Articles | Volume 14, issue 7
https://doi.org/10.5194/se-14-805-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-805-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers
Sebastian Hellmann
CORRESPONDING AUTHOR
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Institute of Geophysics, ETH Zurich, Zurich, Switzerland
Melchior Grab
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Institute of Geophysics, ETH Zurich, Zurich, Switzerland
Terra Vermessungen AG, Othmarsingen, Switzerland
Cedric Patzer
Geological Survey of Finland (GTK), Espoo, Finland
Andreas Bauder
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Hansruedi Maurer
Institute of Geophysics, ETH Zurich, Zurich, Switzerland
Related authors
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1919, https://doi.org/10.5194/egusphere-2024-1919, 2024
Short summary
Short summary
Several crosshole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the BedrettoLab in the Swiss alps. The P- and S1-waves show a clear trend of faster velocities in NE-SW direction and slower velocities perpendicular to it. This pattern describes a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress but also the orientation of fractures are expected to influence the wave velocities.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Melchior Grab, Beatriz Quintal, Eva Caspari, Hansruedi Maurer, and Stewart Greenhalgh
Solid Earth, 8, 255–279, https://doi.org/10.5194/se-8-255-2017, https://doi.org/10.5194/se-8-255-2017, 2017
Short summary
Short summary
Hot fluids and hydraulically conductive rock formations are essential for the accessibility of geothermal resources. We use numerical modeling techniques to investigate how seismic waves change their shape in presence of these factors. We demonstrate how to parameterize such models depending on the local geology and as a function of depth. Finally, we show how the attenuation, i.e. the energy loss of the wave, can be indicative for permeable rock fractures saturated with a fluid of specific type.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
J. Kropáček, N. Neckel, and A. Bauder
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-3261-2013, https://doi.org/10.5194/tcd-7-3261-2013, 2013
Preprint withdrawn
Related subject area
Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North Iceland
Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence
Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms
Towards real-time seismic monitoring of a geothermal plant using Distributed Acoustic Sensing
Upper-lithospheric structure of northeastern Venezuela from joint inversion of surface-wave dispersion and receiver functions
A study on the effect of input data length on a deep-learning-based magnitude classifier
Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde
Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland
The damaging character of shallow 20th century earthquakes in the Hainaut coal area (Belgium)
The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania
Accelerating Bayesian microseismic event location with deep learning
Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination
Regional centroid moment tensor inversion of small to moderate earthquakes in the Alps using the dense AlpArray seismic network: challenges and seismotectonic insights
Unprecedented quiescence in resource development area allows detection of long-lived latent seismicity
Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown
Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico
Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network
Seismic evidence of the COVID-19 lockdown measures: a case study from eastern Sicily (Italy)
Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA
Effects of finite source rupture on landslide triggering: the 2016 Mw 7.1 Kumamoto earthquake
Fabian Kutschera, Alice-Agnes Gabriel, Sara Aniko Wirp, Bo Li, Thomas Ulrich, Claudia Abril, and Benedikt Halldórsson
Solid Earth, 15, 251–280, https://doi.org/10.5194/se-15-251-2024, https://doi.org/10.5194/se-15-251-2024, 2024
Short summary
Short summary
We present a suite of realistic 3D dynamic rupture earthquake–tsunami scenarios for the Húsavík–Flatey Fault Zone in North Iceland and compare one-way linked and fully coupled modeling workflows on two fault system geometries. We find that our dynamic rupture simulation on a less segmented strike-slip fault system causes local tsunami wave heights (crest to trough) of up to ~ 0.9 m due to the large shallow fault slip (~ 8 m), rake rotation (± 20°), and coseismic vertical displacements (± 1 m).
Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, and Nishtha Srivastava
Solid Earth, 15, 197–213, https://doi.org/10.5194/se-15-197-2024, https://doi.org/10.5194/se-15-197-2024, 2024
Short summary
Short summary
Seismic phase picking and magnitude estimation are crucial components of real-time earthquake monitoring and early warning. Here, we test the potential of deep learning in real-time earthquake monitoring. We introduce DynaPicker, which leverages dynamic convolutional neural networks for event detection and arrival-time picking, and use the deep-learning model CREIME for magnitude estimation. This workflow is tested on the continuous recording of the Turkey earthquake aftershock sequences.
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023, https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Short summary
Investigation of the global Earth's structure benefits from the analysis of ocean bottom seismometer (OBS) data that allow an improved seismic illumination of dark spots of crustal and mantle structures in the oceanic regions of the Earth. However, recordings from the ocean bottom are often highly contaminated by noise. We developed an OBS noise reduction algorithm, which removes much of the oceanic noise while preserving the earthquake signal and does not introduce waveform distortion.
Jerome Azzola, Katja Thiemann, and Emmanuel Gaucher
EGUsphere, https://doi.org/10.5194/egusphere-2022-1417, https://doi.org/10.5194/egusphere-2022-1417, 2022
Preprint archived
Short summary
Short summary
Distributed Acoustic Sensing is applied to the micro-seismic monitoring of a geothermal plant. In this domain, the feasibility of managing the large flow of generated data and their suitability to monitor locally induced seismicity was yet to be assessed. The proposed monitoring system efficiently managed the acquisition, processing and saving of the data over a 6-month period. This testing period proved that the monitoring concept advantageously complements more classical monitoring networks.
Roberto Cabieces, Mariano S. Arnaiz-Rodríguez, Antonio Villaseñor, Elizabeth Berg, Andrés Olivar-Castaño, Sergi Ventosa, and Ana M. G. Ferreira
Solid Earth, 13, 1781–1801, https://doi.org/10.5194/se-13-1781-2022, https://doi.org/10.5194/se-13-1781-2022, 2022
Short summary
Short summary
This paper presents a new 3D shear-wave velocity model of the lithosphere of northeastern Venezuela, including new Moho and Vp / Vs maps. Data were retrieved from land and broadband ocean bottom seismometers from the BOLIVAR experiment.
Megha Chakraborty, Wei Li, Johannes Faber, Georg Rümpker, Horst Stoecker, and Nishtha Srivastava
Solid Earth, 13, 1721–1729, https://doi.org/10.5194/se-13-1721-2022, https://doi.org/10.5194/se-13-1721-2022, 2022
Short summary
Short summary
Earthquake magnitude is a crucial parameter in defining its damage potential, and hence its speedy determination is essential to issue an early warning in regions close to the epicentre. This study summarises our findings in an attempt to apply deep-learning-based classifiers to earthquake waveforms, particularly with respect to finding an optimum length of input data. We conclude that the input length has no significant effect on the model accuracy, which varies between 90 %–94 %.
Carola Leva, Georg Rümpker, and Ingo Wölbern
Solid Earth, 13, 1243–1258, https://doi.org/10.5194/se-13-1243-2022, https://doi.org/10.5194/se-13-1243-2022, 2022
Short summary
Short summary
The seismicity of Fogo and Brava, Cape Verde, is dominated by volcano-tectonic earthquakes in the area of Brava and volcanic seismic signals, such as hybrid events, on Fogo. We locate these events using a multi-array analysis, which allows the localization of seismic events occurring outside the network and of volcanic signals lacking clear phases. We observe exceptionally high apparent velocities for the hybrid events located on Fogo. These velocities are likely caused by a complex ray path.
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022, https://doi.org/10.5194/se-13-705-2022, 2022
Short summary
Short summary
In passive seismic measurement, all noise sources from the environment, such as traffic, vibrations caused by distant excavation, and explosive work from underground mines, are utilized. In the Kylylahti experiment, receivers recorded ambient noise sources for 30 d. These recordings were subjected to data analysis and processing using novel methodology developed in our study and used for imaging the subsurface geology of the Kylylahti mine area.
Thierry Camelbeeck, Koen Van Noten, Thomas Lecocq, and Marc Hendrickx
Solid Earth, 13, 469–495, https://doi.org/10.5194/se-13-469-2022, https://doi.org/10.5194/se-13-469-2022, 2022
Short summary
Short summary
Over the 20th century, shallow damaging seismicity occurred in and near the Hainaut coal mining area in Belgium. We provide an overview of earthquake parameters and impacts, combining felt and damage testimonies and instrumental measurements. Shallower earthquakes have a depth and timing compatible with mining activity. The most damaging events occurred deeper than the mines but could still have been triggered by mining-caused crustal changes. Our modelling can be applied to other regions.
Bogdan Grecu, Felix Borleanu, Alexandru Tiganescu, Natalia Poiata, Raluca Dinescu, and Dragos Tataru
Solid Earth, 12, 2351–2368, https://doi.org/10.5194/se-12-2351-2021, https://doi.org/10.5194/se-12-2351-2021, 2021
Short summary
Short summary
The lockdown imposed in Romania to prevent the spread of COVID-19 has significantly impacted human activity across the country. By analyzing the ground vibrations recorded at seismic stations, we were able to monitor the changes in human activity before and during the lockdown.
The reduced human activity during the lockdown has also provided a good opportunity for stations sited in noisy urban areas to record earthquake signals that would not have been recorded under normal conditions.
Alessio Spurio Mancini, Davide Piras, Ana Margarida Godinho Ferreira, Michael Paul Hobson, and Benjamin Joachimi
Solid Earth, 12, 1683–1705, https://doi.org/10.5194/se-12-1683-2021, https://doi.org/10.5194/se-12-1683-2021, 2021
Short summary
Short summary
The localization of an earthquake is affected by many uncertainties. To correctly propagate these uncertainties into an estimate of the earthquake coordinates and their associated errors, many simulations of seismic waves are needed. This operation is computationally very intensive, hindering the feasibility of this approach. In this paper, we present a series of deep-learning methods to produce accurate seismic traces in a fraction of the time needed with standard methods.
Itzhak Lior, Anthony Sladen, Diego Mercerat, Jean-Paul Ampuero, Diane Rivet, and Serge Sambolian
Solid Earth, 12, 1421–1442, https://doi.org/10.5194/se-12-1421-2021, https://doi.org/10.5194/se-12-1421-2021, 2021
Short summary
Short summary
The increasing use of distributed acoustic sensing (DAS) inhibits the transformation of optical fibers into dense arrays of seismo-acoustic sensors. Here, DAS strain records are converted to ground motions using the waves' apparent velocity. An algorithm for velocity determination is presented, accounting for velocity variations between different seismic waves. The conversion allows for robust determination of fundamental source parameters, earthquake magnitude and stress drop.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Rebecca O. Salvage and David W. Eaton
Solid Earth, 12, 765–783, https://doi.org/10.5194/se-12-765-2021, https://doi.org/10.5194/se-12-765-2021, 2021
Short summary
Short summary
Small earthquakes in Alberta and north-east British Columbia have been previously ascribed to industrial activities. The COVID-19 pandemic forced almost all these activities to stop for ~ 4 months. However, unexpectedly, earthquakes still occurred during this time. Some of these earthquakes may be natural and some the result of earthquakes > M6 occurring around the world. However, ~ 65 % of the earthquakes detected may be the remnants of previous fluid injection in the area (
latent seismicity).
Jordi Diaz, Mario Ruiz, and José-Antonio Jara
Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, https://doi.org/10.5194/se-12-725-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic lockdown, the city of Barcelona was covered by a network of 19 seismometers. The results confirm that the quieting of human activity during lockdown has resulted in a reduction of seismic vibrations. The different lockdown phases in Barcelona are recognized consistently at most of the seismic stations. Our contribution demonstrates that seismic noise can be used as a free and reliable tool to monitor human activity in urban environments.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Alexandr Smirnov, Marine De Carlo, Alexis Le Pichon, Nikolai M. Shapiro, and Sergey Kulichkov
Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, https://doi.org/10.5194/se-12-503-2021, 2021
Short summary
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Andrea Cannata, Flavio Cannavò, Giuseppe Di Grazia, Marco Aliotta, Carmelo Cassisi, Raphael S. M. De Plaen, Stefano Gresta, Thomas Lecocq, Placido Montalto, and Mariangela Sciotto
Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, https://doi.org/10.5194/se-12-299-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic, most countries put in place social interventions, aimed at restricting human mobility, which caused a decrease in the seismic noise, generated by human activities and called anthropogenic seismic noise. In densely populated eastern Sicily, we observed a decrease in the seismic noise amplitude reaching 50 %. We found similarities between the temporal patterns of seismic noise and human mobility, as quantified by mobile-phone-derived data and ship traffic data.
Tieyuan Zhu, Junzhu Shen, and Eileen R. Martin
Solid Earth, 12, 219–235, https://doi.org/10.5194/se-12-219-2021, https://doi.org/10.5194/se-12-219-2021, 2021
Short summary
Short summary
We describe the Fiber Optic foR Environmental SEnsEing (FORESEE) project in Pennsylvania, USA, the first continuous-monitoring distributed acoustic sensing (DAS) fiber array in the eastern USA. With the success of collecting 1 year of continuous DAS recordings using nearly 5 km of telecommunication fiber underneath the university campus, we conclude that DAS along with telecommunication fiber will potentially serve the purpose of continuous near-surface seismic monitoring in populated areas.
Sebastian von Specht, Ugur Ozturk, Georg Veh, Fabrice Cotton, and Oliver Korup
Solid Earth, 10, 463–486, https://doi.org/10.5194/se-10-463-2019, https://doi.org/10.5194/se-10-463-2019, 2019
Short summary
Short summary
We show the landslide response to the 2016 Kumamoto earthquake (Mw 7.1) in central Kyushu (Japan). Landslides are concentrated to the northeast of the rupture, coinciding with the propagation direction of the earthquake. This azimuthal variation in the landslide concentration is linked to the seismic rupture process itself and not to classical landslide susceptibility factors. We propose a new ground-motion model that links the seismic radiation pattern with the landslide distribution.
Cited articles
Alley, R. B.: Fabrics in Polar Ice Sheets: Development and Prediction, Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. a
Axtell, C., Murray, T., Kulessa, B., Clark, R. A., and Gusmeroli, A.:
Improved Accuracy of Cross-Borehole Radar Velocity Models for Ice Property Analysis, GEOPHYSICS, 81, WA203–WA312, https://doi.org/10.1190/geo2015-0131.1, 2016. a, b, c
Azuma, N. and Higashi, A.:
Formation Processes of Ice Fabric Pattern in Ice Sheets, Ann. Glaciol., 6, 130–134, https://doi.org/10.3189/1985AoG6-1-130-134, 1985. a
Bentley, C. R.:
Seismic-Wave Velocities in Anisotropic Ice: A Comparison of Measured and Calculated Values in and around the Deep Drill Hole at Byrd Station, Antarctica, J. Geophys. Res. (1896-1977), 77, 4406–4420, https://doi.org/10.1029/JB077i023p04406, 1972. a
Bergman, B., Tryggvason, A., and Juhlin, C.:
High-resolution Seismic Traveltime Tomography Incorporating Static Corrections Applied to a Till-covered Bedrock Environment, GEOPHYSICS, 69, 1082–1090, https://doi.org/10.1190/1.1778250, 2004. a, b
Blankenship, D. D. and Bentley, C. R.:
The Crystalline Fabric of Polar Ice Sheets Inferred from Seismic Anisotropy, IAHS Publ., 170, 17–28, 1987. a
Bois, P., La Porte, M., Lavergne, M., and Thomas, G.:
Well-to-Well Seismic Measurements, GEOPHYSICS, 37, 471–480, 1972. a
Chen, H., Pan, X., Ji, Y., and Zhang, G.:
Bayesian Markov Chain Monte Carlo Inversion for Weak Anisotropy Parameters and Fracture Weaknesses Using Azimuthal Elastic Impedance, Geophys. J. Int., 210, 801–818, https://doi.org/10.1093/gji/ggx196, 2017.
a
Cheng, F., Liu, J., Wang, J., Zong, Y., and Yu, M.:
Multi-Hole Seismic Modeling in 3-D Space and Cross-Hole Seismic Tomography Analysis for Boulder Detection, J. Appl. Geophys., 134, 246–252, https://doi.org/10.1016/j.jappgeo.2016.09.014, 2016. a, b
Church, G., Bauder, A., Grab, M., Rabenstein, L., Singh, S., and Maurer, H.:
Detecting and Characterising an Englacial Conduit Network within a Temperate Swiss Glacier Using Active Seismic, Ground Penetrating Radar and Borehole Analysis, Ann. Glaciol., 60, 193–205, https://doi.org/10.1017/aog.2019.19, 2019. a
Church, G., Grab, M., Schmelzbach, C., Bauder, A., and Maurer, H.:
Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements, The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, 2020. a
Church, G., Bauder, A., Grab, M., and Maurer, H.:
Ground-penetrating radar imaging reveals glacier's drainage network in 3D, The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, 2021. a
Daley, T. M., Majer, E. L., and Peterson, J. E.:
Crosswell Seismic Imaging in a Contaminated Basalt Aquifer, GEOPHYSICS, 69, 16–24, https://doi.org/10.1190/1.1649371, 2004. a
Daley, T. M., Myer, L. R., Peterson, J. E., Majer, E. L., and Hoversten, G. M.:
Time-Lapse Crosswell Seismic and VSP Monitoring of Injected CO2 in a Brine Aquifer, Environ. Geol., 54, 1657–1665, https://doi.org/10.1007/s00254-007-0943-z, 2008. a
Deichmann, N., Ansorge, J., Scherbaum, F., Aschwanden, A., Bernard, F., and Gudmundsson, G. H.:
Evidence for Deep Icequakes in an Alpine Glacier, Ann. Glaciol., 31, 85–90, https://doi.org/10.3189/172756400781820462, 2000. a
Dietrich, P. and Tronicke, J.:
Integrated Analysis and Interpretation of Cross-Hole P- and S-wave Tomograms: A Case Study, Near Surf. Geophys., 7, 101–109, https://doi.org/10.3997/1873-0604.2008041, 2009. a
Diez, A. and Eisen, O.:
Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties, The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015, 2015. a
Diez, A., Eisen, O., Hofstede, C., Lambrecht, A., Mayer, C., Miller, H., Steinhage, D., Binder, T., and Weikusat, I.:
Seismic wave propagation in anisotropic ice – Part 2: Effects of crystal anisotropy in geophysical data, The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015, 2015. a
Doetsch, J., Krietsch, H., Schmelzbach, C., Jalali, M., Gischig, V., Villiger, L., Amann, F., and Maurer, H.:
Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods, Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, 2020. a
Duan, C., Yan, C., Xu, B., and Zhou, Y.:
Crosshole Seismic CT Data Field Experiments and Interpretation for Karst Caves in Deep Foundations, Eng. Geol., 228, 180–196, https://doi.org/10.1016/j.enggeo.2017.08.009, 2017. a
Duval, P., Ashby, M. F., and Anderman, I.:
Rate-Controlling Processes in the Creep of Polycrystalline Ice, J. Phys. Chem., 87, 4066–4074, 1983. a
Dyer, B. and Worthington, M. H.:
SOME SOURCES OF DISTORTION IN TOMOGRAPHIC VELOCITY IMAGES1, Geophys. Prospect., 36, 209–222, https://doi.org/10.1111/j.1365-2478.1988.tb02160.x, 1988. a
Faria, E. L. and Stoffa, P. L.:
Traveltime Computation in Transversely Isotropic Media, GEOPHYSICS, 59, 272–281, https://doi.org/10.1190/1.1443589, 1994. a
Fernandes, I. and Mosegaard, K.: Errors in Positioning of Borehole Measurements and How They Influence Seismic Inversion, Geophys. Prospect., 70, 1338–1345, https://doi.org/10.1111/1365-2478.13243, 2022. a
GLAMOS: The Swiss Glaciers 2017/18 and 2018/19, edited by: Bauder, A., Huss, M., and Linsbauer, A., Glaciological Report No. 139/140, Cryospheric Commission of the Swiss Academy of Sciences (SCNAT), Published since 1964 by VAW/ETH Zurich, https://doi.org/10.18752/glrep_139-140, 2020. a
Golub, G. H., Heath, M., and Wahba, G.:
Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter, Technometrics, 21, 215–223, 1979. a
Grab, M., Rinaldi, A. P., Wenning, Q. C., Hellmann, S., Roques, C., Obermann, A. C., Maurer, H., Giardini, D., Wiemer, S., Nussbaum, C., and Zappone, A.:
Fluid Pressure Monitoring during Hydraulic Testing in Faulted Opalinus Clay Using Seismic Velocity Observations, Geophysics, 87, B287–B297, https://doi.org/10.1190/geo2021-0713.1, 2022. a
Gusmeroli, A., Murray, T., Jansson, P., Pettersson, R., Aschwanden, A., and Booth, A. D.: Vertical Distribution of Water within the Polythermal Storglaciären, Sweden, J. Geophys. Res., 115, F04002, https://doi.org/10.1029/2009JF001539, 2010. a
Hellmann, S.: Field and Synthetic Data for a Combined 3D Velocity and Borehole Trajectory Inversion Algorithm, ETH Zurich [data set], https://doi.org/10.3929/ethz-b-000541813, 2022a. a
Hellmann, S.: A Borehole Trajectory Inversion Scheme to Adjust the Measurement Geometry for 3D Travel Time Tomography on Glaciers – Video Supplement, ETH Zurich [video supplement], https://doi.org/10.3929/ethz-b-000541812, 2022b. a, b, c
Hellmann, S., Grab, M., Kerch, J., Löwe, H., Bauder, A., Weikusat, I., and Maurer, H.: Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core, The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, 2021a. a, b, c
Hellmann, S., Kerch, J., Weikusat, I., Bauder, A., Grab, M., Jouvet, G., Schwikowski, M., and Maurer, H.: Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps, The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, 2021b. a, b, c
Heucke, E.:
A Light Portable Steam-driven Ice Drill Suitable for Drilling Holes in Ice and Firn, Geogr. Ann. A, 81, 603–609, https://doi.org/10.1111/1468-0459.00088, 1999. a
Hubbard, B., Roberson, S., Samyn, D., and Merton-Lyn, D.:
Digital Optical Televiewing of Ice Boreholes, J. Glaciol., 54, 823–830, https://doi.org/10.3189/002214308787779988, 2008. a
Hubbard, S. S. and Rubin, Y.:
Hydrogeological Parameter Estimation Using Geophysical Data: A Review of Selected Techniques, J. Contam. Hydrol., 45, 3–34, https://doi.org/10.1016/S0169-7722(00)00117-0, 2000. a
Irving, J., Knoll, M., and Knight, R.:
Improving Crosshole Radar Velocity Tomograms: A New Approach to Incorporating High-Angle Traveltime Data, GEOPHYSICS, 72, J31–J41, https://doi.org/10.1190/1.2742813, 2007. a, b
Kamb, W. B.:
Ice Petrofabric Observations from Blue Glacier, Washington, in Relation to Theory and Experiment, J. Geophys. Res., 64, 1891–1909, https://doi.org/10.1029/JZ064i011p01891, 1959. a
Kerch, J., Diez, A., Weikusat, I., and Eisen, O.:
Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations, The Cryosphere, 12, 1715–1734, https://doi.org/10.5194/tc-12-1715-2018, 2018. a
Kim, C. and Pyun, S.:
Estimation of Velocity and Borehole Receiver Location via Full Waveform Inversion of Vertical Seismic Profile Data, Explor. Geophys., 51, 378–387, https://doi.org/10.1080/08123985.2019.1700761, 2020. a, b
Kulich, J. and Bleibinhaus, F.:
Fault Detection with Crosshole and Reflection Geo-Radar for Underground Mine Safety, Geosciences, 10, 456, https://doi.org/10.3390/geosciences10110456, 2020. a
Linder, S., Paasche, H., Tronicke, J., Niederleithinger, E., and Vienken, T.:
Zonal Cooperative Inversion of Crosshole P-wave, S-wave, and Georadar Traveltime Data Sets, J. Appl. Geophys., 72, 254–262, https://doi.org/10.1016/j.jappgeo.2010.10.003, 2010. a
Marchesini, P., Ajo-Franklin, J. B., and Daley, T. M.:
In Situ Measurement of Velocity-Stress Sensitivity Using Crosswell Continuous Active-Source Seismic Monitoring, GEOPHYSICS, 82, D319–D326, https://doi.org/10.1190/geo2017-0106.1, 2017. a
Martins, J. L.:
Elastic Impedance in Weakly Anisotropic Media, GEOPHYSICS, 71, D73–D83, https://doi.org/10.1190/1.2195448, 2006. a
Maurer, H., Holliger, K., and Boerner, D. E.:
Stochastic Regularization: Smoothness or Similarity?, Geophys. Res. Lett., 25, 2889–2892, https://doi.org/10.1029/98GL02183, 1998. a, b
Maurer, H. R.:
Systematic Errors in Seismic Crosshole Data: Application of the Coupled Inverse Technique, Geophys. Res. Lett., 23, 2681–2684, https://doi.org/10.1029/96GL02068, 1996. a, b, c, d
Meléndez, A., Jiménez, C. E., Sallarès, V., and Ranero, C. R.:
Anisotropic P-wave travel-time tomography implementing Thomsen's weak approximation in TOMO3D, Solid Earth, 10, 1857–1876, https://doi.org/10.5194/se-10-1857-2019, 2019. a
Menke, W.:
The Resolving Power of Cross-Borehole Tomography, Geophys. Res. Lett., 11, 105–108, https://doi.org/10.1029/GL011i002p00105, 1984. a, b
Monz, M. E., Hudleston, P. J., Prior, D. J., Michels, Z., Fan, S., Negrini, M., Langhorne, P. J., and Qi, C.:
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden, The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, 2021.
a
Pan, X., Li, L., Zhou, S., Zhang, G., and Liu, J.:
Azimuthal Amplitude Variation with Offset Parameterization and Inversion for Fracture Weaknesses in Tilted Transversely Isotropic Media, GEOPHYSICS, 86, C1–C18, https://doi.org/10.1190/geo2019-0215.1, 2021. a
Peng, D., Cheng, F., Liu, J., Zong, Y., Yu, M., Hu, G., and Xiong, X.:
Joint Tomography of Multi-Cross-Hole and Borehole-to-Surface Seismic Data for Karst Detection, J. Appl. Geophys., 184, 104252, https://doi.org/10.1016/j.jappgeo.2020.104252, 2021. a
Rigsby, G. P.:
Crystal Orientation in Glacier and in Experimentally Deformed Ice, J. Glaciol., 3, 589–606, 1960. a
Rumpf, M. and Tronicke, J.:
Predicting 2D Geotechnical Parameter Fields in Near-Surface Sedimentary Environments, J. Appl. Geophys., 101, 95–107, https://doi.org/10.1016/j.jappgeo.2013.12.002, 2014. a
Schmelzbach, C., Greenhalgh, S., Reiser, F., Girard, J.-F., Bretaudeau, F., Capar, L., and Bitri, A.:
Advanced Seismic Processing/Imaging Techniques and Their Potential for Geothermal Exploration, Interpretation, 4, SR1–SR18, https://doi.org/10.1190/INT-2016-0017.1, 2016. a
Schwerzmann, A., Funk, M., and Blatter, H.:
Borehole Logging with an Eight-Arm Caliper – Inclinometer Probe, J. Glaciol., 52, 381–388, 2006. a
Shakas, A., Maurer, H., Giertzuch, P.-L., Hertrich, M., Giardini, D., Serbeto, F., and Meier, P.:
Permeability Enhancement From a Hydraulic Stimulation Imaged With Ground Penetrating Radar, Geophys. Res. Lett., 47, e2020GL088783,
https://doi.org/10.1029/2020GL088783, 2020. a
von Ketelhodt, J. K., Fechner, T., Manzi, M. S. D., and Durrheim, R. J.:
Joint Inversion of Cross-Borehole P-waves, Horizontally and Vertically Polarized S-waves: Tomographic Data for Hydro-Geophysical Site Characterization, Near Surf. Geophys., 16, 529–542, https://doi.org/10.1002/nsg.12010, 2018. a
Walter, F., Clinton, J. F., Deichmann, N., Dreger, D. S., Minson, S. E., and Funk, M.:
Moment Tensor Inversions of Icequakes on Gornergletscher, Switzerland, B. Seismol. Soc. Am., 99, 852–870, https://doi.org/10.1785/0120080110, 2009. a
Washbourne, J. K., Rector, J. W., and Bube, K. P.:
Crosswell Traveltime Tomography in Three Dimensions, GEOPHYSICS, 67, 853–871, https://doi.org/10.1190/1.1484529, 2002. a
Wong, J.:
Crosshole Seismic Imaging for Sulfide Orebody Delineation near Sudbury, Ontario, Canada, GEOPHYSICS, 65, 1900–1907, https://doi.org/10.1190/1.1444874, 2000. a
Zhou, B. and Greenhalgh, S. A.:
`Shortest Path' Ray Tracing for Most General 2D/3D Anisotropic Media, J. Geophys. Eng., 2, 54–63, https://doi.org/10.1088/1742-2132/2/1/008, 2005. a
Zhou, B., Greenhalgh, S., and Green, A.:
Nonlinear Traveltime Inversion Scheme for Crosshole Seismic Tomography in Tilted Transversely Isotropic Media, GEOPHYSICS, 73, D17–D33, https://doi.org/10.1190/1.2910827, 2008. a
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glaciers that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allows an analysis of the ice while considering deformations.
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this...