Articles | Volume 15, issue 12
https://doi.org/10.5194/se-15-1465-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1465-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining crosshole and reflection borehole ground-penetrating radar (GPR) for imaging controlled freezing in shallow aquifers
Peter Jung
Department Monitoring and Exploration Technologies, Helmholtz-Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Götz Hornbruch
Applied Geosciences – Aquatic Geochemistry and Hydrogeology, Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Competence Centre for Geoenergy, Kiel University, 24118 Kiel, Germany
Andreas Dahmke
Applied Geosciences – Aquatic Geochemistry and Hydrogeology, Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Competence Centre for Geoenergy, Kiel University, 24118 Kiel, Germany
Peter Dietrich
Department Monitoring and Exploration Technologies, Helmholtz-Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Department Monitoring and Exploration Technologies, Helmholtz-Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Related authors
No articles found.
Luca Peruzzo, Ulrike Werban, Marco Pohle, Mirko Pavoni, Benjamin Mary, Giorgio Cassiani, Simona Consoli, and Daniela Vanella
EGUsphere, https://doi.org/10.5194/egusphere-2025-2117, https://doi.org/10.5194/egusphere-2025-2117, 2025
Short summary
Short summary
Both spatial and temporal information are important in agriculture. Information regarding the above-ground variables ever-increasing in density and precision. On the contrary, below-ground information lags behind and has been typically limited to time series. This study uses methods that map the subsurface spatial variability. A numerical simulations of above- and below water fluxes are then based on such spatial information and additional time-oriented datasets that are common in agriculture.
Christoph Zielhofer, Marie Kaniecki, Anne Köhler, Vera Seeburg, Arnela Rollo, Laura Bergmann, Stefanie Berg, Barbara Stammel, Rita Gudermann, William J. Fletcher, Ulrike Werban, Anja Linstädter, and Natascha Mehler
E&G Quaternary Sci. J., 74, 105–124, https://doi.org/10.5194/egqsj-74-105-2025, https://doi.org/10.5194/egqsj-74-105-2025, 2025
Short summary
Short summary
This study presents a quantitative reconstruction over a 235-year time frame of the development of the natural Donaumoos fen and Danube River into an anthroposphere. The selected proxies are the Donaumoos drainage ditch length and the Danube surface water area traced through the multi-temporal analysis of old maps. A comparison of quantitative proxies with the state of research from written sources leads to the discovery of potential great transitions in floodplain and peatland transformation.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Georg Kaufmann, Douchko Romanov, Ulrike Werban, and Thomas Vienken
Solid Earth, 14, 333–351, https://doi.org/10.5194/se-14-333-2023, https://doi.org/10.5194/se-14-333-2023, 2023
Short summary
Short summary
We discuss collapse sinkholes occuring since 2004 on the sports field of Münsterdorf, a village north of Hamburg. The sinkholes, 2–5 m in size and about 3–5 m deep, develop in peri-glacial sand, with a likely origin in the Cretaceous chalk, present at about 20 m depth. The area has been analyzed with geophysical and direct-push-based methods, from which material properties of the subsurface have been derived. The properties have been used for mechanical models, predicting the subsidence.
Andreas Wieser, Andreas Güntner, Peter Dietrich, Jan Handwerker, Dina Khordakova, Uta Ködel, Martin Kohler, Hannes Mollenhauer, Bernhard Mühr, Erik Nixdorf, Marvin Reich, Christian Rolf, Martin Schrön, Claudia Schütze, and Ute Weber
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-131, https://doi.org/10.5194/hess-2022-131, 2022
Preprint withdrawn
Short summary
Short summary
We present an event-triggered observation concept which covers the entire process chain from heavy precipitation to flooding at the catchment scale. It combines flexible and mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021, https://doi.org/10.5194/hess-25-1-2021, 2021
Cited articles
Agyenim, F., Hewitt, N., Eames, P., and Smyth, M.: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew. Sust. Energ. Rev., 14, 615–628, https://doi.org/10.1016/j.rser.2009.10.015, 2010.
Axtell, C., Murray, T., Kulessa, B., Clark, R. A., and Gusmeroli, A.: Improved accuracy of cross-borehole radar velocity models for ice property analysis, Geophysics, 81, WA203–WA212, https://doi.org/10.1190/GEO2015-0131.1, 2016.
Campbell, S. W., Briggs, M., Roy, S. G., Douglas, T. A., and Saari, S.: Ground-penetrating radar, electromagnetic induction, terrain, and vegetation observations coupled with machine learning to map permafrost distribution at Twelvemile Lake, Alaska, Permafrost Periglac., 32, 407–426, https://doi.org/10.1002/ppp.2100, 2021.
Cao, B., Gruber, S., Zhang, T., Li, L., Peng, X., Wang, K., Zheng, L., Shao, W., and Guo, H.: Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China, J. Geophys. Res.-Earth, 122, 574–591, https://doi.org/10.1002/2016jf004018, 2017.
Cassidy, N. J.: Electrical and Magnetic Properties of Rocks, Soils and Fluids, Ground Penetrating Radar Theory and Applications, 2, 41–72, https://doi.org/10.1016/b978-0-444-53348-7.00002-8, 2009.
Dahmke, A. and Schwarzfeld, B.: Untertägiges Eisspeichersystem in Grundwasserleitern und Grundwassergeringleitern zur Wärmeversorgung, International Patent no. WO2022117579A1, WIPO PCT, 2022.
Dessa, J.-X. and Pascal, G.: Combined traveltime and frequency-domain seismic waveform inversion: a case study on multi-offset ultrasonic data, Geophys. J. Int., 154, 117–133, 2003.
Dietrich, P., Butler Jr., J., and Faiß, K.: The direct push injection logger: a rapid approach for assessment of vertical variations in hydraulic conductivity, Groundwater, 46, 323–328, https://doi.org/10.1111/j.1745-6584.2007.00377.x, 2008.
Du, E., Zhao, L., Zou, D., Li, R., Wang, Z., Wu, X., Hu, G., Zhao, Y., Liu, G., and Sun, Z.: Soil moisture calibration equations for active layer GPR detection – A case study specially for the Qinghai–Tibet Plateau permafrost regions, Remote Sens.-Basel, 12, 605, https://doi.org/10.3390/rs12040605, 2020.
Heldt, S., Wang, B., Hu, L. W., Hornbruch, G., Luders, K., Werban, U., and Bauer, S.: Numerical investigation of a high temperature heat injection test, J. Hydrol., 597, 126229, https://doi.org/10.1016/j.jhydrol.2021.126229, 2021.
Hermans, T., Nguyen, F., Robert, T., and Revil, A.: Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems, Energies, 7, 5083–5118, https://doi.org/10.3390/en7085083, 2014.
Hermans, T., Wildemeersch, S., Jamin, P., Orban, P., Brouyère, S., Dassargues, A., and Nguyen, F.: Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT, Geothermics, 53, 14–26, https://doi.org/10.1016/j.geothermics.2014.03.013, 2015.
Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E., Paetzold, R., Kimble, J. M., and Travis, R.: Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska, Permafrost Periglac., 12, 179–190, https://doi.org/10.1002/ppp.369, 2001.
Hu, L., Schnackenberg, M., Hornbruch, G., Lüders, K., Pfeiffer, W. T., Werban, U., and Bauer, S.: Cross-well multilevel pumping tests – A novel approach for characterizing the changes of hydraulic properties during gas storage in shallow aquifers, J. Hydrol., 620, 129520, https://doi.org/10.1016/j.jhydrol.2023.129520, 2023.
Jung, P., Pohle, M., and Werban, U.: Borehole-GPR crosshole and reflection data from monitoring of freeze-thaw cycles in a geological latent heat storage system, Helmholtz Centre for Environmental Research – UFZ, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971978, 2024.
King, R. W. P., Smith, G. S., Owens, M., and Wu, T. T.: Antennas in matter: fundamentals, theory, and applications, MIT Press, Cambridge, Mass., 868 pp., ISBN 0262110741, ISBN 9780262110747, 1981.
Keller, N.-S., Hornbruch, G., Lüders, K., Werban, U., Vogt, C., Kallies, R., Dahmke, A., and Richnow, H. H.: Monitoring of the effects of a temporally limited heat stress on microbial communities in a shallow aquifer, Sci. Total Environ., 781, 146377, https://doi.org/10.1016/j.scitotenv.2021.146377, 2021.
Keller, N. S., Lüders, K., Hornbruch, G., Birnstengel, S., Vogt, C., Ebert, M., Kallies, R., Dahmke, A., and Richnow, H. H.: Rapid Consumption of Dihydrogen Injected into a Shallow Aquifer by Ecophysiologically Different Microbes, Environ. Sci. Technol., 58, 333–341, https://doi.org/10.1021/acs.est.3c04340, 2024.
Kim, J.-H., Park, S.-G., Yi, M.-J., Son, J.-S., and Cho, S.-J.: Borehole radar investigations for locating ice ring formed by cryogenic condition in an underground cavern, J. Appl. Geophys., 62, 204–214, https://doi.org/10.1016/j.jappgeo.2006.11.002, 2007.
Klotzsche, A., van der Kruk, J., Meles, G. A., Doetsch, J., Maurer, H., and Linde, N.: Full-waveform inversion of cross-hole ground-penetrating radar data to characterize a gravel aquifer close to the Thur River, Switzerland, Near Surf. Geophys., 8, 635–649, 2010.
Lamert, H., Geistlinger, H., Werban, U., Schütze, C., Peter, A., Hornbruch, G., Schulz, A., Pohlert, M., Kalia, S., and Beyer, M.: Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2 injection into a shallow aquifer, Environ. Earth Sci., 67, 447–462, 2012.
Löffler, M., Schrader, M., Lüders, K., Werban, U., Hornbruch, G.., Dahmke, A., Vogt, C., and Richnow, H. H.: Stable Hydrogen Isotope Fractionation of Hydrogen in a Field Injection Experiment: Simulation of a Gaseous H2 Leakage, ACS Earth and Space Chemistry, 6, 631–641, https://doi.org/10.1021/acsearthspacechem.1c00254, 2022.
Looms, M. C., Klotzsche, A., van der Kruk, J., Larsen, T. H., Edsen, A., Tuxen, N., Hamburger, N., Keskinen, J., and Nielsen, L.: Mapping sand layers in clayey till using crosshole ground-penetrating radar, Geophysics, 83, A21–A26, https://doi.org/10.1190/geo2017-0297.1 2018.
Lozàn, J. L., Breckle, S.-W., Grassl, H., Kasang, D., and Matzarakis, A.: Städte im Klimawandel, in: Warnsignal Klima: Die Städte, Thieme, 11–20, https://doi.org/10.1055/a-2144-5404, 2019.
Lüders, K., Hornbruch, G., Zarrabi, N., Heldt, S., Dahmke, A., and Köber, R.: Predictability of initial hydrogeochemical effects induced by short-term infiltration of ∼75 °C hot water into a shallow glaciogenic aquifer, Water Research X, 13, 100121, https://doi.org/10.1016/j.wroa.2021.100121, 2021.
McCall, W. and Christy, T. M.: The hydraulic profiling tool for hydrogeologic investigation of unconsolidated formations, Groundwater Monitoring & Remediation, 40, 89–103, 2020.
McCall, W., Christy, T. M., Pipp, D., Terkelsen, M., Christensen, A., Weber, K., and Engelsen, P.: Field application of the combined membrane-interface probe and hydraulic profiling tool (MiHpt), Groundwater Monitoring & Remediation, 34, 85–95, 2014.
Peter, A., Lamert, H., Beyer, M., Hornbruch, G., Heinrich, B., Schulz, A., Geistlinger, H., Schreiber, B., Dietrich, P., Werban, U., Vogt, C., Richnow, H.-H., Großmann, J., and Dahmke, A.: Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany, Environ. Earth Sci., 67, 335–349, https://doi.org/10.1007/s12665-012-1700-5, 2012.
Schwamborn, G., Dix, J., Bull, J., and Rachold, V.: High-resolution seismic and ground penetrating radar–geophysical profiling of a thermokarst lake in the western Lena Delta, Northern Siberia, Permafrost Periglac., 13, 259–269, 2002.
Sokolov, K., Fedorova, L., and Fedorov, M.: Prospecting and evaluation of underground massive ice by ground-penetrating radar, Geosciences, 10, 274, https://doi.org/10.3390/geosciences10070274, 2020.
Steelman, C. M., Endres, A. L., and van der Kruk, J.: Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar, Hydrol. Process., 24, 2022–2033, https://doi.org/10.1002/hyp.7688, 2010.
Steinbach, J., Popovski, E., Henrich, J., Christ, C., Ortner, S., Pehnt, M., Blömer, S., Auberger, A., Fritz, M., and Billerbeck, A.: Umfassende Bewertung des Potenzials für eine effiziente Wärme-und Kältenutzung für Deutschland: Comprehensive Assessment Heating and Cooling Germany – Gemäß Artikel 14 Absatz 1 und Anhang VIII der Richtlinie 2012/27/EU.2021, Fraunhofer Institute for Systems and Innovation Research ISI, https://publica.fraunhofer.de/handle/publica/301057 (last access: 5 December 2024), 2020.
Stephani, E., Fortier, D., Shur, Y., Fortier, R., and Doré, G.: A geosystems approach to permafrost investigations for engineering applications, an example from a road stabilization experiment, Beaver Creek, Yukon, Canada, Cold Reg. Sci. Technol., 100, 20–35, https://doi.org/10.1016/j.coldregions.2013.12.006, 2014.
Stevens, C. W., Moorman, B. J., and Solomon, S. M.: Detection of frozen and unfrozen interfaces with ground penetrating radar in the nearshore zone of the Mackenzie Delta, Canada, 1711–1716 (Vol 2) in: 2 Vols., Ninth International Conference on Permafrost, edtied by: Kane, D. L. and Hinkel, K. M., Institute of Northern Engineering, University of Alaska Fairbanks, 2140 pp., ISBN 978-0-9800179-3-9 (v.2), 2008.
Terry, N., Grunewald, E., Briggs, M., Gooseff, M., Huryn, A. D., Kass, M. A., Tape, K. D., Hendrickson, P., and Lane Jr., J. W.: Seasonal subsurface thaw dynamics of an aufeis feature inferred from geophysical methods, J. Geophys. Res.-Earth, 125, e2019JF005345, https://doi.org/10.1029/2019JF005345, 2020.
Vienken, T., Leven, C., and Dietrich, P.: Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization – a field study, Can. Geotech. J., 49, 197–206, 2012.
Vonder Mühll, D., Hauck, C., and Gubler, H.: Mapping of mountain permafrost using geophysical methods, Prog. Phys. Geog., 26, 643–660, https://doi.org/10.1191/0309133302pp356ra, 2002.
Wang, Q. and Shen, Y.: Calculation and Interpretation of Ground Penetrating Radar for Temperature and Relative Water Content of Seasonal Permafrost in Qinghai-Tibet Platea, Electronics, 8, 731, 2019.
Weigand, M., Wagner, F. M., Limbrock, J. K., Hilbich, C., Hauck, C., and Kemna, A.: A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments, Geosci. Instrum. Meth., 9, 317–336, 2020.
Yu, Y., Klotzsche, A., Weihermüller, L., Huisman, J. A., Vanderborght, J., Vereecken, H., and van der Kruk, J.: Measuring vertical soil water content profiles by combining horizontal borehole and dispersive surface ground penetrating radar data, Near Surf. Geophys., 18, 275–294, 2020.
Short summary
We demonstrate the feasibility of imaging vertical freezing boundaries using borehole ground-penetrating radar (GPR) in experimental geological latent heat storage, where part of a shallow Quaternary aquifer is frozen. To gain insights into the current thermal state in the subsurface, we assess the frozen volume dimension. We show that a combination of crosshole and reflection measurements allows us to image the ice body with high accuracy in the challenging environment of saturated sediments.
We demonstrate the feasibility of imaging vertical freezing boundaries using borehole...