Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-1047-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1047-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Robin Seithel
GHJ – Ingenieurgesellschaft für Geo- und Umwelttechnik mbH & Co. KG, Am Hubengut 4, 76149 Karlsruhe, Germany
Thomas Niederhuber
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Oliver Heidbach
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute for Applied Geosciences, TU Berlin, 10587 Berlin, Germany
Thomas Kohl
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Birgit Müller
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Mojtaba Rajabi
School of the Environment, University of Queensland, Saint Lucia, Queensland 4072, Australia
Karsten Reiter
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Luisa Röckel
Institute of Applied Geosciences, KIT, 76131 Karlsruhe, Germany
Related authors
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2932, https://doi.org/10.5194/egusphere-2024-2932, 2024
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of e.g. potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Moritz O. Ziegler, Oliver Heidbach, John Reinecker, Anna M. Przybycin, and Magdalena Scheck-Wenderoth
Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, https://doi.org/10.5194/se-7-1365-2016, 2016
Short summary
Short summary
Subsurface engineering relies on sparsely distributed data points of the stress state of the earth's crust. 3D geomechanical--numerical modelling is applied to estimate the stress state in the entire volume of a large area. We present a multi-stage approach of differently sized models which provide the stress state in an area of interest derived from few and widely scattered data records. Furthermore we demonstrate the changes in reliability of the model depending on different input parameters.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2932, https://doi.org/10.5194/egusphere-2024-2932, 2024
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of e.g. potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Ali Dashti, Jens C. Grimmer, Christophe Geuzaine, Florian Bauer, and Thomas Kohl
Geosci. Model Dev., 17, 3467–3485, https://doi.org/10.5194/gmd-17-3467-2024, https://doi.org/10.5194/gmd-17-3467-2024, 2024
Short summary
Short summary
This study developed new meshing workflows to enable the automatic generation of meshes that follow geological models. The workflow allows for importing several geological models as input for Gmsh and later exporting the same number of high-quality meshes. This way, geological uncertainty is directly included in the numerical simulations. This study evaluates the impact of the geological uncertainty on thermohydraulic performance of two reservoirs for high-temperature heat storage applications.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023, https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
Short summary
Crystalline rocks are being considered as potential host rocks in the ongoing search for a suitable site for a nuclear waste repository in Germany, where there is no existing experience in terms of excavating a repository in crystalline rocks. The planned underground laboratory GeoLaB addressing crystalline geothermal reservoirs offers unique opportunities for synergies with nuclear waste disposal research and development, especially in the exploration and building phases.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Michal Kruszewski, Alessandro Verdecchia, Oliver Heidbach, Rebecca M. Harrington, and David Healy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1889, https://doi.org/10.5194/egusphere-2023-1889, 2023
Preprint archived
Short summary
Short summary
In this study, we investigate the evolution of fault reactivation potential in the greater Ruhr region (Germany) in respect to a future utilization of deep geothermal resources. We use analytical and numerical approaches to understand the initial stress conditions on faults as well as their evolution in space and time during geothermal fluid production. Using results from our analyses, we can localize areas more favorable for geothermal energy use based on fault reactivation potential.
Guoqiang Yan, Benjamin Busch, Robert Egert, Morteza Esmaeilpour, Kai Stricker, and Thomas Kohl
Solid Earth, 14, 293–310, https://doi.org/10.5194/se-14-293-2023, https://doi.org/10.5194/se-14-293-2023, 2023
Short summary
Short summary
The physical processes leading to the kilometre-scale thermal anomaly in faulted tight sandstones are numerically investigated. The fluid-flow pathways, heat-transfer types and interactions among different convective and advective flow modes are systematically identified. The methodologies and results can be applied to interpret hydrothermal convection-related geological phenomena and to draw implications for future petroleum and geothermal exploration and exploitation in analogous settings.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Moritz O. Ziegler, Oliver Heidbach, John Reinecker, Anna M. Przybycin, and Magdalena Scheck-Wenderoth
Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, https://doi.org/10.5194/se-7-1365-2016, 2016
Short summary
Short summary
Subsurface engineering relies on sparsely distributed data points of the stress state of the earth's crust. 3D geomechanical--numerical modelling is applied to estimate the stress state in the entire volume of a large area. We present a multi-stage approach of differently sized models which provide the stress state in an area of interest derived from few and widely scattered data records. Furthermore we demonstrate the changes in reliability of the model depending on different input parameters.
T. Hergert, O. Heidbach, K. Reiter, S. B. Giger, and P. Marschall
Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, https://doi.org/10.5194/se-6-533-2015, 2015
Short summary
Short summary
A numerical model integrating the structure and mechanical properties of a sedimentary sequence in the Alpine foreland is presented to show that topography, tectonic faults and, most of all, spatialy variable rock properties affect the state of stress at depth. The tectonic forces acting on the sequence are primarily taken up by the stiff rock units leaving the weaker units in a stress shadow.
K. Reiter and O. Heidbach
Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, https://doi.org/10.5194/se-5-1123-2014, 2014
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Along-strike variation in volcanic addition controlling post-breakup sedimentary infill: Pelotas margin, austral South Atlantic
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
Importance of basement faulting and salt decoupling for the structural evolution of the Fars Arc, Zagros fold-and-thrust belt: A numerical modeling approach
The influence of vertical lithological contrasts on strike-slip fault behavior: Insights from analogue models
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Effects of basal drag on subduction dynamics from 2D numerical models
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
The enigmatic curvature of Central Iberia and its puzzling kinematics
Gonzalo Yanez C., Jose Piquer R., and Orlando Rivera H.
Solid Earth, 15, 1319–1342, https://doi.org/10.5194/se-15-1319-2024, https://doi.org/10.5194/se-15-1319-2024, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organised in segments where large events are repeated every 100–300 years, depends on large-scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coastline morphology).
Marlise C. Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
Solid Earth, 15, 1265–1279, https://doi.org/10.5194/se-15-1265-2024, https://doi.org/10.5194/se-15-1265-2024, 2024
Short summary
Short summary
We investigate the along-strike variation in volcanics on the Pelotas segment of the Brazilian margin created during continental breakup and formation of the southern South Atlantic. We show that the volume of volcanics strongly controls the amount of space available for post-breakup sedimentation. We also show that breakup varies along-strike from very magma-rich to magma-normal within a relatively short distance of less than 300 km. This is not as expected from a simple mantle plume model.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Fatemeh Gomar, Jonas Bruno Ruh, Mahdi Najafi, and Farhad Sobouti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1123, https://doi.org/10.5194/egusphere-2024-1123, 2024
Short summary
Short summary
Our study investigates the structural evolution of the Fars Arc in the Zagros Mountain by numerical modeling. We focus on the effects of the interaction between basement faults and salt décollement levels during tectonic inversion, including a rifting and a convergence phase. In conclusion, our results emphasize the importance of considering fault geometry, salt rheology, and basement involvement in understanding the resistance to deformation and seismic behavior of fold-thrust belts.
Sandra González-Muñoz, Guido Schreurs, Timothy Schmid, and Fidel Martín-González
EGUsphere, https://doi.org/10.5194/egusphere-2024-852, https://doi.org/10.5194/egusphere-2024-852, 2024
Short summary
Short summary
This work investigates the influence of vertical rheological contrasts on the nucleation and behavior of strike-slip faults, using analogue modelling. The introduction of rheological contrasts was achieved using quartz sand and microbeads grains. The study shows how the strike, type and evolution of the faults strongly depend on the characteristic of the lithology and its contact orientation. The results are comparable with the fault systems observed in the NW of the Iberian Peninsula.
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Torsten Hundebøl Hansen, Ole Rønø Clausen, and Katrine Juul Andresen
Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, https://doi.org/10.5194/se-12-1719-2021, 2021
Short summary
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Short summary
Many of the world's hydrocarbon resources are found in rifted sedimentary basins. Some rifts experience multiple phases of extension and inversion. This results in complicated oil and gas generation, migration, and entrapment histories. We present examples of basins in the Western Desert of Egypt and the western Black Sea that were inverted multiple times, sometimes separated by additional phases of extension. We then discuss how these complex deformation histories impact exploration campaigns.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020, https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary
Short summary
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and winding orogeny that today transects Europe, northwestern Africa, and eastern North America. This orogen is characterized by an
Sshape corrugated geometry in Iberia. This paper presents the advances and milestones in our understanding of the geometry and kinematics of the Central Iberian curve from the last decade with particular attention paid to structural and paleomagnetic studies.
Cited articles
Ahlers, S., Hergert, T., and Henk, A.: Numerical Modelling of Salt-Related Stress Decoupling in Sedimentary Basins – Motivated by Observational Data from the North German Basin, Geosciences, 9, 19, https://doi.org/10.3390/GEOSCIENCES9010019, 2018. a
Ahlers, S., Röckel, L., Hergert, T., Reiter, K., Heidbach, O., Henk, A., Müller, B., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: The crustal stress field of Germany: a refined prediction, Geoth. Energ., 10, 1–32, https://doi.org/10.1186/s40517-022-00222-6, 2022. a
Azzola, J., Valley, B., Schmittbuhl, J., and Genter, A.: Stress characterization and temporal evolution of borehole failure at the Rittershoffen geothermal project, Solid Earth, 10, 1155–1180, https://doi.org/10.5194/se-10-1155-2019, 2019. a
Barton, C. A. and Zoback, M. D.: Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near‐complete stress drop and a new technique for stress magnitude measurement, J. Geophys. Res.-Solid, 99, 9373–9390, https://doi.org/10.1029/93JB03359, 1994. a, b, c
Barton, C. A., Zoback, M. D., and Moos, D.: Fluid flow along potentially active faults in crystalline rock, Geology, 23, 683, https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2, 1995. a
Bell, J. and Gough, D.: Northeast-southwest compressive stress in Alberta evidence from oil wells, Earth Planet. Sc. Lett., 45, 475–482, https://doi.org/10.1016/0012-821X(79)90146-8, 1979. a
Brodsky, E. E., Saffer, D., Fulton, P., Chester, F., Conin, M., Huffman, K., Moore, J. C., and Wu, H.: The postearthquake stress state on the Tohoku megathrust as constrained by reanalysis of the JFAST breakout data, Geophys. Res. Lett., 44, 8294–8302, https://doi.org/10.1002/2017GL074027, 2017. a
Cai, W., Zhu, H., and Liang, W.: Three-dimensional stress rotation and control mechanism of deep tunneling incorporating generalized Zhang–Zhu strength-based forward analysis, Eng. Geol., 308, 106806, https://doi.org/10.1016/j.enggeo.2022.106806, 2022. a
Cappa, F. and Rutqvist, J.: Impact of CO2 geological sequestration on the nucleation of earthquakes, Geophys. Res. Lett., 38, L17313, https://doi.org/10.1029/2011GL048487, 2011. a, b
Casey, M.: Mechanics of shear zones in isotropic dilatant materials, J. Struct. Geol., 2, 143–147, https://doi.org/10.1016/0191-8141(80)90044-9, 1980. a
Catalli, F., Meier, M. A., and Wiemer, S.: The role of Coulomb stress changes for injection-induced seismicity: The Basel enhanced geothermal system, Geophys. Res. Lett., 40, 72–77, https://doi.org/10.1029/2012GL054147, 2013. a
Childs, C., Manzocchi, T., Walsh, J. J., Bonson, C. G., Nicol, A., and Schöpfer, M. P.: A geometric model of fault zone and fault rock thickness variations, J. Struct. Geol., 31, 117–127, https://doi.org/10.1016/j.jsg.2008.08.009, 2009. a, b
Clavijo, S. P., Dash, A., Baby, G., Alafifi, A. M., and Finkbeiner, T.: Modeling principal stress orientations in the Arabian Plate using plate velocities, Geol. Soc. Lond. Spec. Publ., 546, 193–214, https://doi.org/10.1144/SP546-2022-327, 2024. a
Collettini, C., Niemeijer, A., Viti, C., and Marone, C.: Fault zone fabric and fault weakness, Nature, 462, 907–910, 2009. a
Cornet, F. H. and Röckel, T.: Vertical stress profiles and the significance of “stress decoupling”, Tectonophysics, 581, 193–205, https://doi.org/10.1016/J.TECTO.2012.01.020, 2012. a, b
Cui, J., Lin, W., Wang, L., Gao, L., Huang, Y., Wang, W., Sun, D., Li, Z., Zhou, C., Qian, H., Peng, H., Xia, K., and Li, K.: Determination of three-dimensional in situ stresses by anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Tectonophysics, 619–620, 123–132, https://doi.org/10.1016/j.tecto.2013.09.013, 2014. a, b, c, d, e, f
Dart, R. and Swolfs, H.: Subparallel faults and horizontal-stress orientations: an evaluation of in-situ stresses inferred from elliptical wellbore enlargements, Elsevier, 519–529, https://doi.org/10.1016/B978-0-444-88607-1.50041-3, 1992. a
Eberhardt, E.: Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face, Int. J. Rock Mech. Min. Sci., 38, 499–518, https://doi.org/10.1016/S1365-1609(01)00017-X, 2001. a
Engelder, T.: Stress Regimes in the Lithosphere, Princeton University Press, ISBN 9781400863150, https://doi.org/10.1515/9781400863150, 1992. a, b, c
Engelder, T.: Deviatoric stressitis: A virus infecting the Earth science community, Eos Trans. Am. Geophys. Union, 75, 209–212, https://doi.org/10.1029/94EO00885, 1994. a
Faulkner, D. R., Mitchell, T. M., Healy, D., and Heap, M. J.: Slip on `weak' faults by the rotation of regional stress in the fracture damage zone, Nature, 444, 922–925, https://doi.org/10.1038/nature05353, 2006. a, b, c, d
Faulkner, D. R., Jackson, C. A., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/J.JSG.2010.06.009, 2010. a, b
Freymark, J., Bott, J., Cacace, M., Ziegler, M. O., and Scheck-Wenderoth, M.: Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben, Geofluids, 2019, 7520714, https://doi.org/10.1155/2019/7520714, 2019. a
Gabrielsen, R. H., Braathen, A., Kjemperud, M., and Valdresbråten, M. L. R.: The geometry and dimensions of fault-core lenses, Geol. Soc. Lond. Spec. Publ., 439, 249–269, https://doi.org/10.1144/SP439.4, 2017. a, b
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P. A., Wees, J. D. V., and Kohl, T.: Induced seismicity in geothermal reservoirs: A review of forecasting approaches, Renew. Sustain. Energ. Rev., 52, 1473–1490, https://doi.org/10.1016/j.rser.2015.08.026, 2015. a
Gilmore, K. A., Sahu, C. K., Benham, G. P., Neufeld, J. A., and Bickle, M. J.: Leakage dynamics of fault zones: experimental and analytical study with application to CO2 storage, J. Fluid Mech., 931, A31, https://doi.org/10.1017/JFM.2021.970, 2022. a
Gradmann, S., Olesen, O., Keiding, M., and Maystrenko, Y.: The 3D stress field of Nordland, northern Norway – insights from numerical modelling, Geol. Soc. Lond. Spec. Publ., 546, 215–238, https://doi.org/10.1144/SP546-2023-163, 2024. a
Haimson, B., Lin, W., Oku, H., Hung, J. H., and Song, S. R.: Integrating borehole-breakout dimensions, strength criteria, and leak-off test results, to constrain the state of stress across the Chelungpu Fault, Taiwan, Tectonophysics, 482, 65–72, https://doi.org/10.1016/J.TECTO.2009.05.016, 2010. a
Han, C., Huang, Z., Xu, M., Wang, L., Mi, N., Yu, D., and Li, H.: Focal mechanism and stress field in the northeastern Tibetan Plateau: insight into layered crustal deformations, Geophys. J. Int., 218, 2066–2078, https://doi.org/10.1093/gji/ggz267, 2019. a
Hardebeck, J. L.: The spatial distribution of earthquake stress rotations following large subduction zone earthquakes, Earth Planets Space, 69, 69, https://doi.org/10.1186/s40623-017-0654-y, 2017. a
Hardebeck, J. L. and Okada, T.: Temporal Stress Changes Caused by Earthquakes: A Review, J. Geophys. Res.-Solid, 123, 1350–1365, https://doi.org/10.1002/2017JB014617, 2018. a
Healy, D. and Hicks, S. P.: De-risking the energy transition by quantifying the uncertainties in fault stability, Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, 2022. a
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., and Zoback, M.: The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007, 2018. a, b, c
Henk, A.: Chapter 4 – Numerical modelling of faults, Elsevier, 147–165, ISBN 978-0-12-815985-9, https://doi.org/10.1016/B978-0-12-815985-9.00004-7, 2020. a, b
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., and Marschall, P.: Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland, Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, 2015. a, b, c
Holdsworth, R. E.: Weak Faults–Rotten Cores, Science, 303, 181–182, https://doi.org/10.1126/science.1092491, 2004. a
Holdsworth, R. E., Diggelen, E. W. E. V., Spiers, C. J., Bresser, J. H. P. D., Walker, R. J., and Bowen, L.: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California, J. Struct. Geol., 33, 132–144, https://doi.org/10.1016/j.jsg.2010.11.010, 2010. a
Homberg, C., Hu, J. C., Angelier, J., Bergerat, F., and Lacombe, O.: Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains), J. Struct. Geol., 19, 703–718, https://doi.org/10.1016/S0191-8141(96)00104-6, 1997. a
Hung, J.-H., Ma, K.-F., Wang, C.-Y., Ito, H., Lin, W., and Yeh, E.-C.: Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project, Tectonophysics, 466, 307–321, https://doi.org/10.1016/j.tecto.2007.11.014, 2007. a, b
Isaacs, A. J., Evans, J. P., Kolesar, P. T., and Nohara, T.: Composition, microstructures, and petrophysics of the Mozumi fault, Japan: In situ analyses of fault zone properties and structure in sedimentary rocks from shallow crustal levels, J. Geophys. Res.-Solid, 113, B12408, https://doi.org/10.1029/2007JB005314, 2008. a
King, C. P., Stein, R. O. S. S. S., and Lin, J.: Static Stress Changes and the Triggering of Earthquakes, Bull. Seismol. Soc. Am., 84, 935–953, https://doi.org/10.1785/BSSA0840030935, 1994. a
Kingdon, A., Fellgett, M. W., and Williams, J. D.: Use of borehole imaging to improve understanding of the in-situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources, Mar. Petrol. Geol., 73, 1–20, https://doi.org/10.1016/j.marpetgeo.2016.02.012, 2016. a
Kirsch, E.: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre, Zeitschrift des Vereines deutscher Ingenieure, 42 pp., 1898. a
Konrad, F., Savvatis, A., Degen, D., Wellmann, F., Einsiedl, F., and Zosseder, K.: Productivity enhancement of geothermal wells through fault zones: Efficient numerical evaluation of a parameter space for the Upper Jurassic aquifer of the North Alpine Foreland Basin, Geothermics, 95, 102119, https://doi.org/10.1016/J.GEOTHERMICS.2021.102119, 2021. a, b
Konstantinou, K. I., Mouslopoulou, V., Liang, W. T., Heidbach, O., Oncken, O., and Suppe, J.: Present-day crustal stress field in Greece inferred from regional-scale damped inversion of earthquake focal mechanisms, J. Geophys. Res.-Solid, 122, 506–523, https://doi.org/10.1002/2016JB013272, 2017. a
Konstantinovskaya, E., Malo, M., and Castillo, D.: Present-day stress analysis of the St. Lawrence Lowlands sedimentary basin (Canada) and implications for caprock integrity during CO2 injection operations, Tectonophysics, 518–521, 119–137, https://doi.org/10.1016/j.tecto.2011.11.022, 2012. a
Levi, N., Habermueller, M., Exner, U., Piani, E., Wiesmayr, G., and Decker, K.: The stress field in the frontal part of the Eastern Alps (Austria) from borehole image log data, Tectonophysics, 769, 228175, https://doi.org/10.1016/J.TECTO.2019.228175, 2019. a
Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun, Z., Chevalier, M.-L., and Liu, D.: Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Tectonophysics, 584, 23–42, https://doi.org/10.1016/j.tecto.2012.08.021, 2012. a
Li, P., Cai, M., Gorjian, M., Ren, F., Xi, X., and Wang, P.: Interaction between in situ stress states and tectonic faults: A comment, Int. J. Miner. Metallurg. Mater., 30, 1227–1243, https://doi.org/10.1007/s12613-023-2607-8, 2023. a
Lin, W., Yeh, E.-C., Ito, H., Hirono, T., Soh, W., Wang, C.-Y., Ma, K.-F., Hung, J.-H., and Song, S.-R.: Preliminary Results of Stress Measurement Using Drill Cores of TCDP Hole-A: an Application of Anelastic Strain Recovery Method to Three-Dimensional In-Situ Stress Determination, Terr. Atmos. Ocean. Sci., 18, 379–393, https://doi.org/10.3319/TAO.2007.18.2.379(TCDP), 2007. a, b, c, d, e
Lin, W., Yeh, E.-C., Hung, J.-H., Haimson, B., and Hirono, T.: Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP), Tectonophysics, 482, 82–91, https://doi.org/10.1016/j.tecto.2009.06.020, 2010. a
Lockner, D. A., Tanaka, H., Ito, H., Ikeda, R., Omura, K., and Naka, H.: Geometry of the Nojima fault at Nojima-Hirabayashi, Japan – I. A simple damage structure inferred from borehole core permeability, Pure Appl. Geophys., 166, 1649–1667, https://doi.org/10.1007/s00024-009-0515-0, 2009. a
Long, J. C. and Ewing, R. C.: YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste, Annu. Rev. Earth Planet. Sci., 32, 363–401, https://doi.org/10.1146/annurev.earth.32.092203.122444, 2004. a
Martínez-Garzón, P., Bohnhoff, M., Kwiatek, G., and Dresen, G.: Stress tensor changes related to fluid injection at the Geysers geothermal field, California, Geophys. Res. Lett., 40, 2596–2601, https://doi.org/10.1002/grl.50438, 2013. a, b
Martínez-Garzón, P., Kwiatek, G., Sone, H., Bohnhoff, M., Dresen, G., and Hartline, C.: Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: A case study from the Geysers geothermal field, J. Geophys. Res.-Solid, 119, 8378–8396, https://doi.org/10.1002/2014JB011385, 2014. a, b
Massiot, C., Seebeck, H., Nicol, A., McNamara, D. D., Lawrence, M. J., Griffin, A. G., Thrasher, G. P., O'Brien, G., and Viskovic, G. P. D.: Effects of regional and local stresses on fault slip tendency in the southern Taranaki Basin, New Zealand, Mar. Petrol. Geol., 107, 467–483, https://doi.org/10.1016/J.MARPETGEO.2019.05.030, 2019. a, b, c, d, e, f
Morris, A., Ferrill, D. A., and Henderson, D. B.: Slip-tendency analysis and fault reactivation, Geology, 24, 275, https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2, 1996. a
Müller, B., Schilling, F., Röckel, T., and Heidbach, O.: Induced Seismicity in Reservoirs: Stress Makes the Difference Induzierte, Erdöl Erdgas Kohle, https://doi.org/10.19225/180106, 2018. a
Nabavi, S. T., Alavi, S. A., Mohammadi, S., and Ghassemi, M. R.: Mechanical evolution of transpression zones affected by fault interactions: Insights from 3D elasto-plastic finite element models, J. Struct. Geol., 106, 19–40, https://doi.org/10.1016/j.jsg.2017.11.003, 2018. a
Niederhuber, T., Kruszewski, M., Röckel, T., Rische, M., Alber, M., and Müller, B.: Stress orientations from hydraulic fracturing tests in the Ruhr area in comparison to stress orientations from borehole observations and earthquake focal mechanisms, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 173, 625–635, https://doi.org/10.1127/zdgg/2022/0352, 2023. a
Nishiwaki, T., Lin, A., and Lin, W.: Recovery of Stress During the Interseismic Period Around the Seismogenic Fault of the 1995 Mw 6.9 Kobe Earthquake, Japan, Geophys. Res. Lett., 45, 12814–12820, https://doi.org/10.1029/2018GL079317, 2018. a
Ptáček, J., Konicek, P., Staš, L., Waclawik, P., and Kukutsch, R.: Rotation of principal axes and changes of stress due to mine-induced stresses, Can. Geotech. J., 52, 1440–1447, https://doi.org/10.1139/cgj-2014-0364, 2015. a
Rajabi, M., Tingay, M., and Heidbach, O.: The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production, Mar. Petrol. Geol., 77, 776–790, https://doi.org/10.1016/j.marpetgeo.2016.07.021, 2016a. a
Rajabi, M., Tingay, M., and Heidbach, O.: The present-day stress field of New South Wales, Australia, Aust. J. Earth Sci., 63, 1–21, https://doi.org/10.1080/08120099.2016.1135821, 2016b. a
Rajabi, M., Ziegler, M. O., Tingay, M., Heidbach, O., and Reynolds, S.: Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand, J. Geophys. Res.-Solid., 121, 6053–6070, https://doi.org/10.1002/2016JB013178, 2016c. a
Rajabi, M., Tingay, M., Heidbach, O., Hillis, R., and Reynolds, S.: The present-day stress field of Australia, Earth-Sci. Rev., 168, 165–189, https://doi.org/10.1016/j.earscirev.2017.04.003, 2017a. a, b, c
Rajabi, M., Tingay, M., King, R., and Heidbach, O.: Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations, Basin Res., 29, 622–640, https://doi.org/10.1111/bre.12175, 2017b. a
Rajabi, M., Esterle, J., Heidbach, O., Travassos, D., and Fumo, S.: Characterising the contemporary stress orientations near an active continental rifting zone: A case study from the Moatize Basin, central Mozambique, Basin Res., 34, 1292–1313, https://doi.org/10.1111/bre.12660, 2022. a
Rajabi, M., Ziegler, M., Heidbach, O., Mukherjee, S., and Esterle, J.: Contribution of mine borehole data toward high-resolution stress mapping: An example from northern Bowen Basin, Australia, Int. J. Rock Mech. Min. Sci., 173, 105630, https://doi.org/10.1016/j.ijrmms.2023.105630, 2024. a, b
Reinecker, J., Tingay, M., Müller, B., and Heidbach, O.: Present-day stress orientation in the Molasse Basin, Tectonophysics, 482, 129–138, https://doi.org/10.1016/j.tecto.2009.07.021, 2010. a
Reiter, K., Heidbach, O., Schmitt, D., Haug, K., Ziegler, M. O., and Moeck, I.: A revised crustal stress orientation database for Canada, Tectonophysics, 636, 111–124, https://doi.org/10.1016/j.tecto.2014.08.006, 2014. a
Röckel, L., Ahlers, S., Müller, B., Reiter, K., Heidbach, O., Henk, A., Hergert, T., and Schilling, F.: The analysis of slip tendency of major tectonic faults in Germany, Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, 2022. a, b, c
Roth, F. and Fleckenstein, P.: Stress orientations found in north-east Germany differ from the West European trend, Terra Nova, 13, 289–296, https://doi.org/10.1046/J.1365-3121.2001.00357.X, 2001. a
Sahara, D. P., Schoenball, M., Kohl, T., and Müller, B. I.: Impact of fracture networks on borehole breakout heterogeneities in crystalline rock, Int. J. Rock Mech. Min. Sci., 71, 301–309, https://doi.org/10.1016/j.ijrmms.2014.07.001, 2014. a, b, c
Schoenball, M., Dorbath, L., Gaucher, E., Wellmann, J. F., and Kohl, T.: Change of stress regime during geothermal reservoir stimulation, Geophys. Res. Lett., 41, 1163–1170, https://doi.org/10.1002/2013GL058514, 2014. a
Schoenball, M., Walsh, F. R., Weingarten, M., and Ellsworth, W. L.: How faults wake up: The Guthrie-Langston, Oklahoma earthquakes, Leading Edge, 37, 100–106, https://doi.org/10.1190/tle37020100.1, 2018. a
Seithel, R., Steiner, U., Müller, B., Hecht, C., and Kohl, T.: Local stress anomaly in the Bavarian Molasse Basin, Geoth. Energy, 3, 4, https://doi.org/10.1186/s40517-014-0023-z, 2015. a
Seithel, R., Gaucher, E., Mueller, B., Steiner, U., and Kohl, T.: Probability of fault reactivation in the Bavarian Molasse Basin, Geothermics, 82, 81–90, https://doi.org/10.1016/j.geothermics.2019.06.004, 2019. a
Shamir, G. and Zoback, M. D.: Stress orientation profile to 3.5 km depth near the San Andreas Fault at Cajon Pass, California, J. Geophys. Res.-Solid, 97, 5059–5080, https://doi.org/10.1029/91JB02959, 1992. a
Siler, D. L.: Structural discontinuities and their control on hydrothermal systems in the Great Basin, USA, Geoenergy, 1, geoenergy2023-009, https://doi.org/10.1144/geoenergy2023-009, 2023. a, b, c, d
Snee, J. E. L. and Zoback, M. D.: State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity, Leading Edge, 37, 127–134, https://doi.org/10.1190/TLE37020127.1, 2018. a
Sonder, L. J.: Effects Of Density Contrasts On The Orientation Of Stresses In The Litosphere: Relation To Principal Stress Directions In the Transverse Ranges, California, Tectonics, 9, 761–771, https://doi.org/10.1029/TC009i004p00761, 1990. a, b
Spann, H., Müller, B., and Fuchs, K.: Interpretation of anomalies in observed stress data at the central graben (north sea) – numerical and analytical approach, Soil Dynam. Earthq. Eng., 13, 1–11, https://doi.org/10.1016/0267-7261(94)90036-1, 1994. a
Talukdar, M., Sone, H., and Kuo, L.: Lithology and Fault‐Related Stress Variations Along the TCDP Boreholes: The Stress State Before and After the 1999 Chi‐Chi Earthquake, J. Geophys. Res.-Solid, 127, e2021JB023290, https://doi.org/10.1029/2021JB023290, 2022. a
Tingay, M., Bentham, P., de Feyter, A., and Kellner, A.: Present-day stress-field rotations associated with evaporites in the offshore Nile Delta, Bull. Geol. Soc. Am., 123, 1171–1180, https://doi.org/10.1130/B30185.1, 2011. a
Treffeisen, T. and Henk, A.: Representation of faults in reservoir-scale geomechanical finite element models – A comparison of different modelling approaches, J. Struct. Geol., 131, 103931, https://doi.org/10.1016/j.jsg.2019.103931, 2020. a, b
Vadacca, L., Rossi, D., Scotti, A., and Buttinelli, M.: Slip Tendency Analysis, Fault Reactivation Potential and Induced Seismicity in the Val d'Agri Oilfield (Italy), J. Geophys. Res.-Solid, 126, 2019JB019185, https://doi.org/10.1029/2019JB019185, 2021. a
van Wees, J.-D., Osinga, S., Thienen-Visser, K. V., and Fokker, P. A.: Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field, Geophys. J. Int., 212, 1487–1497, https://doi.org/10.1093/gji/ggx452, 2018. a
Wang, W., Schmitt, D. R., and Li, W.: A program to forward model the failure pattern around the wellbore in elastic and strength anisotropic rock formations, Int. J. Rock Mech. Min. Sci., 151, 105035, https://doi.org/10.1016/j.ijrmms.2022.105035, 2022. a
Wang, W., Schmitt, D. R., and Chan, J.: Heterogeneity Versus Anisotropy and the State of Stress in Stable Cratons: Observations From a Deep Borehole in Northeastern Alberta, Canada, J. Geophys. Res.-Solid, 128, e2022JB025287, https://doi.org/10.1029/2022JB025287, 2023. a, b
Wees, J. D. V., Orlic, B., Eijs, R. V., Zijl, W., Jongerius, P., Schreppers, G. J., Hendriks, M., and Cornu, T.: Integrated 3D geomechanical modelling for deep subsurface deformation: a case study of tectonic and human-induced deformation in the eastern Netherlands, in: New Insights into Structural Interpretation and Modelling, Geological Society, edited by: Nieuwland, D. A., London, Special Publications, 212, 313–328, 0305-8719/03/15, 2003. a
Williams, J. N., Toy, V. G., Massiot, E., Mcnamara, D. D., and Wang, T.: Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand, J. Struct. Geol., 90, 76–94, https://doi.org/10.1016/j.jsg.2016.07.006, 2016. a
Worum, G., van Wees, J.-D., Bada, G., van Balen, R. T., Cloetingh, S., and Pagnier, H.: Slip tendency analysis as a tool to constrain fault reactivation: A numerical approach applied to three-dimensional fault models in the Roer Valley rift system (southeast Netherlands), J. Geophys. Res.-Solid, 109, B2, https://doi.org/10.1029/2003JB002586, 2004. a
Xing, H., Makinouchi, A., and Mora, P.: Finite element modeling of interacting fault systems, Phys. Earth Planet. Inter., 163, 106–121, https://doi.org/10.1016/j.pepi.2007.05.006, 2007. a
Yale, D. P.: Fault and stress magnitude controls on variations in the orientation of in situ stress, Geol. Soc. Lond. Spec. Publ., 209, 55–64, https://doi.org/10.1144/GSL.SP.2003.209.01.06, 2003. a, b
Yamada, Y. and Shibanuma, J.: Small-scale stress fluctuations in borehole breakouts and their implication in identifying potential active faults around the seismogenic megasplay fault, Nankai Trough, SW Japan, Earth Planets Space, 67, 17, https://doi.org/10.1186/s40623-014-0176-9, 2015. a
Zhang, S., Ma, X., Bröker, K., van Limborgh, R., Wenning, Q., Hertrich, M., and Giardini, D.: Fault Zone Spatial Stress Variations in a Granitic Rock Mass: Revealed by Breakouts Within an Array of Boreholes, J. Geophys. Res.-Solid, 128, e2023JB026477, https://doi.org/10.1029/2023JB026477, 2023. a
Ziegler, M. O.: Rock Properties and Modelled Stress State Uncertainties: A Study of Variability and Dependence, Rock Mech. Rock Eng., 55, 4549–4564, https://doi.org/10.1007/s00603-022-02879-8, 2022. a, b
Ziegler, M. O., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G., and Hofmann, G.: Mining-Induced Stress Transfer and Its Relation to a Mw 1.9 Seismic Event in an Ultra-deep South African Gold Mine, Pure Appl. Geophys., 172, 2557–2570, https://doi.org/10.1007/s00024-015-1033-x, 2015. a, b
Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., and Scheck-Wenderoth, M.: A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin, Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, 2016a. a
Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., and Scheck-Wenderoth, M.: Corrigendum to “A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin” published in Solid Earth, 7, 1365–1382, 2016, Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016-corrigendum, 2016b. a
Ziegler, M. O., Rajabi, M., Heidbach, O., Hersir, G. P., Ágústsson, K., Árnadóttir, S., and Zang, A.: The stress pattern of Iceland, Tectonophysics, 674, 101–113, https://doi.org/10.1016/j.tecto.2016.02.008, 2016c. a
Ziegler, M. O., Heidbach, O., Zang, A., Martínez-Garzón, P., and Bohnhoff, M.: Estimation of the differential stress from the stress rotation angle in low permeable rock, Geophys. Res. Lett., 44, 6761–6770, https://doi.org/10.1002/2017GL073598, 2017. a, b, c, d
Ziegler, M. O., Heidbach, O., Morawietz, S., and Wang, Y.: Manual of the Matlab Script FAST Calibration v2.4, GFZ Helmholtz Zentrum, Potsdam, https://doi.org/10.48440/wsm.2023.002, 2023. a
Zoback, M., Hickman, S., Ellsworth, W., and the SAFOD Science Team: Scientific Drilling Into the San Andreas Fault Zone – An Overview of SAFOD's First Five Years, Scient. Drill., 11, 14–28, https://doi.org/10.2204/iodp.sd.11.02.2011, 2011. a
Zoback, M. L.: First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res.-Solid, 97, 11703–11728, https://doi.org/10.1029/92JB00132, 1992. a
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
The rotation of the principal stress axes in a fault structure because of a rock stiffness...