Articles | Volume 13, issue 4
https://doi.org/10.5194/se-13-793-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-793-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drone-based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland
Robert Jackisch
CORRESPONDING AUTHOR
Department of Exploration, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
now at: Geoinformation in Environmental Planning Lab, Technical University Berlin, 10623 Berlin, Germany
Björn H. Heincke
Geological Survey of Denmark and Greenland, Copenhagen, 1350, Denmark
Robert Zimmermann
Department of Exploration, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
now at: G.U.B. Ingenieur AG, 09599 Freiberg,
Germany
Erik V. Sørensen
Geological Survey of Denmark and Greenland, Copenhagen, 1350, Denmark
Markku Pirttijärvi
Radai Oy, Oulu, 90590, Finland
Moritz Kirsch
Department of Exploration, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
Heikki Salmirinne
Geological Survey of Finland, Rovaniemi, 96100, Finland
Stefanie Lode
Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Trondheim, 7031,
Norway
Urpo Kuronen
Bluejay Mining PLC, London, W1F0DU, England
Richard Gloaguen
Department of Exploration, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
Related authors
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340, https://doi.org/10.5194/essd-2025-340, 2025
Preprint under review for ESSD
Short summary
Short summary
BorFIT is a novel training dataset for LiDAR point cloud segmentation and tree species detection in boreal forests. Comprising 384 plots across Siberia, Canada, and Alaska, it features 16,530 manually segmented trees of 12 species. BorFIT supports AI applications for analyzing species distribution, stand structure, and boreal forest response to climate change.
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340, https://doi.org/10.5194/essd-2025-340, 2025
Preprint under review for ESSD
Short summary
Short summary
BorFIT is a novel training dataset for LiDAR point cloud segmentation and tree species detection in boreal forests. Comprising 384 plots across Siberia, Canada, and Alaska, it features 16,530 manually segmented trees of 12 species. BorFIT supports AI applications for analyzing species distribution, stand structure, and boreal forest response to climate change.
Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2345, https://doi.org/10.5194/egusphere-2025-2345, 2025
Short summary
Short summary
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, https://doi.org/10.5194/se-16-351-2025, 2025
Short summary
Short summary
We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
Jari Joutsenvaara, Marko Holma, Pasi Kuusiniemi, Jarmo Korteniemi, Helena Seivane, David Marti-Linares, Martin Schimmel, Giulio Casini, Grant George Buffett, Markku Pirttijärvi, Ari Saartenoja, Barbara Štimac Tumara, and Ivan Kapustin
Adv. Geosci., 65, 171–180, https://doi.org/10.5194/adgeo-65-171-2025, https://doi.org/10.5194/adgeo-65-171-2025, 2025
Short summary
Short summary
The AGEMERA project (Agile Exploration and Geo-Modelling for European Critical Raw Materials) enhances EU critical raw materials exploration by integrating non-invasive methods such as ambient noise passive seismic, drone-based surveys, and muography. These technologies map bedrock properties and resource distribution effectively, feeding data into a comprehensive web-based repository for strategic analysis.
Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
Short summary
Short summary
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Cited articles
Airo, M.-L. and Säävuori, H.: Petrophysical characteristics of Finnish bedrock, Geol. Surv. Finland, Espoo, Report of Investigation 205, ISBN 978-952-217-267-9, 35 pp., 2013.
Athavale, R. N. and Sharma, P. V.: Paleomagnetic Results on Early Tertiary
Lava Flows from West Greenland and their bearing on the Evolution History of
the Baffin Bay–Labrador Sea Region, Can. J. Earth Sci., 12,
1–18, https://doi.org/10.1139/e75-001, 1975.
Austin, J. and Crawford, B.: Remanent magnetization mapping: A tool for
greenfields magmatic Ni-Cu-PGE exploration undercover: Part 1, Ore Geol.
Rev., 107, 457–475, https://doi.org/10.1016/j.oregeorev.2019.03.008,
2019.
Barnes, S. J., Cruden, A. R., Arndt, N., and Saumur, B. M.: The mineral
system approach applied to magmatic Ni–Cu–PGE sulphide deposits, Ore
Geol. Rev., 76, 296–316,
https://doi.org/10.1016/j.oregeorev.2015.06.012, 2016.
Bedini, E.: Mineral mapping in the Kap Simpson complex, central East
Greenland, using HyMap and ASTER remote sensing data, Adv. Space
Res., 47, 60–73, https://doi.org/10.1016/j.asr.2010.08.021, 2011.
Bedini, E. and Rasmussen, T. M.: Use of airborne hyperspectral and gamma-ray
spectroscopy data for mineral exploration at the Sarfartoq carbonatite
complex, southern West Greenland, Geosci. J., 22, 641–651,
https://doi.org/10.1007/s12303-017-0078-5, 2018.
Bird, J. M. and Weathers, M. S.: Native iron occurrences of Disko Island,
Greenland, J. Geol., 85, 359–371, 1977.
Blakely, R. J.: Potential Theory in Gravity and Magnetic Applications,
Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511549816, 1995.
Blue Jay Mining PLC: Results of MMI and SGH Geochemical Surveys at the
Disko-Nuussuaq Project and Licence Expansion, press release,
https://www.rns-pdf.londonstockexchange.com/rns/8283B_1-2020-2-3.pdf, last access: 11 October 2021.
Bonow, J. M., Japsen, P., Lidmar-Bergström, K., Chalmers, J. A., and
Pedersen, A. K.: Cenozoic uplift of Nuussuaq and Disko, West
Greenland – elevated erosion surfaces as uplift markers of a passive margin,
Geomorphology, 80, 325–337, 2006.
Booysen, R., Jackisch, R., Lorenz, S., Zimmermann, R., Kirsch, M., Nex, P.
A. M., and Gloaguen, R.: Detection of REEs with lightweight UAV-based
hyperspectral imaging, Sci. Rep., 10, 17450,
https://doi.org/10.1038/s41598-020-74422-0, 2020.
Brethes, A., Guarnieri, P., and Rasmussen, T. M.: Integrating 3D
photogeology with aeromagnetic data as a tool for base-metal exploration in
East Greenland, GEUS Bull., 31, 71–74,
https://doi.org/10.34194/geusb.v31.4664, 2014.
Brethes, A., Guarnieri, P., Rasmussen, T. M., and Bauer, T. E.:
Interpretation of aeromagnetic data in the Jameson Land Basin, central East
Greenland: Structures and related mineralized systems, Tectonophysics,
724/725, 116–136, https://doi.org/10.1016/j.tecto.2018.01.008, 2018.
Calou, P. and Munschy, M.: Airborne Magnetic Surveying with a Drone and
Determination of the Total Magnetization of a Dipole, IEEE Trans.
Magn., 56, 6000409, https://doi.org/10.1109/TMAG.2020.2986988, 2020.
Cande, S. C. and Kent, D. V.: Revised calibration of the geomagnetic
polarity timescale for the Late Cretaceous and Cenozoic, J.
Geophys. Res.-Sol. Ea., 100, 6093–6095,
https://doi.org/10.1029/94JB03098, 1995.
Chalmers, J. A., Pulvertaft, T. C. R., Marcussen, C., and Pedersen, A. K.:
New insight into the structure of the Nuussuaq Basin, central West
Greenland, Mar. Petrol. Geol., 16, 197–211,
https://doi.org/10.1016/S0264-8172(98)00077-4, 1999.
Clark, D.: Magnetic petrophysics and magnetic petrology: Aids to geological
interpretation of magnetic surveys, AGSO J. Austr. Geol.
Geophys., 17, 83–104, 1997.
Clark, D. A. and Emerson, J. B.: Notes On Rock Magnetization Characteristics
In Applied Geophysical Studies, Explor. Geophys., 22, 547–555,
https://doi.org/10.1071/EG991547, 1991.
Crowley, J. K., Williams, D. E., Hammarstrom, J. M., Piatak, N., Chou,
I.-M., and Mars, J. C.: Spectral reflectance properties (0.4–2.5 µm)
of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals
associated with sulphide-bearing mine wastes, Geochemi. Explor.
Environ. Anal., 3, 219–228,
https://doi.org/10.1144/1467-7873/03-001, 2003.
Cunningham, M., Samson, C., Wood, A., and Cook, I.: Aeromagnetic Surveying
with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc
Deposit in Nash Creek, New Brunswick, Canada, Pure Appl. Geophys.,
175, 3145–3158, https://doi.org/10.1007/s00024-017-1736-2, 2018.
Dahl-Jensen, T., Larsen, L. M., Pedersen, S. A. S., Pedersen, J., Jepsen, H.
F., Pedersen, G., Nielsen, T., Pedersen, A. K., Von Platen-Hallermund, F.,
and Weng, W.: Landslide and Tsunami 21 November 2000 in Paatuut, West
Greenland, Nat. Hazards, 31, 277–287,
https://doi.org/10.1023/B:NHAZ.0000020264.70048.95, 2004.
Dam, G., Pedersen, G. K., Sønderholm, M., Midtgaard, H. H., Larsen, L.
M., Nøhr-Hansen, H., and Pedersen, A. K.: Lithostratigraphy of the
Cretaceous-Paleocene Nuussuaq group, Nuussuaq basin, West Greenland,
Geological Survey of Denmark and Greenland Bulletin, ISBN 978-87-7871-260-8, 1–171, 2009.
Data, E., Donohue, J., and Legault, J.: Geological report regarding the Quantec TITAN-24 distributed Array System Tensor-magnetotelluric survey over the Disko Project, Greenland, during 2004, on behalf of Vismand Exploration Inc., Geological Survey of Denmark and Greenland, GEUS internal report file 21888, 14 pp., 2005.
Dataforsyningen: Danish Agency for Data Supply and Efficiency: SDFE
pilotprojekt “Nykortlægning af Grønland”,
https://dataforsyningen.dk/data/2842 (last access: 21 May 2021), 2019.
Dentith, M. and Mudge, S. T.: Geophysics for the Mineral Exploration Geoscientist, Cambridge University Press, Cambridge, UK, 454 pp., https://doi.org/10.1017/CBO9781139024358, 2014.
Dering, G. M., Micklethwaite, S., Thiele, S. T., Vollgger, S. A., and
Cruden, A. R.: Review of drones, photogrammetry and emerging sensor
technology for the study of dykes: Best practises and future potential,
J. Volcanol. Geoth. Res., 373, 148–166,
https://doi.org/10.1016/j.jvolgeores.2019.01.018, 2019.
Deutsch, E. R. and Kristjansson, L. G.: Palaeomagnetism of Late
Cretaceous-Tertiary Volcanics from Disko Island, West Greenland, Geophys.
J. Roy. Astron. Soc., 39, 343–360,
https://doi.org/10.1111/j.1365-246X.1974.tb05459.x, 1974.
Dunlop, D. J. and Argyle, K. S.: Thermoremanence, anhysteretic remanence and
susceptibility of submicron magnetites: Nonlinear field dependence and
variation with grain size, J. Geophys. Res.-Sol. Ea.,
102, 20199–20210, https://doi.org/10.1029/97JB00957, 1997.
Ellis, R., de Wet, B., and Macleod, I.: Inversion of Magnetic Data from Remanent and Induced Sources, in: ASEG Extended Abstracts, 22nd ASEG International Geophysical Conference and Exhibition, Brisbane, Australia, 26–29 February 2016, 1–4, https://doi.org/10.1071/ASEG2012ab117, 2012.
Flores, H., Lorenz, S., Jackisch, R., Tusa, L., Contreras, I. C.,
Zimmermann, R., and Gloaguen, R.: UAS-Based Hyperspectral Environmental
Monitoring of Acid Mine Drainage Affected Waters, Minerals, 11, 182,
https://doi.org/10.3390/min11020182, 2021.
Gavazzi, B., Le Maire, P., Munschy, M., and Dechamp, A.: Fluxgate vector
magnetometers: A multisensor device for ground, UAV, and airborne magnetic
surveys, Leading Edge, 35, 795–797,
https://doi.org/10.1190/tle35090795.1, 2016.
Gavazzi, B., Le Maire, P., Mercier de Lépinay, J., Calou, P., and
Munschy, M.: Fluxgate three-component magnetometers for cost-effective
ground, UAV and airborne magnetic surveys for industrial and academic
geoscience applications and comparison with current industrial standards
through case studies, Geomech. Energ. Environ., 20,
100117, https://doi.org/10.1016/j.gete.2019.03.002, 2019.
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software
Library, Open Source Geospatial Foundation, Zenodo [code], https://doi.org/10.5281/zenodo.6352176, 2021.
Government of Greenland: License map, https://govmin.gl, last access: 5
October 2021.
Gunn, P. J. and Dentith, M.: Magnetic responses associated with mineral
deposits, AGSO J. Austral. Geol. Geophys., 17, 145–158,
1997.
Henderson, G., Schiener, E. J., Risum, J. B., Croxton, C. A., and Andersen, B. B.: The West Greenland Basin, in: Geology of the North Atlantic borderlands, Vol. 7, edited by: Escher, A. and Watt, W. S., Memoir Canadian Society of Petroleum Geologists, 1981.
Howarth, G. H., Day, J. M. D., Pernet-Fisher, J. F., Goodrich, C. A.,
Pearson, D. G., Luo, Y., Ryabov, V. V., and Taylor, L. A.: Precious metal
enrichment at low-redox in terrestrial native Fe-bearing basalts
investigated using laser-ablation ICP-MS, Geochim. Cosmochim. Ac.,
203, 343–363, https://doi.org/10.1016/j.gca.2017.01.003, 2017.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194, 2014.
Hunt, G. R. and Ashley, R. P.: Spectra of altered rocks in the visible and
near infrared, Econ. Geol., 74, 1613–1629,
https://doi.org/10.2113/gsecongeo.74.7.1613, 1979.
Isles, D. J. and Rankin, L. R.: Geological interpretation of aeromagnetic
data, 1st Edn., Society of Exploration Geophysicists and Australian Society
of Exploration, Australia, 365 pp., https://doi.org/10.1190/1.9781560803218,
2013.
Jackisch, R., Madriz, Y., Zimmermann, R., Pirttijärvi, M., Saartenoja,
A., Heincke, B. H., Salmirinne, H., Kujasalo, J.-P., Andreani, L., and
Gloaguen, R.: Drone-borne hyperspectral and magnetic data integration:
Otanmäki Fe-Ti-V deposit in Finland, Remote Sens., 11, 2084,
https://doi.org/10.3390/rs11182084, 2019.
Jackisch, R., Lorenz, S., Kirsch, M., Zimmermann, R., Tusa, L.,
Pirttijärvi, M., Saartenoja, A., Ugalde, H., Madriz, Y., Savolainen, M.,
and Gloaguen, R.: Integrated geological and geophysical mapping of a
carbonatite-hosting outcrop in Siilinjärvi, Finland, using unmanned
aerial systems, Remote Sens., 12, 2998, https://doi.org/10.3390/RS12182998,
2020.
Jakob, S., Zimmermann, R., and Gloaguen, R.: The Need for Accurate Geometric
and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral
Exploration: MEPHySTo-A Toolbox for Pre-Processing Drone-Borne Hyperspectral
Data, Remote Sens., 9, 1–17, https://doi.org/10.3390/rs9010088, 2017.
James, M. R. and Robson, S.: Mitigating systematic error in topographic
models derived from UAV and ground-based image networks, Earth Surf.
Process. Land., 39, 1413–1420, 2014.
James, M. R., Robson, S., D'Oleire-Oltmanns, S., and Niethammer, U.:
Optimising UAV topographic surveys processed with structure-from-motion:
Ground control quality, quantity and bundle adjustment, Geomorphology, 280,
51–66,
https://doi.org/10.1016/j.geomorph.2016.11.021, 2017.
James, M. R., Chandler, J. H., Eltner, A., Fraser, C., Miller, P. E., Mills,
J. P., Noble, T., Robson, S., and Lane, S. N.: Guidelines on the use of
structure-from-motion photogrammetry in geomorphic research, Earth Surf.
Process. Land., 2084, 2081–2084, https://doi.org/10.1002/esp.4637,
2019.
Japsen, P., Green, P. F., and Chalmers, J. A.: Separation of Palaeogene and
Neogene uplift on Nuussuaq, West Greenland, J. Geol.
Soc., 162, 299–314, 2005.
Keays, R. R. and Lightfoot, P. C.: Siderophile and chalcophile metal
variations in Tertiary picrites and basalts from West Greenland with
implications for the sulphide saturation history of continental flood basalt
magmas, Miner. Deposita, 42, 319–336,
https://doi.org/10.1007/s00126-006-0112-4, 2007.
Kirsch, M., Lorenz, S., Zimmermann, R., Tusa, L., Möckel, R., Hödl,
P., Booysen, R., Khodadadzadeh, M., and Gloaguen, R.: Integration of
Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing
Methods for Exploration Mapping and Mining Monitoring, Remote Sens., 10, 1366,
https://doi.org/10.3390/rs10091366, 2018.
Kriegler, F. J., Malila, W. A., Nalepka, R. F., and Richardson, W.: Preprocessing transformations and their effects on multispectral recognition, in: Proceedings of the Sixth International Symposium on Remote Sensing of Environment, Sixth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, 97–131, 1969.
Larsen, L. M. and Pedersen, A. K.: Petrology of the paleocene picrites and
flood basalts on Disko and Nuussuaq, West Greenland, J. Petrol.,
50, 1667–1711, https://doi.org/10.1093/petrology/egp048, 2009.
Larsen, L. M., Pedersen, A. K., Tegner, C., Duncan, R. A., Hald, N., and
Larsen, J. G.: Age of Tertiary volcanic rocks on the West Greenland
continental margin: volcanic evolution and event correlation to other parts
of the North Atlantic Igneous Province, Geol. Mag., 153, 487–511,
https://doi.org/10.1017/S0016756815000515, 2016.
Le Maire, P., Bertrand, L., Munschy, M., Diraison, M., and Géraud, Y.:
Aerial magnetic mapping with an unmanned aerial vehicle and a fluxgate
magnetometer: a new method for rapid mapping and upscaling from the field to
regional scale, Geophys. Prospect., 68, 2307–2319,
https://doi.org/10.1111/1365-2478.12991, 2020.
Li, Y., Sun, J., Li, S.-L., and Leão-Santos, M.: A paradigm shift in
magnetic data interpretation: Increased value through magnetization
inversions, Leading Edge, 40, 89–98,
https://doi.org/10.1190/tle40020089.1, 2021.
Lightfoot, P. C. and Hawkesworth, C. J.: Flood Basalts and Magmatic Ni, Cu, and PGE Sulphide Mineralization: Comparative Geochemistry of the Noril'sk (Siberian Traps) and West Greenland Sequences, in: Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, edited by: Mahoney, J. J. and Coffin, M. F., American Geophysical Union (AGU), 357–380, https://doi.org/10.1029/GM100p0357, 1997.
Lightfoot, P. C., Hawkesworth, C. J., Olshefsky, K., Green, T., Doherty, W.,
and Keays, R. R.: Geochemistry of Tertiary tholeiites and picrites from
Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications
for the mineral potential of co-magmatic intrusions, Contrib.
Mineral. Petr., 128, 139–163,
https://doi.org/10.1007/s004100050300, 1997.
Liu, S., Hu, X., Zhang, H., Geng, M., and Zuo, B.: 3D Magnetization Vector
Inversion of Magnetic Data: Improving and Comparing Methods, Pure
Appl. Geophys., 174, 4421–4444,
https://doi.org/10.1007/s00024-017-1654-3, 2017.
MacLeod, I. N. and Ellis, R. G.: Magnetic vector inversion, a simple approach to the challenge of varying direction of rock magnetization, in: ASEG Extended Abstracts, 23rd International Geophysical Conference and Exhibition, Melbourne, Australia, 11–14 August 2013, 1–6, 2013.
MacLeod, I. N. and Ellis, R. G.: Quantitative magnetization vector inversion, in: ASEG Extended Abstracts, 25th International Conference and Exhibition – Interpreting the Past, Discovering the Future, Adelaide, Australia, 21–24 August 2016, 1–5, 2016.
Malehmir, A., Dynesius, L., Paulusson, K., Paulusson, A., Johansson, H.,
Bastani, M., Wedmark, M., and Marsden, P.: The potential of rotary-wing
UAV-based magnetic surveys for mineral exploration: A case study from
central Sweden, Leading Edge, 36, 552–557,
https://doi.org/10.1190/tle36070552.1, 2017.
Miller, C. A., Schaefer, L. N., Kereszturi, G., and Fournier, D.:
Three-Dimensional Mapping of Mt. Ruapehu Volcano, New Zealand, From
Aeromagnetic Data Inversion and Hyperspectral Imaging, J.
Geophys. Res.-Sol. Ea., 125, 1–24,
https://doi.org/10.1029/2019JB018247, 2020.
Miller, H. G. and Singh, V.: Potential field tilt – a new concept for
location of potential field sources, J. Appl. Geophys., 32,
213–217, https://doi.org/10.1016/0926-9851(94)90022-1, 1994.
Nabighian, M. N.: The Analytic Signal Of Two-Dimensional Magnetic Bodies
With Polygonal Cross-Section: Its Properties And Use For Automated Anomaly
Interpretation, Geophysics, 37, 507–517, https://doi.org/10.1190/1.1440276,
1972.
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y.,
Peirce, J. W., Phillips, J. D., and Ruder, M. E.: The historical development
of the magnetic method in exploration, Geophysics, 70, 33–61,
https://doi.org/10.1190/1.2133784, 2005.
Nagata, T., Ishikawa, Y., Kinoshita, H., Kono, M., Syono, Y., and Fisher, R. M.: Magnetic properties and natural remanent magnetization of lunar materials, in: Geochimica et Cosmochimica Acta Supplement, Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, 2325, 1970.
Nakatsuka, T. and Okuma, S.: Reduction of Magnetic Anomaly Observations from
Helicopter Surveys at Varying Elevations, Explor. Geophys., 37,
121–128, https://doi.org/10.1071/EG06121, 2006.
Olshefsky, K.: Falconbridge Limited – Report of 1991 Exploration Activities, West Greenland Tertiary Basalt Province for Prospecting License #156 and Exploration Concession #165, Geological Survey of Denmark and Greenland, Copenhagen, Report file no. 21092, 165 pp., 1992.
Olshefsky, K. and Jerome, M.: Falconbridge Limited – Report of 1992 Exploration Activities, West Greenland Tertiary Basalt Province for Prospecting License #156 and exploration licenses 02/91, 03/91, 04/91, 25/92, Geological Survey of Denmark and Greenland, Copenhagen, Report file no. 21216, 300 pp., 1993.
Olshefsky, K. and Jerome, M.: Falconbridge Limited – West Greenland Tertiary Basalt Province; Report of 1993 Exploration Activities for Prospecting License #156 and exploration licenses 02/91, 03/91, Geological Survey of Denmark and Greenland, Copenhagen, Report file no. 21356, 333 pp., 1994.
Olshefsky, K., Jerome, M., and Graves, M.: Falconbridge Limited A/S – West Greenland Tertiary Basalt Province; Report of 1994 Exploration Activities for Prospecting License 06/94 and exploration licenses 02/91 & 03/91, Geological Survey of Denmark and Greenland, Copenhagen, Report file no. 21410, 326 pp., 1995.
Park, S. and Choi, Y.: Applications of unmanned aerial vehicles in mining
from exploration to reclamation: A review, Minerals, 10, 663,
https://doi.org/10.3390/min10080663, 2020.
Parshin, A. V., Morozov, V. A., Blinov, A. V., Kosterev, A. N., and Budyak, A. E.: Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey, Geo-spatial Inf. Sci., 21, 67–74, https://doi.org/10.1080/10095020.2017.1420508, 2018.
Pauly, H.: Igdlukúnguaq nickeliferous pyrrhotite; texture and composition. A contribution to the genesis of the ore type., Bianco Lunos Bogtrykkeri, Copenhagen, Denmark, 169 pp., 1958.
Pedersen, A.: Iron-bearing and related volcanic rocks in the area between
Gieseckes Dal and Hammers Dal, north-west Disko, Rapp. Gronlands Geol.
Unders, 81, 5–14, 1977.
Pedersen, A. K.: Lithostratigraphy of the Tertiary Vaigat Formation on Disko, central West Greenland, Geological Survey of Denmark and Greenland, Copenhagen, Report file no. 22461, 33 pp., 1985.
Pedersen, A. K., Larsen, L. M., and Pedersen, G. K.: Lithostratigraphy,
geology and geochemistry of the volcanic rocks of the Vaigat Formation on
Disko and Nuussuaq, Paleocene of West Greenland, Geol. Surv. Den. Greenl., 39, 244 pp.,
https://doi.org/10.34194/geusb.v39.4354, 2017.
Pedersen, A. K., Larsen, L. M., and Pedersen, G. K.: Lithostratigraphy,
geology and geochemistry of the volcanic rocks of the Maligât Formation
and associated intrusions on Disko and Nuussuaq, Paleocene of West
Greenland, Geol. Surv. Den. Greenl., 40, 239 pp.,
https://doi.org/10.34194/geusb.v40.4326, 2018.
Pedersen, M., Weng, W. L., Keulen, N., and Kokfelt, T. F.: A new seamless digital 1 : 500 000 scale geological map of Greenland, GEUS Bulletin, 28, 65–68, https://doi.org/10.34194/geusb.v28.4727, 2013.
Pernet-Fisher, J. F., Day, J. M. D., Howarth, G. H., Ryabov, V. V., and
Taylor, L. A.: Atmospheric outgassing and native-iron formation during
carbonaceous sediment–basalt melt interactions, Earth Planet. Sc.
Lett., 460, 201–212, https://doi.org/10.1016/j.epsl.2016.12.022, 2017.
Pirttijärvi, M.: Numerical modeling and inversion of geophysical
electromagnetic measurements using a thin plate model, PhD dissertation,
University of Oulu, Oulu, Finland, 44 pp., ISBN 951-42-7118-1, 2003.
Planet Team: Planet Application Program Interface: In Space for Life on
Earth [data set], San Francisco, CA, https://api.planet.com (last access: 21 November
2020), 2017.
Plouffe, A., Anderson, R. G., Gruenwald, W., Davis, W. J., Bednarski, J. M.,
and Paulen, R. C.: Integrating ice-flow history, geochronology, geology, and
geophysics to trace mineralized glacial erratics to their bedrock source: An
example from south-central British Columbia, Can. J. Earth
Sci., 48, 1113–1129, 2011.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington,
M., Jr., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W.,
Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen,
M.: ArcticDEM, Harvard Dataverse [data set], V1, https://doi.org/10.7910/DVN/OHHUKH,
2018.
Portniaguine, O. and Zhdanov, M. S.: 3-D magnetic inversion with data
compression and image focusing, Geophysics, 67, 1532–1541,
https://doi.org/10.1190/1.1512749, 2002.
Puranen, M. and Puranen, R.: Apparatus for the measurement of magnetic
susceptibility and its anisotropy, Report of
Investigation, Geol. S. Finl., 28, 46 pp., 1977.
Ren, H., Zhao, Y., Xiao, W., and Hu, Z.: A review of UAV monitoring in
mining areas: current status and future perspectives, Int. J. Coal Sci. Technol., 6, 320–333,
https://doi.org/10.1007/s40789-019-00264-5, 2019.
Riisager, P. and Abrahamsen, N.: Magnetostratigraphy of Palaeocene basalts
from the Vaigat Formation of West Greenland, Geophys. J.
Int., 137, 774–782,
https://doi.org/10.1046/j.1365-246X.1999.00830.x, 1999.
Riisager, P. and Abrahamsen, N.: Palaeointensity of West Greenland
Palaeocene basalts: asymmetric intensity around the C27n–C26r transition,
Phys. Earth Planet. In., 118, 53–64,
https://doi.org/10.1016/S0031-9201(99)00125-9, 2000.
Roest, W. R., Verhoef, J., and Pilkington, M.: Magnetic interpretation using
the 3-D analytic signal, Geophysics, 57, 116–125,
https://doi.org/10.1190/1.1443174, 1992.
Rosa, D., Stensgaard, B. M., and Sørensen, L. L.: Magmatic nickel potential in Greenland Reporting the mineral ressource assessement workshop 27-29 November 2012, Danmarks og Grønlands Geologiske Undersøgelse Rapport, GEUS, Copenhagen, Report file no. 2013/57, 135 pp., 2013.
Rowan, L. C. and Mars, J. C.: Lithologic mapping in the Mountain Pass,
California area using Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) data, Remote Sens. Environ., 84, 350–366,
https://doi.org/10.1016/S0034-4257(02)00127-X, 2003.
Rowan, L. C., Mars, J. C., and Simpson, C. J.: Lithologic mapping of the
Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), Remote Sens.
Environ., 99, 105–126, 2005.
Salehi, S., Rogge, D., Rivard, B., Heincke, B. H., and Fensholt, R.:
Modeling and assessment of wavelength displacements of characteristic
absorption features of common rock forming minerals encrusted by lichens,
Remote Sens. Environ., 199, 78–92,
https://doi.org/10.1016/j.rse.2017.06.044, 2017.
Sørensen, L. L., Stensgaard, B. M., Thrane, K., Rosa, D., and Kalvig, P.: Sediment-hosted zinc potential in Greenland Reporting the mineral resource assessment workshop 29 November–1 December 2011, Danmarks og Grønlands Geologiske Undersøgelse Rapport, GEUS, Copenhagen, Report file no. 2013/56, 184 pp., 2013.
Steenstrup, K. J. V.: Beretning om en Undersøgelsesrejse til Øen Disko i Sommeren 1898, 24, Bianco Lunos Bogtrykkeri, Copenhagen, Denmark, 249–306, 1901.
Svennevig, K.: Preliminary landslide mapping in Greenland, Geol. Surv. Den. Greenl., 43, 1–5,
https://doi.org/10.34194/GEUSB-201943-02-07, 2019.
Thorning, L. and Stemp, R. W.: Airborne geophysical surveys in central West
Greenland and central East Greenland in 1997, Geol. Surv. Den. Greenl., 180, 63–66, https://doi.org/10.34194/ggub.v180.5087, 1998.
Ulff-Møller, F.: Native iron bearing intrusions of the Hammersdal
complex, North-West Disko, Gronlands Geologiske Undersogelse Rapport, 81,
15–33, GEUS, https://doi.org/10.34194/rapggu.v81.7511, 1977.
Ulff-Møller, F.: Solidification History of the KitdlÎt Lens:
Immiscible Metal and Sulphide Liquids from a Basaltic Dyke on Disko, Central
West Greenland, J. Petrol., 26, 64–91,
https://doi.org/10.1093/petrology/26.1.64, 1985.
Ulff-Møller, F.: A new 10 tons iron boulder from Disko, West Greenland,
Meteoritics, 21, 464, GEUS, 1986.
Ulff-Møller, F.: Formation of native iron in sediment-contaminated magma:
I. A case study of the Hanekammen Complex on Disko Island, West Greenland,
Geochim. Cosmochim. Ac., 54, 57–70,
https://doi.org/10.1016/0016-7037(90)90195-Q, 1990.
Vallée, M. A., Smith, R. S., and Keating, P.: Metalliferous mining geophysics — State of the art after a decade in the new millennium, Geophysics, 76, W31–W50, https://doi.org/10.1190/1.3587224, 2011.
Varnes, D. J.: Landslide types and processes, in: Landslides and Engineering Practice, Vol. 29, edited by: Eckel, E. B., Highway Research Board, Washington, D.C., 20–47, 1958.
Walter, C., Braun, A., and Fotopoulos, G.: High-resolution unmanned aerial
vehicle aeromagnetic surveys for mineral exploration targets, Geophysical
Prospecting, 68, 334–349, https://doi.org/10.1111/1365-2478.12914, 2020.
Weiss, A. D.: Topographic position and landforms analysis, ESRI International User conference, San Diego, CA, USA, 9–13 July 2001, 2001.
Zhdanov, M. S.: Geophysical inverse theory and regularization problems, 1st
Edn., Elsevier Science, Amsterdam, Oxford, 633 pp., Elsevier, ISBN 978-0-444-51089-1, 2002.
Zheng, Y., Li, S., Xing, K., and Zhang, X.: Unmanned Aerial Vehicles for
Magnetic Surveys: A Review on Platform Selection and Interference
Suppression, Drones, 5, 93, https://doi.org/10.3390/drones5030093, 2021.
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a...
Special issue