from
2D vector drawings, Geochem. Geophy. Geosy., 20, 1665–1675,
https://doi.org/10.1029/2018GC008057, 2019. a
Beaumont, C. and Lambert, A.: Crustal structure from surface load tilts, using
a finite element model, Geophys. J. Int., 29, 203–226,
1972. a
Bercovici, D. and Ricard, Y.: Plate tectonics, damage and inheritance, Nature,
508, 513–516, 2014. a
Bercovici, D., Schubert, G., and Glatzmaier, G.: Three-dimensional convection
of an infinite Prandtl-number compressible fluid in a basally heated
spherical shell, J. Fluid Mech., 239, 683–719, 1992. a
Bercovici, D., Ricard, Y., and Schubert, G.: A two-phase model for compaction
and damage: 1. General theory, J. Geophys. Res.-Sol. Ea.,
106, 8887–8906, 2001. a
Beroza, G. and Kanamori, H.: 4.01 – Earthquake Seismology: An Introduction and
Overview, in: Treatise on Geophysics, edited by: Schubert, G.,
Elsevier, Oxford, 2 Edn.,
1–50, https://doi.org/10.1016/B978-0-444-53802-4.00069-5,
2015. a
Beucher, R. and Huismans, R.: Morphotectonic Evolution of Passive Margins
Undergoing Active Surface Processes: Large-Scale Experiments Using Numerical
Models, Geochem. Geophy. Geosy., 21, e2019GC008884,
https://doi.org/10.1029/2019GC008884, 2020. a
Bijwaard, H. and Spakman, W.: Non-linear global P-wave tomography by iterated
linearized inversion, Geophys. J. Int., 141, 71–82, 2000. a
Billen, M. I., Kreylos, O., Hamann, B., Jadamec, M. A., Kellogg, L. H., Staadt,
O., and Sumner, D. Y.: A geoscience perspective on immersive 3D gridded data
visualization, Comput. Geosci., 34, 1056–1072, 2008. a
Bina, C. R., Stein, S., Marton, F. C., and Van Ark, E. M.: Implications of slab
mineralogy for subduction dynamics, Phys. Earth Planet. Int., 127, 51–66, 2001. a
Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen,
U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P.,
Schmeling, H., and Schnaubelt, T.: A benchmark comparison for mantle
convection codes, Geophys. J. Int., 98, 23–38, 1989. a
Bocher, M., Coltice, N., Fournier, A., and Tackley, P. J.: A sequential data
assimilation approach for the joint reconstruction of mantle convection and
surface tectonics, Geophys. J. Int., 204, 200–214, 2016. a
Bocher, M., Fournier, A., and Coltice, N.: Ensemble Kalman filter for the
reconstruction of the Earth's mantle circulation, Nonlinear Proc. Geophys., 25, 99–123, 2018. a
Bollen, K., Cacioppo, J. T., Kaplan, R., Krosnick, J., and Olds, J. L.: Social,
Behavioral, and Economic Sciences Perspectives on Robust and Reliable
Science, National Science Foundation, 2015. a
Bouffard, M., Choblet, G., Labrosse, S., and Wicht, J.: Chemical convection and
stratification in the Earth's outer core, Front. Earth Sci., 7, 99, https://doi.org/10.3389/feart.2019.00099,
2019. a
Boussinesq, J.: Théorie analytique de la chaleur mise en harmonie avec la
thermodynamique et avec la théorie mécanique de la lumière, Tome
II: Refroidissement et échauffement par rayonnement, conductibilité
des tiges, lames et masses cristallines, courants de convection, théorie
mécanique de la lumière, Vol. 2, Gauthier-Villars, Paris, 1903. a
Box, G. E.: Science and statistics, Journal of the American Statistical
Association, 71, 791–799, 1976. a
Braun, J. and Willett, S.: A very efficient O(n), implicit and parallel method
to solve the stream power equation governing fluvial incision and landscape
evolution, Geomorphology, 180, 170–179, 2013. a
Braun, J. and Yamato, P.: Structural evolution of a three-dimensional,
finite-width crustal wedge, Tectonophysics, 484, 181–192,
https://doi.org/10.1016/j.tecto.2009.08.032, 2010. a
Brooks, A. and Hughes, T.: Streamline Upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations, Comput. Methods Appl. M., 32, 199–259, 1982. a
Brune, S., Heine, C., Clift, P. D., and Pérez-Gussinyé, M.: Rifted
margin architecture and crustal rheology: reviewing Iberia-Newfoundland,
central South Atlantic, and South China sea, Mar. Petrol. Geol.,
79, 257–281, 2017. a
Buck, W., Lavier, L., and Poliakov, A.: How to make a rift wide, Philos. T. Roy. Soc. A, 357, 671–693, 1999. a
Buck, W. R. and Sokoutis, D.: Analogue model of gravitational collapse and
surface extension during continental convergence, Nature, 369, 737, https://doi.org/10.1038/369737a0, 1994. a
Buiter, S., Babeyko, A., Ellis, S., Gerya, T., Kaus, B., Kellner, A., Schreurs,
G., and Yamada, Y.: The numerical sandbox: comparison of model results for a
shortening and an extension experiment, Analogue and Numerical Modelling of
Crustal-Scale Processes, Geol. Soc. Eng. Geol. Sp.,
253, 29–64, 2006. a
Buiter, S., Schreurs, G., Albertz, M., Gerya, T., Kaus, B., Landry, W., Le
Pourhiet, L., Mishin, Y., Egholm, D., Cooke, M., Maillot, B., Thieulot, C.,
Crook, T., May, D., Souloumiac, P., and Beaumont, C.: Benchmarking numerical
models of brittle thrust wedges, J. Struct. Geol., 92,
140–177, 2016. a, b
Bunge, H.-P., Richards, M., and Baumgardner, J.: Mantle-circulation models with
sequential data assimilation: Inferring present-day mantle structure from
plate-motion histories, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 360, 2545–2567,
https://doi.org/10.1098/rsta.2002.1080, 2002. a
Bunge, H.-P., Hagelberg, C., and Travis, B.: Mantle circulation models with
variational data assimilation: inferring past mantle flow and structure from
plate motion histories and seismic tomography, Geophys. J. Int., 152, 280–301, 2003. a
Burov, E., Jolivet, L., Le Pourhiet, L., and Poliakov, A.: A
thermomechanical model of exhumation of high pressure (HP) and ultra-high
pressure (UHP) metamorphic rocks in Alpine-type collision belts,
Tectonophysics, 342, 113–136, 2001. a
Burov, E. B.: Rheology and strength of the lithosphere, Mar. Petrol.
Geol., 28, 1402–1443, 2011.
Burstedde, C., Ghattas, O., Stadler, G., Tu, T., and Wilcox, L.: Parallel
scalable adjoint-based adaptive solution of variable-viscosity Stokes flow
problems, Comput. Methods Appl. M., 198,
1691–1700, https://doi.org/10.1016/j.cma.2008.12.015, 2009. a
Burstedde, C., Stadler, G., Alisic, L., Wilcox, L., Tan, E., Gurnis, M., and
Ghattas, O.: Large-scale adaptive mantle convection simulation,
Geophys. J. Int., 192, 889–906, https://doi.org/10.1093/gji/ggs070, 2013. a
Busse, F., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea,
E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M.,
Sotin, C., and Travis, B.: 3D convection at infinite Prandtl number in
Cartesian geometry – a benchmark comparison, Geophys. Astrophys. Fluid.
Dynam., 75, 39–59, 1994. a
Butterworth, N., Talsma, A., Müller, R., Seton, M., Bunge, H.-P.,
Schuberth, B., Shephard, G., and Heine, C.: Geological, tomographic,
kinematic and geodynamic constraints on the dynamics of sinking slabs,
J. Geodynam., 73, 1–13, https://doi.org/10.1016/j.jog.2013.10.006, 2014. a
Byerlee, J.: Friction of rocks, in: Rock friction and earthquake prediction,
Springer, 615–626, 1978. a
Cerpa, N., Wada, I., and Wilson, C.: Fluid migration in the mantle wedge:
Influence of mineral grain size and mantle compaction, J. Geophys. Res.,
122, 6247–6268, https://doi.org/10.1002/2017JB014046, 2017. a
Chapman, D.: Thermal gradients in the continental crust, Geol. Soc. Eng. Geol. Sp., 24, 63–70, 1986. a
Chertova, M. V., Geenen, T., van den Berg, A., and Spakman, W.: Using open sidewalls for modelling self-consistent lithosphere subduction dynamics, Solid Earth, 3, 313–326, https://doi.org/10.5194/se-3-313-2012, 2012. a, b, c
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D.,
Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T.,
Sanderson, A., Garth, C., Bethel, E. W., Camp, D., Rübel, O., Durant, M.,
Favre, J. M., and Navrátil, P.: VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data, in: High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, Lawrence Livermore National
Laboratory, 357–372, 2012. a
Choi, E. and Petersen, K.: Making Coulomb angle-oriented shear bands in
numerical tectonic models, Tectonophysics, 657, 94–101, 2015. a
Christensen, U. R.: Geodynamo models: Tools for understanding properties of
Earth's magnetic field, Phys. Earth Planet. Int., 187,
157–169, 2011. a
Christensen, U. R. and Wicht, J.: Numerical dynamo simulations, Treatise on
Geophysics, 8, 245–277, 2015. a
Citron, R. I., Lourenço, D. L., Wilson, A. J., Grima, A. G., Wipperfurth,
S. A., Rudolph, M. L., Cottaar, S., and Montési, L. G.: Effects of
Heat-Producing Elements on the Stability of Deep Mantle Thermochemical
Piles, Geochem. Geophy. Geosy., 21, 1–17,
https://doi.org/10.1029/2019GC008895, 2020. a
Colli, L., Bunge, H.-P., and Schuberth, B.: On retrodictions of global mantle
flow with assimilated surface velocities, Geophys. Res. Lett., 42,
8341–8348, https://doi.org/10.1002/2015GL066001, 2015. a
Colli, L., Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Retrodictions of Mid
Paleogene mantle flow and dynamic topography in the Atlantic region from
compressible high resolution adjoint mantle convection models: Sensitivity to
deep mantle viscosity and tomographic input model, Gondw. Res., 53,
252–272, https://doi.org/10.1016/j.gr.2017.04.027, 2018. a
Collignon, M., Kaus, B., May, D., and fernandez, N.: Influences of surface
processes on fold growth during 3-D detachment folding,
Geochem. Geophy. Geosy., 15, 3281–3303, https://doi.org/10.1002/2014GC005450, 2014. a
Connolly, J.: Multivariable phase diagrams; an algorithm based on generalized
thermodynamics, Am. J. Sci., 290, 666–718, 1990. a
Connolly, J.: The geodynamic equation of state: what and how, Geochem. Geophy. Geosy., 10, https://doi.org/10.1029/2009GC002540, 2009. a
Conrad, C. and Gurnis, M.: Seismic tomography, surface uplift, and the breakup
of Gondwanaland: Integrating mantle convection backwards in time,
Geochem. Geophy. Geosy., 4, https://doi.org/10.1029/2001GC000299, 2003. a
Cottaar, S., Heister, T., Rose, I., and Unterborn, C.: BurnMan: A lower mantle
mineral physics toolkit, Geochem. Geophy. Geosy., 15,
1164–1179, 2014. a
Crameri, F.: The Rainbow Colour Map (repeatedly) considered harmful, edited by: Shephard, G. E., EGU GD Blog,
http://blogs.egu.eu/divisions/gd/2017/08/23/the-rainbow-colour-map/,
2017a. , last access: 24 February 2022 a
Crameri, F.: StagLab: Geodynamic diagnostics and scientific visualisation,
Zenodo, https://doi.org/10.5281/zenodo.1199037, 2017b. a, b
Crameri, F.: To serve Geoscientists, edited by: Shephard, G. E., EGU GD Blog,
https://blogs.egu.eu/divisions/gd/2018/05/09/to-serve-geoscientists/,
2018a. , last access: 24 February 2022 a
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018c. a, b
Crameri, F. and Lithgow-Bertelloni, C.: Abrupt upper-plate tilting during
slab-transition-zone collision, Tectonophysics, 746, 199–211,
https://doi.org/10.1016/j.tecto.2017.09.013, 2018. a
Crameri, F., Schmeling, H., Golabek, G., Duretz, T., Orendt, R., Buiter, S.,
May, D., Kaus, B., Gerya, T., and Tackley, P.: A comparison of numerical
surface topography calculations in geodynamic modelling: an evaluation of the
“sticky air” method, Geophys. J. Int., 189, 38–54,
https://doi.org/10.1111/j.1365-246X.2012.05388.x, 2012. a, b, c, d
Crameri, F., Lithgow-Bertelloni, C., and Tackley, P. J.: The dynamical control
of subduction parameters on surface topography, Geochem. Geophy.
Geosy., 18, 1661–1687, https://doi.org/10.1002/2017GC006821, 2017. a
Crawford, O., Al-Attar, D., Tromp, J., Mitrovica, J. X., Austermann, J., and
Lau, H. C.: Quantifying the sensitivity of post-glacial sea level change to
laterally varying viscosity, Geophys. J. Int., 214,
1324–1363, https://doi.org/10.1093/gji/ggy184, 2018. a
Dabrowski, M., Krotkiewski, M., and Schmid, D.: MILAMIN: Matlab based finite
element solver for large problems, Geochem. Geophy. Geosy., 9, Q04030,
https://doi.org/10.1029/2007GC001719, 2008. a
Dal Zilio, L., van Dinther, Y., Gerya, T. V., and Pranger, C. C.: Seismic
behaviour of mountain belts controlled by plate convergence rate, Earth Planet. Sc. Lett., 482, 81–92, 2018. a
Dannberg, J., Eilon, Z., Faul, U., Gassmoeller, R., Moulik, P., and Myhill, R.:
The importance of grain size to mantle dynamics and seismological
observations, Geochem. Geophy. Geosy., 18, 3034–3061,
https://doi.org/10.1002/2017GC006944, 2017. a
Davaille, A.: Simultaneous generation of hotspots and superswells by convection
in a heterogeneous planetary mantle, Nature, 402, 756, https://doi.org/10.1038/45461, 1999. a
Davaille, A., Limare, A., Touitou, F., Kumagai, I., and Vatteville, J.: Anatomy
of a laminar starting thermal plume at high Prandtl number, Experiment. Fluid., 50, 285–300, 2011. a
Davies, J.: Global map of solid Earth surface heat flow,
Geochem. Geophy. Geosy., 14, https://doi.org/10.1002/ggge.20271, 2013. a
de Borst, R. and Duretz, T.: On viscoplastic regularisation of
strain-softening rocks and soils, Int. J. Numer. Anal. Met., 44, 890–903, https://doi.org/10.1002/nag.3046, 2020. a
Deguen, R. and Cardin, P.: Thermochemical convection in Earth′s inner core,
Geophys. J. Int., 187, 1101–1118, 2011. a
Deguen, R., Alboussière, T., and Cardin, P.: Thermal convection in Earth's
inner core with phase change at its boundary, Geophys. J. Int., 194, 1310–1334, 2013. a
Deubelbeiss, Y. and Kaus, B.: Comparison of Eulerian and Lagrangian numerical
techniques for the Stokes equations in the presence of strongly varying
viscosity, Phys. Earth Planet. Int., 171, 92–111,
https://doi.org/10.1016/j.pepi.2008.06.023, 2008. a
Doubrovine, P. V., Steinberger, B., and Torsvik, T. H.: Absolute plate motions
in a reference frame defined by moving hot spots in the Pacific, Atlantic,
and Indian oceans, J. Geophys. Res.-Sol. Ea., 117, 1–30,
https://doi.org/10.1029/2011JB009072, 2012. a
Drucker, D. and Prager, W.: Soil mechanics and plastic analysis or limit
design, Quart. Appl. Math., 10, 157–165, 1952. a
Duarte, J., Schellart, W., and Cruden, A.: Three-dimensions dynamic laboratory
modles of subduction with an overriding plate and variable interplate
rheology, Geophys. J. Int., 195, 47–66, https://doi.org/10.1093/gji/ggt257, 2013. a
Duretz, T., May, D., Gerya, T., and Tackley, P.: Discretization errors and
free surface stabilisation in the finite difference and marker-in-cell method
for applied geodynamics: A numerical study, Geochem. Geophy. Geosy., 12,
https://doi.org/10.1029/2011GC003567, 2011. a
Duretz, T., Souche, A., de Borst, R., and Le Pourhiet, L.: The Benefits of
Using a Consistent Tangent Operator for Viscoelastoplastic Computations in
Geodynamics, Geochem. Geophy. Geosy., 19, 4904–4924, https://doi.org/10.1029/2018GC007877, 2018. a
Duretz, T., de Borst, R., and Le Pourhiet, L.: On finite thickness of shear
bands in frictional viscoplasticity, and implications for lithosphere
dynamics, Geochem. Geophy. Geosy., 20, 5598–5616,
https://doi.org/10.1029/2019GC008531, 2019. a
Duretz, T., de Borst, R., Yamato, P., and Le Pourhiet, L.: Towards robust and
predictive geodynamic modelling: the way forward in frictional plasticity,
Geophys. Res. Lett., 47, e2019GL086027, https://doi.org/10.1029/2019GL086027, 2020. a, b
Dyksterhuis, S., Rey, P., Mueller, R., and Moresi, L.: Effects of initial
weakness on rift architecture, Geol. Soc. Eng. Geol. Sp., 282, 443–455, 2007. a
Dziewonski, A. M.: Mapping the lower mantle: determination of lateral
heterogeneity in P velocity up to degree and order 6, J. Geophys. Res.-Sol. Ea., 89, 5929–5952, 1984. a
Eijkhout, V.: Introduction to High Performance Scientific Computing, Creative
Commons, ISBN 978-1257992546, 2013. a
England, P. and McKenzie, D.: A thin viscous sheet model for continental
deformation, Geophys. J. Int., 70, 295–321, 1982.
Erdos, Z., huismans, R., and van der Beek, P.: First-order control of
syntectonic sedimentation on crustal-scale structure of mountain belts,
J. Geophys. Res., 120, 5362–5377, https://doi.org/10.1002/2014JB011785, 2015. a
Erdős, Z., Huismans, R. S., and van der Beek, P.: Control of increased sedimentation on orogenic fold-and-thrust belt structure – insights into the evolution of the Western Alps, Solid Earth, 10, 391–404, https://doi.org/10.5194/se-10-391-2019, 2019. a
Erturk, E.: Discussions on Driven Cavity Flow, Int. J. Num. Meth. Fluids, 60,
275–294, 2009. a
Erturk, E., Corke, T. C., and Gökçöl, C.: Numerical
solutions of 2-D steady incompressible driven cavity flow at high Reynolds
numbers, Int. J. Numer. Methods Fluids, 48,
747–774, https://doi.org/10.1002/fld.953, 2005. a
Faccenda, M. and Dal Zilio, L.: The role of solid–solid phase transitions in
mantle convection, Lithos, 268, 198–224, 2017. a
Faccenda, M., Gerya, T., Mancktelow, N., and Moresi, L.: Fluid flow during
slab unbending and dehydration: Implications for intermediate-depth
seismicity, slab weakening and deep water recycling,
Geochem. Geophy. Geosy., 13, https://doi.org/10.1029/2011GC003860, 2012. a
Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville,
Y., and Villasenor, A.: Multiscale full waveform inversion, Geophys. J. Int., 194, 534–556, 2013. a
Foley, B. and Becker, T.: Generation of plate-like behavior and mantle
heterogeneity from a spherical, viscoplastic convection model,
Geochem. Geophy. Geosy., 10, https://doi.org/10.1029/2009GC002378, 2009. a
Foley, B. J.: The dependence of planetary tectonics on mantle thermal state:
applications to early Earth evolution, Philos. T. Roy. Soc. A, 376,
20170409, https://doi.org/10.1098/rsta.2017.0409, 2018. a
Forte, A. M.: Geodynamics, Dordrecht,
340–341, https://doi.org/10.1007/978-90-481-8702-7_214, 2011. a
Fossen, H.: Structural Geology, Cambridge University Press, ISBN 978-1107057647, 2016. a
Fraters, M., Bangerth, W., Thieulot, C., Glerum, A., and Spakman, W.:
Efficient and Practical Newton Solvers for Nonlinear Stokes Systems in
Geodynamic Problems, Geophys. J. Int., 218, 873–894, https://doi.org/10.1093/gji/ggz183,
2019a. a
Fraters, M., Thieulot, C., van den Berg, A., and Spakman, W.: The Geodynamic World Builder: a solution for complex initial conditions in numerical modeling, Solid Earth, 10, 1785–1807, https://doi.org/10.5194/se-10-1785-2019, 2019b. a
Fullsack, P.: An arbitrary Lagrangian-Eulerian formulation for creeping
flows and its application in tectonic models, Geophys. J. Int., 120, 1–23,
https://doi.org/10.1111/j.1365-246X.1995.tb05908.x, 1995. a, b
Ganchin, Y., Smithson, S., Morozov, I., Smythe, D., Garipov, V., Karaev, N.,
and Kristofferson, Y.: Seismic studies around the Kola superdeep borehole,
Russia, Tectonophysics, 288, 1–16, 1998. a
Garel, F., Goes, S., Davies, D., Davies, J., Kramer, S., and Wilson, C.:
Interaction of subducted slabs with the mantle transition-zone: A regime
diagram from 2-D thermo-mechanical models with a mobile trench and an
overriding plate, Geochem. Geophy. Geosy., 15, 1739–1765,
https://doi.org/10.1002/2014GC005257, 2014. a
Gassmöller, R., Dannberg, J., Bredow, E., Steinberger, B., and Torsvik,
T. H.: Major influence of plume-ridge interaction, lithosphere thickness
variations, and global mantle flow on hotspot volcanism-The example of
Tristan, Geochem. Geophy. Geosy., 17, 1454–1479,
https://doi.org/10.1002/2015GC006177, 2016. a
Gassmöller, R., Lokavarapu, H., Heien, E. M., Puckett, E. G., and Bangerth,
W.: Flexible and scalable particle-in-cell methods with adaptive mesh
refinement for geodynamic computations, Geochem. Geophy. Geosy., 19,
3596–3604, https://doi.org/10.1029/2018GC007508, 2018. a
Gassmöller, R., Lokavarapu, H., Bangerth, W., and Puckett, G.: Evaluating
the accuracy of hybrid finite element/particle-in-cell methods for modelling
incompressible Stokes flow, Geophys. J. Int., 219, 1915–1938, https://doi.org/10.1093/gji/ggz405, 2019. a
Gérault, M., Husson, L., Miller, M., and Humphreys, E.: Flat-slab
subduction, topography, and mantle dynamics in southwestern Mexico,
Tectonics, 34, 1892–1909, https://doi.org/10.1002/2015TC003908, 2015. a
Gerya, T. and Yuen, D.: Robust characteristics method for modelling multiphase
visco-elasto-plastic thermo-mechanical problems, Phys. Earth. Planet. Int.,
163, 83–105, https://doi.org/10.1016/j.pepi.2007.04.015, 2007. a, b
Gerya, T., Perchuk, L., Maresch, W., and Willner, A.: Inherent gravitational
instability of hot continental crust: Implications for doming and diapirism
in granulite facies terrains, Geol. Soc. Am., 380, 97–115,
2004. a
Ghelichkhan, S. and Bunge, H.-P.: The compressible adjoint equations in
geodynamics: derivation and numerical assessment, GEM-Int. J. Geomath., 7, 1–30, 2016. a
Gillmann, C. and Tackley, P.: Atmosphere/mantle coupling and feedbacks on
Venus, J. Geophys. Res.-Planets, 119, 1189–1217, 2014. a
Glatzmaier, G.: Numerical simulations of mantle convection: Time-dependent,
three-dimensional, compressible, spherical shell, Geophys. Astrophys. Fluid
Dyn., 43, 223–264, 1988. a
Glerum, A., Thieulot, C., Fraters, M., Blom, C., and Spakman, W.: Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, 2018. a, b
Glišović, P., Forte, A., and Moucha, R.: Time-dependent convection
models of mantle thermal structure constrained by seismic tomography and
geodynamics: implications for mantle plume dynamics and CMB heat flux,
Geophys. J. Int., 190, 785–815, 2012.
GO FAIR: RDM Starter Kit,
https://www.go-fair.org/resources/rdm-starter-kit/, last access: 24 February 2022. a
Goodman, S., Fanelli, D., and Ioannidis, J.: What does research reproducibility
mean?, Sci. Trans. Med., 8, 1–6,
https://doi.org/10.1126/scitranslmed.aaf5027, 2016. a
Gray, R. and Pysklywec, R.: Geodynamic models of mature continental collision:
Evolution of an orogen from lithospheric subduction to continental
retreat/delamination, J. Geophys. Res., 117, https://doi.org/10.1029/2011JB008692,
2012. a
Greene, C. and Thirumalai, K.: It's time to shift emphasis away from code
sharing, Eos, 100, 16–17, 2019. a
Gresho, P. and Sani, R.: Incompressible flow and the Finite Element Method, vol
II, John Wiley and Sons, Ltd, ISBN 978-0-471-49250-4, 2000. a
Guermond, J.-L. and Pasquetti, R.: Entropy viscosity method for high-order
approximations of conservation laws, in: Spectral and high order methods for
partial differential equations, Springer, 411–418, 2011. a
Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J., and Munch, J.:
Corona structures driven by plume–lithosphere interactions and evidence
for ongoing plume activity on Venus, Nat. Geosci., 13, 547–554,
https://doi.org/10.1038/s41561-020-0606-1, 2020. a
Gupta, A., Karypis, G., and Kumar, V.: Highly Scalable Parallel Algorithms for
Sparse Matrix Factorization, IEEE T. Parall. Distr., 8, 502–520, 1997. a
Gurnis, M.: Large-scale mantle convection and the aggregation and dispersal of
supercontinents, Nature, 332, 695–699, 1988. a
Hager, B. H. and O'Connell, R. J.: A simple global model of plate dynamics and
mantle convection, J. Geophys. Res.-Sol. Ea., 86,
4843–4867, https://doi.org/10.1029/JB086iB06p04843,
1981. a
Hall, C. E. and Parmentier, E.: Influence of grain size evolution on convective
instability, Geochem. Geophy. Geosy., 4,
https://doi.org/10.1029/2002GC000308, 2003. a
Handin, J.: On the Coulomb-Mohr failure criterion, J. Geophys. Res., 74,
5343, https://doi.org/10.1029/JB074i022p05343, 1969. a
Hansen, L., Zimmerman, M., and Kohlstedt, D. L.: Grain boundary sliding in San
Carlos olivine: Flow law parameters and crystallographic-preferred
orientation, J. Geophys. Res.-Sol. Ea., 116, https://doi.org/10.1029/2011JB008220, 2011. a
Haynie, K. L. and Jadamec, M. A.: Tectonic drivers of the Wrangell block:
Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska,
Tectonics, 36, 1180–1206, 2017. a
Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High Accuracy
Mantle Convection Simulation through Modern Numerical Methods, II: Realistic
Models and Problems, Geophys. J. Int., 210, 833–851,
https://doi.org/10.1093/gji/ggx195, 2017. a, b, c
Helena, H. J.: Theory of elasticity and plasticity, PHI Learning Pvt. Ltd., ISBN 978-8120352834,
2017. a
Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J.,
Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T.,
Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M.,
Williams, A., and Stanley, K. S.: An overview of the Trilinos project, ACM
Trans. Math. Softw., 31, 397–423,
2005. a
Herrendörfer, R., Gerya, T. V., and van Dinther, Y.: An invariant rate- and
state-dependent friction formulation for visco-elasto-plastic earthquake
cycle simulations, J. Geophys. Res.-Sol. Ea., 123, 5018–5051, https://doi.org/10.1029/2017JB015225, 2018. a
Heyn, B. H., Conrad, C. P., and Trønnes, R. G.: Stabilizing Effect of
Compositional Viscosity Contrasts on Thermochemical Piles, Geophys. Res. Lett., 45, 7523–7532, 2018. a
Hier Majumder, C. A., Bélanger, E., DeRosier, S., Yuen, D. A., and Vincent, A. P.: Data assimilation for plume models, Nonlin. Processes Geophys., 12, 257–267, https://doi.org/10.5194/npg-12-257-2005, 2005. a
Hillebrand, B., Thieulot, C., Geenen, T., van den Berg, A. P., and Spakman, W.: Using the level set method in geodynamical modeling of multi-material flows and Earth's free surface, Solid Earth, 5, 1087–1098, https://doi.org/10.5194/se-5-1087-2014, 2014. a
Houseman, G. and England, P.: Finite strain calculations of continental
deformation: 1. Method and general results for convergent zones, J. Geophys. Res.-Sol. Ea., 91, 3651–3663, 1986.
Huismans, R., Buiter, S., and Beaumont, C.: Effect of plastic-viscous layering
and strain softening on mode selection during lithospheric extension,
J. Geophys. Res., 110, B02406, https://doi.org/10.1029/2004JB003114, 2005. a
Huismans, R. S. and Beaumont, C.: Symmetric and asymmetric lithospheric
extension: Relative effects of frictional-plastic and viscous strain
softening, J. Geophys. Res., 108, https://doi.org/10.1029/2002JB002026, 2003. a
Hunt, A. and Thomas, D.: The Pragmatic Programmer, Addison Wesley, ISBN 978-0201616224, 1999. a
Ida, Y.: The maximum acceleration of seismic ground motion, B. Seismol. Soc. Am., 63, 959–968, 1973. a
Ismail-Zadeh, A. and Tackley, P.: Computational Methods for Geodynamics,
Cambridge University Press, https://doi.org/10.1017/CBO9780511780820, 2010. a, b, c, d
Ismail-Zadeh, A., Schubert, G., Tsepelev, I., and Korotkii, A.: Inverse problem
of thermal convection: numerical approach and application to mantle plume
restoration, Phys. Earth Planet. Int., 145, 99–114,
2004. a
Ismail-Zadeh, A. T., Korotkii, A. I., Naimark, B. M., and Tsepelev, I. A.:
Three-Dimensional Numerical Simulation of the Inverse Problem of Thermal
Convection, Comput. Math. Math. Phys., 43,
587–599, 2003. a
Ita, J. and King, S.: Sensitivity of convection with an endothermic phase
change to the form of governing equations, initial conditions, boundary
conditions, and equation of state, J. Geophys. Res., 99, 15919–15938,
1994. a
Ivanova, D., Barrett, J., Wiedenhofer, D., Macura, B., Callaghan, M., and
Creutzig, F.: Quantifying the potential for climate change mitigation of
consumption options, Environ. Res. Lett., 15, 093001, https://doi.org/10.1088/1748-9326/ab8589, 2020. a
Jackson, M.: Checklist for a Software Management Plan,
https://doi.org/10.5281/zenodo.2159713, 2018. a
Jadamec, M. and Billen, M.: The role of rheology and slab shape on rapid
mantle flow: Three-dimensional numerical models of the Alaska slab edge,
J. Geophys. Res., 117, https://doi.org/10.1029/2011JB008563, 2012. a
Jaeger, J., Cook, N., and Zimmerman, R.: fundamentals of Rock mechanics, 4 Edn., John Wiley and Sons, ISBN 978-0-632-05759-7, 2007.
Jain, C., Korenaga, J., and Karato, S. I.: On the grain size sensitivity of
olivine rheology, J. Geophys. Res.-Sol. Ea., 123,
674–688, 2018. a
Jammes, S. and Huismans, R.: Structural styles of mountain building: Controls
of lithospheric rheologic stratification and extensional inheritance,
J. Geophys. Res., 117, https://doi.org/10.1029/2012JB009376, 2012. a
Jammes, S. and Lavier, L. L.: The effect of bimineralic composition on
extensional processes at lithospheric scale, Geochem. Geophy.
Geosy., 17, 3375–3392, https://doi.org/10.1002/2016GC006399, 2016. a
Jaupart, C. and Mareschal, J.-C.: Heat Generation and Transport in the Earth,
Cambridge, https://doi.org/10.1017/CBO9780511781773, 2011.
Jones, C. A.: Planetary magnetic fields and fluid dynamos, Annu. Rev. Fluid Mech., 43, 583–614, 2011. a
Jones, T., Davies, D., Campbell, I., Wilson, C., and Kramer, S.: Do mantle
plumes preserve the heterogeneous structure of their deep-mantle source?,
Earth Planet. Sc. Lett., 434, 10–17, 2016. a
Kachanov, L.: Fundamentals of the Theory of Plasticity, Dover Publications,
Inc., ISBN 13 978-0486435831, 2004. a
Kallet, R.: How to write the methods section of a research paper, Respir
Care., 49, 1229–1232, 2004. a
Karato, S.-I.: Deformation of Earth Materials, Cambridge University Press, https://doi.org/10.1017/CBO9780511804892,
2008. a
Karlsen, K.: Reproducible Computational Science, edited by: Shepard, G., EGU GD
Blog,
https://blogs.egu.eu/divisions/gd/2018/09/19/reproducible-computational-science/ (last access: 24 February 2022),
2018. a
Kaus, B.: Factors that control the angle of shear bands in geodynamic numerical
models of brittle deformation, Tectonophysics, 484, 36–47, 2010. a
Kaus, B., Mühlhaus, H., and May, D.: A stabilization algorithm for
geodynamic numerical simulations with a free surface,
Phys. Earth. Planet. Int., 181, 12–20, https://doi.org/10.1016/j.pepi.2010.04.007,
2010. a, b
Keller, T. and Suckale, J.: A continuum model of multi-phase reactive transport
in igneous systems, Geophys. J. Int., 219, 185–222, 2019. a
Keller, T., May, D., and Kaus, B.: Numerical modelling of magma dynamics
coupled to tectonic deformation of lithosphere and crust, Geophys. J. Int., 195, 1406–1442,
https://doi.org/10.1093/gji/ggt306, 2013. a, b
King, S., Raefsky, A., and Hager, B.: ConMan: Vectorizing a finite element
code for incompressible two-dimensional convection in the Earth's mantle,
Phys. Earth. Planet. Int., 59, 195–208,
https://doi.org/10.1016/0031-9201(90)90225-M, 1990. a
King, S. D.: Mantle convection, the asthenosphere, and Earth's thermal history,
Geol. Soc. Am. Spec. Pap., 514, SPE514-07, 2015. a
King, S. D.: Reconciling laboratory and observational models of mantle rheology
in geodynamic modelling, J. Geodyn., 100, 33–50, 2016. a
Király, Á., Conrad, C. P., and Hansen, L.: Evolving viscous anisotropy
in the upper mantle and its geodynamic implications,
Geochem. Geophy. Geosy., 21, e2020GC009159, https://doi.org/10.1029/2020GC009159,
2020a. a, b
Király, Á., Portner, D. E., Haynie, K. L., Chilson-Parks, B. H., Ghosh,
T., Jadamec, M., Makushkina, A., Manga, M., Moresi, L., and O'Farrell, K. A.:
The effect of slab gaps on subduction dynamics and mantle upwelling,
Tectonophysics, 785, 228458, https://doi.org/10.1016/j.tecto.2020.228458, 2020b. a
Kocher, T., Schmalholz, S., and Mancktelow, N.: Impact of mechanical anisotropy
and power-law rheology on single layer folding, Tectonophysics, 421, 71–87,
https://doi.org/10.1016/j.tecto.2006.04.014, 2006. a
Kovesi, P.: Good Colour Maps: How to Design Them, CoRR, abs/1509.03700, 2015. a
Kramer, S. C., Wilson, C. R., and Davies, D. R.: An implicit free surface
algorithm for geodynamical simulations, Phys. Earth Planet. Int., 194, 25–37, 2012. a
Kramer, S. C., Davies, D. R., and Wilson, C. R.: Analytical solutions for mantle flow in cylindrical and spherical shells, Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, 2021. a
Kreylos, O. and Kellogg, L. H.: Immersive Visualization of the Solid
Earth, in: AGU Fall Meeting Abstracts, Vol. 2017, T44D-03, 2017. a
Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle
convection simulation through modern numerical methods, Geophys. J. Int.,
191, 12–29, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012. a, b, c, d
Kronick, D.: A History of Scientific and Technical Periodicals: the Origins
and Development of the Scientific and Technical Press 1665–1790, Scarecrow
Press, New York, 2 Edn., ISBN 978-0810808447, 1976. a
Labrosse, S., Hernlund, J., and Coltice, N.: A crystallizing dense magma ocean
at the base of the Earth's mantle, Nature, 450, 866–869, 2007. a
Lamb, H.: Hydrodynamics; republished 1945, ISBN 0486602567, 1879. a
LaMEM: LaMEM – Lithosphere and Mantle Evolution Model - Bitbucket repository,
https://bitbucket.org/bkaus/lamem/src/master/, last access: 24 February 2022. a
Langer, U. and Neumüller, M.: Direct and Iterative Solvers,
Springer International Publishing, Cham, 205–251, https://doi.org/10.1007/978-3-319-59038-7_5,
2018. a
Lannelongue, L., Grealey, J., and Inouye, M.: Green Algorithms: Quantifying the
carbon emissions of computation, arXiv, https://doi.org/arXiv:2007.07610,
2020. a
Lapusta, N., Rice, J. R., Ben-Zion, Y., and Zheng, G.: Elastodynamic analysis
for slow tectonic loading with spontaneous rupture episodes on faults with
rate- and state-dependent friction, J. Geophys. Res.-Sol. Ea., 105, 23765–23789, 2000. a
Lavier, L. L., Buck, W. R., and Poliakov, A. N.: Factors controlling normal
fault offset in an ideal brittle layer, J. Geophys. Res.-Sol. Ea., 105, 23431–23442, 2000. a
Lee, R., Gresho, P., and Sani, R.: Smoothing techniques for certain primitive
variable solutions of the Navier-Stokes equations, Int. J. Num. Meth. Eng.,
14, 1785–1804, 1979. a
Lemiale, V., Mühlhaus, H.-B., Moresi, L., and Stafford, J.: Shear banding
analysis of plastic models formulated for incompressible viscous flows,
Phys. Earth. Planet. Int., 171, 177–186, 2008. a
Lenardic, A. and Kaula, W. M.: A numerical treatment of geodynamic viscous flow
problems involving the advection of material interfaces, J. Geophys. Res.-Sol. Ea., 98, 8243–8260, https://doi.org/10.1029/92JB02858,
1993. a
Li, D., Gurnis, M., and Stadler, G.: Towards adjoint-based inversion of
time-dependent mantle convection with nonlinear viscosity, Geophys. J. Int., 209, 86–105, https://doi.org/10.1093/gji/ggw493, 2017. a
Lin, S.-C. and van Keken, P.: Dynamics of thermochemical plumes: 1. Plume
formation and entrainment of a dense layer, Geochem. Geophy. Geosy., 7, https://doi.org/10.1029/2005GC001071,
2006a. a
Lin, S.-C. and van Keken, P.: Dynamics of thermochemical plumes: 2.
Complexity of plume structures and its implications for mapping mantle plumes
, Geochem. Geophy. Geosy., 7, https://doi.org/10.1029/2005GC001072, 2006b. a
Liu, L. and Gurnis, M.: Simultaneous inversion of mantle properties and initial
conditions using an adjoint of mantle convection, J. Geophys. Res., 113, https://doi.org/10.1029/2008JB005594, 2008. a
Liumbruno, G., Velati, C., Pasqualetti, P., and Franchini, M.: How to write a
scientific manuscript for publication, Blood Transf., 11, 217–226,
https://doi.org/10.2450/2012.0247-12, 2013. a
Louis-Napoléon, A., Gerbault, M., Bonometti, T., Thieulot, C., Martin, R.,
and Vanderhaeghe, O.: 3D numerical modeling of crustal polydiapirs with
Volume-Of-Fluid methods, Geophys. J. Int., 222, 474–506,
https://doi.org/10.1093/gji/ggaa141, 2020. a, b
Lourenço, D. L., Rozel, A. B., Ballmer, M. D., and Tackley, P. J.:
Plutonic-Squishy Lid: A New Global Tectonic Regime Generated by Intrusive
Magmatism on Earth-Like Planets, Geochem. Geophy. Geosy., 21,
e2019GC008756, https://doi.org/10.1029/2019GC008756, 2020. a, b
Lourenço, D. L., Rozel, A., and Tackley, P. J.: Melting-induced crustal
production helps plate tectonics on Earth-like planets, Earth Planet. Sc. Lett., 439, 18–28, 2016. a
Lowman, J. P., King, S. D., and Gable, C. W.: The influence of tectonic plates
on mantle convection patterns, temperature and heat flow, Geophys. J. Int., 146, 619–636, https://doi.org/10.1046/j.1365-246X.2001.00471.x, 2001. a
Lucazeau, F.: Analysis and Mapping of an Updated Terrestrial Heat Flow Data
Set, Geochem. Geophy. Geosy., 20, 4001–4024,
https://doi.org/10.1029/2019GC008389,
2019. a
Lynch, D. R.: Numerical Partial Differential Equations for Environmental
Scientists and Engineers: A Practical First Course, Springer Verlag,
https://doi.org/10.1007/b102052, 2005. a
Madden, E. H., Bader, M., Behrens, J., van Dinther, Y., Gabriel, A.-A.,
Rannabauer, L., Ulrich, T., Uphoff, C., Vater, S., and van Zelst, I.: Linked
3D modeling of megathrust earthquake-tsunami events: from subduction to
tsunami run up, Geophys. J. Int., 224, 487–516,
https://doi.org/10.1093/gji/ggaa484, 2020. a
Magni, V., Bouilhol, P., and van Hunen, J.: Deep water recycling through
time, Geochem. Geophy. Geosy., 15, 4203–4216, 2014. a
Mallard, C., Jacquet, B., and Coltice, N.: ADOPT: A tool for automatic
detection of tectonic plates at the surface of convection models,
Geochem. Geophy. Geosy., 18, 3197–3208, 2017. a
Mart, Y., Aharonov, E., Mulugeta, G., Ryan, W., Tentler, T., and Goren, L.:
Analogue modelling of the initiation of subduction, Geophys. J. Int., 160, 1081–1091, 2005. a
Martinec, Z.: The Density Contrast At the Mohorovičic̀ Discontinuity,
Geophys. J. Int., 117, 539–544,
https://doi.org/10.1111/j.1365-246X.1994.tb03950.x,
1994. a
Massmeyer, A., Giuseppe, E. D., Davaille, A., Rolf, T., and Tackley, P.:
Numerical simulation of thermal plumes in a Herschel-Bulkley fluid, J. Non-New. Rheol., 195, 32–45, 2013. a
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and
Müller, R. D.: Global plate boundary evolution and kinematics since
the late Paleozoic, Global Planet. Change, 146, 226–250,
https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016. a
Matuttis, H.-G. and Chen, J.: Understanding the discrete element method:
simulation of non-spherical particles for granular and multi-body systems,
John Wiley & Sons, ISBN 978-1-118-56720-3, 2014.
May, D., Schellart, W., and Moresi, L.: Overview of adaptive finite element
analysis in computational geodynamics, J. Geodynam., 70, 1–20,
2013. a
May, D. A., Brown, J., and Le Pourhiet, L.: pTatin3D: High-performance methods
for long-term lithospheric dynamics, in: Proceedings of the international
conference for high performance computing, networking, storage and analysis, IEEE Press, 274–284, doi10.1109/SC.2014.28, 2014. a
McKenzie, D. P.: Some remarks on heat flow and gravity anomalies, J.
Geophys. Res., 72, 6261–6273, 1967.
McKenzie, D. P.: Speculations on the Consequences and Causes of Plate
Motions, Geophys. J. Roy. Astro. Soc., 18, 1–32,
https://doi.org/10.1111/j.1365-246X.1969.tb00259.x, 1969. a
Montési, L. G. and Behn, M. D.: Mantle flow and melting underneath oblique
and ultraslow mid-ocean ridges, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL031067, 2007. a, b
Mora, P. and Yuen, D. A.: Simulation of plume dynamics by the Lattice Boltzmann
Method, Geophys. J. Int., 210, 1932–1937,
https://doi.org/10.1093/gji/ggx279, 2017. a
Moresi, L.-N. and Solomatov, V.: Numerical investigation of 2D convection
with extremely large viscosity variations, Phys. Fluids, 7, 2154–2162,
1995. a
Morishige, M. and Kuwatani, T.: Bayesian inversion of surface heat flow in
subduction zones: a framework to refine geodynamic models based on
observational constraints, Geophys. J. Int., 222, 103–109,
https://doi.org/10.1093/gji/ggaa149, 2020. a
Morra, G.: Pythonic Geodynamics, Lecture Notes in Earth System Sciences, ISBN 13 9783319857251, 2018. a
Morra, G., Chatelain, P., Tackley, P., and Koumoutsakos, P.: Earth curvature
effects on subduction morphology: Modeling subduction in a spherical setting,
Acta Geotech., 4, 95–105, 2009. a
Morra, G., Yuen, D. A., Boschi, L., Chatelain, P., Koumoutsakos, P., and
Tackley, P.: The fate of the slabs interacting with a density/viscosity hill
in the mid-mantle, Phys. Earth Planet. Int., 180,
271–282, https://doi.org/10.1016/j.pepi.2010.04.001, 2010. a
Morra, G., Yuen, D. A., Tufo, H. M., and Knepley, M. G.: Fresh Outlook in
Numerical Methods for Geodynamics, Encycl. Geol., p. 54, 2020. a
Mühlhaus, H.-B., Moresi, L., Hobbs, B., and Dufour, F.: Large amplitude
folding in finely layered viscoelastic rock structures, Pure Appl. Geophys.,
159, 2311–2333, 2002. a
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M.,
Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S.
H. J., Yang, T., Leonard, J., and Gurnis, M.: A Global Plate Model Including
Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic,
Tectonics, 38, 1884–1907, https://doi.org/10.1029/2018TC005462,
2019. a
Mulyukova, E. and Bercovici, D.: A theoretical model for the evolution of
microstructure in lithospheric shear zones, Geophys. J. Int., 216, 803–819,
https://doi.org/10.1093/gji/ggy467, 2019. a
Nakagawa, T., Tackley, P. J., Deschamps, F., and Connolly, J. A.: Incorporating
self-consistently calculated mineral physics into thermochemical mantle
convection simulations in a 3-D spherical shell and its influence on seismic
anomalies in Earth's mantle, Geochem. Geophy. Geosy., 10, https://doi.org/10.1029/2008GC002280, 2009. a
Nakagawa, T., Nakakuki, T., and Iwamori, H.: Water circulation and global
mantle dynamics: Insight from numerical modeling, Geochem. Geophy.
Geosy., 16, 1449–1464, 2015. a
Naliboff, J., Conrad, C., and Lithgow-Bertelloni, C.: Modification of the
lithospheric stress field by lateral variations in plate-mantle coupling,
Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL040484, 2009. a
Naliboff, J. B., Glerum, A., Brune, S., Péron-Pinvidic, G., and Wrona, T.:
Development of 3D rift heterogeneity through fault network evolution,
Geophys. Res. Lett., 47, e2019GL086611, https://doi.org/10.1029/2019GL086611,
2020. a
Neuharth, D., Brune, S., Glerum, A., Heine, C., and Welford, J. K.: Formation
of Continental Microplates Through Rift Linkage: Numerical Modeling and Its
Application to the Flemish Cap and Sao Paulo Plateau, Geochem. Geophy. Geosy., 22, e2020GC009615, https://doi.org/10.1029/2020GC009615, 2021. a
Noble, T. E. and Dixon, J. M.: Structural evolution of fold-thrust structures
in analog models deformed in a large geotechnical centrifuge, J. Struct. Geol., 33, 62–77, 2011. a
Nuñez, J. R., Anderton, C. R., and Renslow, R. S.: Optimizing colormaps
with consideration for color vision deficiency to enable accurate
interpretation of scientific data, PLOS ONE, 13, 1–14, 2018. a
Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei
Berücksichtigung der Strömungen infolge von
Temperaturdifferenzen, Ann. Phys.-Berlin, 243, 271–292, 1879. a
Ohuchi, T., Kawazoe, T., Higo, Y., Funakoshi, K.-I., Suzuki, A., Kikegawa, T.,
and Irifune, T.: Dislocation-accommodated grain boundary sliding as the major
deformation mechanism of olivine in the Earth's upper mantle, Sci. Adv., 1, e1500360, https://doi.org/10.1126/sciadv.1500360, 2015. a
Oliveira, B., Afonso, J., Zlotnik, S., and Diez, P.: Numerical modelling of
multiphase multicomponent reactive transport in the Earth's interior,
Geophys. J. Int., 212, 345–388, 2018. a
Oltmanns, J., Sauerwein, D., Dammel, F., Stephan, P., and Kuhn, C.: Potential
for waste heat utilization of hot-water-cooled data centers: A case study,
Energ. Sci. Eng., 8, 1793–1810,
https://doi.org/10.1002/ese3.633,
2020. a
O'Neill, C., Lenardic, A., Weller, M., Moresi, L., Quenette, S., and Zhang, S.:
A window for plate tectonics in terrestrial planet evolution?, Phys. Earth Planet. Int., 255, 80–92, 2016. a
Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, validation,
and confirmation of numerical models in the earth sciences, Science, 263,
641–646, 1994. a
Ortega-Gelabert, O., Zlotnik, S., Afonso, J. C., and Díez, P.: Fast Stokes
Flow Simulations for Geophysical-Geodynamic Inverse Problems and Sensitivity
Analyses Based On Reduced Order Modeling, J. Geophys. Res.-Sol. Ea., 125, e2019JB018314, https://doi.org/10.1029/2019JB018314, 2020. a
Osei Tutu, A., Sobolev, S. V., Steinberger, B., Popov, A. A., and Rogozhina,
I.: Evaluating the Influence of Plate Boundary Friction and Mantle Viscosity
on Plate Velocities, Geochem. Geophy. Geosy., 19, 642–666,
https://doi.org/10.1002/2017GC007112,
2018. a
Oxburgh, E. and Turcotte, D.: Mechanisms of continental drift, Reports on
Progress in Physics, 41, 1249, https://doi.org/10.1088/0034-4885/41/8/003, 1978. a
Patočka, V., Čížková, H., and Tackley, P.: Do
elasticity and a free surface affect lithospheric stresses caused by
upper-mantle convection?, Geophys. J. Int., 216, 1740–1760,
2019. a
Pelletier, J.: Quantitative modelling of Earth surface processes, Cambridge
University Press, https://doi.org/10.1017/CBO9780511813849, 2008. a
Peltzer, G. and Tapponnier, P.: Formation and evolution of strike-slip faults,
rifts, and basins during the india-asia collision: an experimental approach,
J. Geophys. Res., 93, 15085–15177, 1988. a
Perkel, J. M.: Challenge to scientists: does your ten-year-old code still run?,
Nature, 584, 656–658, https://doi.org/10.1038/d41586-020-02462-7, 2020. a
Perry-Houts, J. and Karlstrom, L.: Anisotropic viscosity and time-evolving
lithospheric instabilities due to aligned igneous intrusions, Geophys. J. Int., 216, 794–802, https://doi.org/10.1093/gji/ggy466, 2018. a, b
Petersen, R. I., Stegman, D. R., and Tackley, P. J.: The subduction dichotomy of strong plates and weak slabs, Solid Earth, 8, 339–350, https://doi.org/10.5194/se-8-339-2017, 2017. a
Petra, C. G., Schenk, O., Lubin, M., and Gärtner, K.: An augmented
incomplete factorization approach for computing the Schur complement in
stochastic optimization, SIAM J. Sci. Comput., 36,
139–162, 2014. a
Petrunin, A., Kaban, M., Rogozhina, I., and Trubitsyn, V.: Revising the
spectral method as applied to modeling mantle dynamics, Geochem. Geophy. Geosy., 14, 3691–3702, 2013. a
Plesser, H. E.: Reproducibility vs. Replicability: A Brief History of a
Confused Terminology, Front. Neuroinf.,
https://doi.org/10.3389/fninf.2017.00076,
2018. a
pTatin3D: pTatin3D Bitbucket repository,
https://bitbucket.org/ptatin/ptatin3d/src/master/, last access: 24 February 2022. a
Pusok, A., Kaus, B., and Popov, A.: On the Quality of Velocity Interpolation
Schemes for Marker-in-Cell Method and Staggered Grids, Pure Appl.
Geophys., https://doi.org/10.1007/s00024-016-1431-8, 2016. a
Pusok, A. E.: Writing the Methods Section, edited by: Lourenço, D. L., EGU GD
Blog,
https://blogs.egu.eu/divisions/gd/2019/09/20/writing-the-methods-section/ (last access: 24 February 2022),
2019. a
Pusok, A. E. and Kaus, B. J. P.: Development of topography in 3-D
continental-collision models, Geochem. Geophy. Geosy., 16,
1378–1400, https://doi.org/10.1002/2015GC005732,
2015. a
Pusok, A. E., May, D. A., and Katz, R. F.: Magma dynamics using FD-PDE: a new,
PETSc-based, finite-difference staggered-grid framework for solving partial
differential equations, EGU General Assembly 2020, Online, 4–8 May 2020,
https://doi.org/10.5194/egusphere-egu2020-18690, 2020. a
PyLith: PyLith GitHub repository,
https://github.com/geodynamics/pylith, last access: 24 February 2022. a
Quere, S. and Forte, A. M.: Influence of past and present-day plate motions on
spherical models of mantle convection: implications for mantle plumes and
hotspots, Geophys. J. Int., 165, 1041–1057, 2006. a
Quinquis, M. E. T. and Buiter, S. J. H.: Testing the effects of basic numerical implementations of water migration on models of subduction dynamics, Solid Earth, 5, 537–555, https://doi.org/10.5194/se-5-537-2014, 2014. a
Quinteros, J. and Sobolev, S. V.: Constraining kinetics of metastable olivine
in the Marianas slab from seismic observations and dynamic models,
Tectonophysics, 526, 48–55, 2012. a
Ramberg, H.: Model experimentation of the effect of gravity on tectonic
processes, Geophys. J. Int., 14, 307–329, 1967. a
Ranalli, G.: Rheology of the Earth, Springer, https://doi.org/10.1111/j.1365-246X.1967.tb06247.x. 1995.
Räss, L., Duretz, T., and Podladchikov, Y. Y.: Resolving hydromechanical
coupling in two and three dimensions: Spontaneous channelling of porous
fluids owing to decompaction weakening, Geophys. J. Int.,
218, 1591–1616, https://doi.org/10.1093/gji/ggz239, 2019. a, b
Räss, L., Licul, A., Herman, F., Podladchikov, Y. Y., and Suckale, J.: Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs), Geosci. Model Dev., 13, 955–976, https://doi.org/10.5194/gmd-13-955-2020, 2020. a
Rayleigh, L.: LIX. On convection currents in a horizontal layer of fluid,
when the higher temperature is on the under side, The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 32, 529–546, 1916. a
Reuber, G., Holbach, L., Popov, A., Hanke, M., and Kaus, B.: Inferring rheology
and geometry of subsurface structures by adjoint-based inversion of principal
stress directions, Geophys. J. Int., 223, 851–861,
https://doi.org/10.1093/gji/ggaa344, 2020a. a
Reuber, G. S., Kaus, B. J. P., Popov, A. A., and Baumann, T. S.: Unraveling the
Physics of the Yellowstone Magmatic System Using Geodynamic Simulations,
Front. Earth Sci., 6, 117, https://doi.org/10.3389/feart.2018.00117,
2018b. a
Reuber, G. S., Holbach, L., and Räss, L.: Adjoint-based inversion for
porosity in shallow reservoirs using pseudo-transient solvers for non-linear
hydro-mechanical processes, J. Comput. Phys., 423, 109797,
https://doi.org/10.1016/j.jcp.2020.109797,
2020b. a
Ribe, N.: Theoretical Mantle Dynamics, Cambridge University Press,
https://doi.org/10.1017/9781316795897, 2018. a
Roache, P. J.: Code Verification by the Method of Manufactured Solutions, J.
Fluids Eng., 124, 4–10, https://doi.org/10.1115/1.1436090, 2002. a
Robey, J. M. and Puckett, E. G.: Implementation of a volume-of-fluid method in
a finite element code with applications to thermochemical convection in a
density stratified fluid in the earth's mantle, Comput. Fluids, 190,
217–253, 2019. a
Roe, G. H., Stolar, D. B., and Willett, S. D.: Response of a steady-state
critical wedge orogen to changes in climate and tectonic forcing, Geol. Soc. Am. Spec. Pap., 398, 227, https://doi.org/10.1130/2005.2398(13), 2006. a
Rolf, T. and Tackley, P.: Focussing of stress by continents in 3D spherical
mantle convection with self‐consistent plate tectonics,
Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL048677, 2011. a
Rudge, J. F., Bercovici, D., and Spiegelman, M.: Disequilibrium melting of a
two phase multicomponent mantle, Geophys. J. Int., 184,
699–718, 2011. a
Rudi, J., Malossi, A. C. I., Isaac, T., Stadler, G., Gurnis, M., Staar, P. W.,
Ineichen, Y., Bekas, C., Curioni, A., and Ghattas, O.: An extreme-scale
implicit solver for complex PDEs: highly heterogeneous flow in earth's
mantle, in: Proceedings of the international conference for high performance
computing, networking, storage and analysis, Assoc. Comput. Mech., 5, 1–12, https://doi.org/10.1145/2807591.2807675, 2015. a
Rummel, L., Baumann, T. S., and Kaus, B. J.: An autonomous petrological
database for geodynamic simulations of magmatic systems, Geophys. J. Int., 223, 1820–1836, 2020. a
Rüpke, L., Phipps Morgan, J., Hort, M., and Connolly, J. A.: Serpentine
and the subduction zone water cycle, Earth Planet. Sc. Lett.,
223, 17–34, https://doi.org/10.1016/j.epsl.2004.04.018,
2004. a
Räss, L., Duretz, T., Podladchikov, Y. Y., and Schmalholz, S. M.: M2Di:
Concise and efficient MATLAB 2-D Stokes solvers using the Finite Difference
Method, Geochem. Geophy. Geosy., 18, 755–768,
https://doi.org/10.1002/2016GC006727, 2017. a
Samuel, H. and Bercovici, D.: Oscillating and stagnating plumes in the Earth's
lower mantle, Earth Planet. Sc. Lett., 248, 90–105, 2006. a
Samuel, H. and Evonuk, M.: Modeling advection in geophysical flows with
particle level sets, Geochem. Geophy. Geosy., 11,
https://doi.org/10.1029/2010GC003081, 2010. a
Schellart, W.: Influence of the subducting plate velocity on the geometry of
the slab and migration of the subduction hinge, Earth Planet. Sc. Lett.,
231, 197–219, 2005. a
Schellart, W. P. and Strak, V.: A review of analogue modelling of geodynamic
processes: Approaches, scaling, materials and quantification, with an
application to subduction experiments, J. Geodynam., 100, 7–32,
2016.
Schierjott, J. C., Thielmann, M., Rozel, A. B., Golabek, G. J., and Gerya,
T. V.: Can grain size reduction initiate transform faults?, Insights from a 3D
numerical study, Tectonics, 39, e2019TC005793, https://doi.org/10.1029/2019TC005793, 2020. a
Schmalholz, S. and Podladchikov, Y.: Buckling versus folding: importance of
viscoelasticity, Geophys. Res. Lett., 26, 2641–2644, 1999. a
Science Europe: Practical Guide to the International Alignment of Research
Data Management,
https://www.scienceeurope.org/media/jezkhnoo/se_rdm_practical_guide_final.pdf (last access: 24 February 2022),
2018. a
Shewchuk, J. R.: An introduction to the conjugate gradient method
without the agonizing pain, https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (last access: 24 February 2022), 1994. a
Sim, S. J., Spiegelman, M., Stegman, D. R., and Wilson, C.: The influence of
spreading rate and permeability on melt focusing beneath mid-ocean ridges,
Phys. Earth Planet. Int., 304, 106486,
https://doi.org/10.1016/j.pepi.2020.106486, 2020. a
Simpson, G.: Practical Finite Element Modelin in Earth Science Using Matlab,
Wiley-Blackwell, https://doi.org/10.1002/9781119248644, 2017. a, b
Smith, A. M., Katz, D. S., Niemeyer, K. E., and FORCE11 Software Citation
Working Group: Software citation principles, Peer J. Comput. Sci., 2, e86,
https://doi.org/10.7717/peerj-cs.86, 2016. a
Smith, B. R. and Sandwell, D. T.: A model of the earthquake cycle along the San
Andreas Fault System for the past 1000 years, J. Geophys. Res.-Sol. Ea., 111, https://doi.org/10.1029/2005JB003703,
2006. a
Software Sustainability Institute: Guides for researchers,
https://www.software.ac.uk/resources/guides/guides-researchers, last access: 24 February 2022. a
Solomatov, V.: Fluid dynamics of a terrestrial magma ocean, orem, 323–338,
2000. a
Solomatov, V. and Reese, C.: Grain size variations in the Earth's mantle and
the evolution of primordial chemical heterogeneities, J. Geophys. Res.-Sol. Ea., 113, https://doi.org/10.1029/2007JB005319, 2008. a, b
Spiegelman, M.: Flow in deformable porous media, Part 2 numerical analysis–the
relationship between shock waves and solitary waves, J. Fluid
Mech., 247, 39–63, 1993. a
Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L., Alisic, L., and Ghattas,
O.: The dynamics of plate tectonics and mantle flow: from local to global
scales, Science, 329, 1033–1038, https://doi.org/10.1126/science.1191223, 2010. a
Stall, S., Townsend, R., and Robinson, E.: The Paper and The Data: Authors,
Reviewers, and Editors Webinar on Updated Journal Practices for Data (and
Software), Zenodo, https://doi.org/10.5281/zenodo.3744660,
2020. a
Steer, P., Cattin, R., Lavé, J., and Godard, V.: Surface Lagrangian
Remeshing: A new tool for studying long term evolution of continental
lithosphere from 2D numerical modelling, Comput. Geosci., 37,
1067–1074, https://doi.org/10.1016/j.cageo.2010.05.023, 2011. a
Stein, C., Lowman, J., and Hansen, U.: A comparison of mantle convection
models featuring plates, Geochem. Geophy. Geosy., 15, 2689–2698, 2014. a
Steinbach, V., Hansen, U., and Ebel, A.: Compressible convection in the earth's
mantle: a comparison of different approaches, Geophys. Res. Lett.,
16, 633–636, https://doi.org/10.1029/GL016i007p00633, 1989. a
Steinberger, B. and Antretter, M.: Conduit diameter and buoyant rising speed
of mantle plumes: Implications for the motion of hot spots and shape of plume
conduits, Geochem. Geophy. Geosy., 7,
https://doi.org/10.1029/2006GC001409, 2006. a
Stephansson, O. and Berner, H.: The finite element method in tectonic
processes, Phys. Earth Planet. Int., 4, 301–321, 1971. a
Stixrude, L. and Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals – I.
Physical properties, Geophys. J. Int., 162, 610–632, 2005. a
Stixrude, L. and Lithgow-Bertelloni, C.: Influence of phase transformations on
lateral heterogeneity and dynamics in Earth's mantle, Earth Planet.
Sc. Lett., 263, 45–55, 2007. a
Tackley, P.: Effects of strongly variable viscosity on three-dimensional
compressible convection in planetary mantles, J. Geophys. Res., 101,
3311–3332, 1996. a
Tackley, P.: Self-consistent generation of tectonic plates in time-dependent,
three-dimensional mantle convection simulations 1. Pseudoplastic yielding,
Geochem. Geophy. Geosy., 1, https://doi.org/10.1029/2000GC000036, 2000. a
Tackley, P. and King, S.: Testing the tracer ratio method for modeling active
compositional fields in mantle convection simulations,
Geochem. Geophy. Geosy., 4, https://doi.org/10.1029/2001GC000214, 2003. a, b, c
Tackley, P. J., Xie, S., Nakagawa, T., and Hernlund, J. W.: Numerical and
laboratory studies of mantle convection: Philosophy, accomplishments, and
thermochemical structure and evolution, Geophys. Monogr. Ser., 160, 2190, https://doi.org/10.1029/160GM07, 2005. a
Tapponnier, P., Peltzer, G., Dain, A. L., Armijo, R., and Cobbold, P.:
Propagating extrusion tectonics in Asia: new insights from simple experiments
with plasticine, Geology, 10, 611–616, 1982. a
Tetzlaff, M. and Schmeling, H.: Time-dependent interaction between subduction
dynamics and phase transition kinetics, Geophys. J. Int.,
178, 826–844, 2009. a
The Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Herterich, P.,
Higman, R., Krystalli, A., Morley, A., O'Reilly, M., and Whitaker, K.: The
Turing Way: A Handbook for Reproducible Data Science,
https://doi.org/10.5281/zenodo.3233986, 2019. a
Thielmann, M., May, D., and Kaus, B.: Discretization errors in the Hybrid
Finite Element Particle-In-Cell Method, Pure Appl. Geophys., 171,
2164–2184, https://doi.org/10.1007/s00024-014-0808-9, 2014. a
Thielmann, M., Kaus, B., and Popov, A.: Lithospheric stresses in
Rayleigh–Benard convection: effects of a free surface and a viscoelastic
Maxwell rheology, Geophys. J. Int., 203, 2200–2219, 2015. a
Thieulot, C.: FANTOM: two- and three-dimensional numerical modelling of
creeping flows for the solution of geological problems,
Phys. Earth. Planet. Int., 188, 47–68, https://doi.org/10.1016/j.pepi.2011.06.011,
2011. a, b, c
Thieulot, C.: ELEFANT: a user-friendly multipurpose geodynamics code, Solid Earth Discuss., 6, 1949–2096, https://doi.org/10.5194/sed-6-1949-2014, 2014. a
Thieulot, C.: Don't be a hero – unless you have to, EGU Geodynamics blog,
https://blogs.egu.eu/divisions/gd/2017/07/19/dont-be-a-hero-unless-you-have-to/ (last access: 24 February 2022),
2017. a
Thieulot, C. and Bangerth, W.: On the choice of finite element for applications in geodynamics, Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, 2022. a
Thieulot, C., Fullsack, P., and Braun, J.: Adaptive octree-based finite element
analysis of two- and three-dimensional indentation problems,
J. Geophys. Res., 113, B12207, https://doi.org/10.1029/2008JB005591, 2008. a
Thieulot, C., Steer, P., and Huismans, R.: Three-dimensional numerical
simulations of crustal systems undergoing orogeny and subjected to surface
processes, Geochem. Geophy. Geosy., 15, 4936–4957, https://doi.org/10.1002/2014GC005490, 2014. a, b
Thorburn, W. M.: Occam's Razor, Mind, 287–288, 1915. a
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco,
S. F.: True Colors of Oceanography: Guidelines for Effective and Accurate
Colormap Selection, Oceanography, 29, 9–13,
https://doi.org/10.5670/oceanog.2016.66, 2016. a
Tong, X.: Earthquakes and slip transients through multi-dimensional and
multi-physics thermomechanical modeling, Ph.D. thesis, University of Texas at
Austin, https://doi.org/10.26153/tsw/3393, 2019. a
Tosi, N., Stein, C., Noack, L., Huettig, C., Maierova, P., Samuel, H., Davies,
D., Wilson, C., Kramer, S., Thieulot, C., Glerum, A., Fraters, M., Spakman,
W., Rozel, A., and Tackley, P.: A community benchmark for viscoplastic
thermal convection in a 2-D square box, Geochem. Geophy. Geosy., 16,
2175–2196, 2015. a, b
Townend, J. and Zoback, M. D.: How faulting keeps the crust strong, Geology,
28, 399–402, 2000.
Travis, B., Anderson, C., Baumgardner, J., Gable, C., Hager, B., O'Connell, R.,
Olson, P., Raefsky, A., and Schubert, G.: A benchmark comparison of
numerical methods for infinite Prandtl number thermal convection in
two-dimensional Cartesian geometry, Geophys. Astro. Fluid
Dynam., 55, 137–160, 1990. a
Ulvrová, M., Labrosse, S., Coltice, N., Råback, P., and Tackley, P.:
Numerical modelling of convection interacting with a melting and
solidification front: Application to the thermal evolution of the basal magma
ocean, Phys. Earth Planet. Int., 206, 51–66, 2012. a
van Der Meer, D. G., Spakman, W., van Hinsbergen, D. J., Amaru, M. L., and
Torsvik, T. H.: Towards absolute plate motions constrained by lower-mantle
slab remnants, Nat. Geosci., 3, 36–40, https://doi.org/10.1038/ngeo708, 2010. a, b
van Keken, P.: Evolution of starting mantle plumes: a comparison between
numerical and laboratory models, Earth Planet. Sc. Lett., 148, 1–11, 1997. a
van Keken, P., Currie, C., King, S., Behn, M., Cagnioncle, A., Hee, J., Katz,
R., Lin, S.-C., Parmentier, E., Spiegelman, M., and Wang, K.: A community
benchmark for subduction zone modelling, Phys. Earth. Planet. Int., 171,
187–197, 2008. a
von Tscharner, M. and Schmalholz, S. M.: A 3-D Lagrangian finite element
algorithm with remeshing for simulating large-strain hydrodynamic
instabilities in power law viscoelastic fluids, Geochem. Geophy. Geosy.,
16, 215–245, 2015. a
Wahlroos, M., Pärssinen, M., Rinne, S., Syri, S., and Manner, J.: Future
views on waste heat utilization – Case of data centers in Northern Europe,
Renewable and Sustainable Energy Reviews, 82, 1749–1764,
https://doi.org/10.1016/j.rser.2017.10.058,
2018. a
Watts, A., Zhong, S., and Hunter, J.: The behavior of the lithosphere on
seismic to geologic timescales, Annu. Rev. Earth Planet.
Sci., 41, 443–468, 2013. a
Wessel, P. and Luis, J. F.: The GMT/MATLAB Toolbox, Geochem. Geophy.
Geosystems, 18, 811–823, 2017. a
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
et al.: The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data, 3, 1–9, 2016. a
Wilson, C., Spiegelman, M., van Keken, P., and Hacker, B.: Fluid flow in
subduction zones: The role of solid rheology and compaction pressure,
Earth Planet. Sc. Lett., 401, 261–274, https://doi.org/10.1016/j.epsl.2014.05.052,
2014a. a
Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy,
R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M., Plumbley, M. D.,
Waugh, B., White, E. P., and Wilson, P.: Best Practices for Scientific
Computing, PLoS Biol., 12, https://doi.org/10.1371/journal.pbio.1001745,
2014b. a
Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T.:
Good enough practices in scientific computing, PLoS Comput. Biol.,
13, https://doi.org/10.1371/journal.pcbi.1005510,
2017. a
Wojciechowski, M.: A note on the differences between Drucker-Prager and
Mohr-Coulomb shear strength criteria, Studia Geotechnica et Mechanica, https://doi.org/10.2478/sgem-2018-0016, 2018. a
Yamato, P., Agard, P., Burov, E., Pourhiet, L. L., Jolivet, L., and Tiberi, C.:
Burial and exhumation in a subduction wedge: Mutual constraints from
thermomechanical modeling and natural P-T-t data (Schistes Lustres, western
Alps), J. Geophys. Res., 112, https://doi.org/10.1029/2006JB004441, 2007. a
Yamato, P., Burov, E., Agard, P., Le Pourhiet, L., and Jolivet, L.: HP-UHP
exhumation during slow continental subduction: Self-consistent
thermodynamically and thermomechanically coupled model with application to
the Western Alps, Earth Planet. Sc. Lett., 271, 63–74, 2008. a
Yamato, P., Tartèse, R., Duretz, T., and May, D.: Numerical modelling of
magma transport in dykes, Tectonophysics, 526, 97–109, 2012. a
Yang, J., Kaus, B. J., Li, Y., Leloup, P. H., Popov, A. A., Lu, G., Wang, K.,
and Zhao, L.: Lower Crustal Rheology Controls the Development of Large Offset
Strike-Slip Faults During the Himalayan-Tibetan Orogeny, Geophys. Res.
Lett., 47, e2020GL089435, https://doi.org/10.1029/2020GL089435, 2020. a
Zhong, S., McNamara, A., Tan, E., Moresi, L., and Gurnis, M.: A benchmark
study on mantle convection in a 3-D spherical shell using CitcomS,
Geochem. Geophy. Geosy., 9, https://doi.org/10.1029/2008GC002048, 2008. a
Zhong, S., Yuen, D., Moresi, L., and Knepley, M.: 7.05 – Numerical Methods for
Mantle Convection, in: Treatise on Geophysics (Second Edition), edited by:
Schubert, G., Elsevier, Oxford, 2 Edn., 197–222,
https://doi.org/10.1016/B978-0-444-53802-4.00130-5, 2015. a, b
Zienkiewicz, O., Huang, M., and Pastor, M.: Localization problems in plasticity
using Finite Elements with adaptive remeshing, Int. J. Numer. Anal., 19, 127–148, 1995. a
Download
- Article
(7495 KB) - Full-text XML
Short summary
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust, mantle, and core that are not directly observable. In this review, we present a comprehensive yet concise overview of the modelling process with an emphasis on best practices. We also highlight synergies with related fields, such as seismology and geology. Hence, this review is the perfect starting point for anyone wishing to (re)gain a solid understanding of geodynamic modelling as a whole.
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust,...