Articles | Volume 16, issue 7
https://doi.org/10.5194/se-16-619-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-619-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence for multi-rifting in the Variscan–Alpine cycle transition: insights from the European western Southern Alps
Emanuele Scaramuzzo
Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
Franz A. Livio
Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
Maria Giuditta Fellin
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Colin Maden
Department of Earth and Planetary Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Related authors
Franz A. Livio, Anna M. Blumetti, Valerio Comerci, Francesca Ferrario, Gilberto Binda, Marco Caciagli, Michela Colombo, Pio Di Manna, Fernando Ferri, Fiorenzo Fumanti, Roberto Gambillara, Maurizio Guerra, Luca Guerrieri, Paolo Lorenzoni, Valerio Materni, Francesco Miscione, Rosa Nappi, Rosella Nave, Kathleen Nicoll, Alba Peiro, Marco Pizza, Roberto Pompili, Luca M. Puzzilli, Mauro Roma, Aurora Rossi, Valerio Ruscito, Vincenzo Sapia, Argelia Silva Fragoso, Emanuele Scaramuzzo, Frank Thomas, Giorgio Tringali, Stefano Urbini, Andrea Zerboni, and Alessandro M. Michetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2531, https://doi.org/10.5194/egusphere-2025-2531, 2025
Short summary
Short summary
The Rieti Basin in Central Italy, though surrounded by active faults, has been largely overlooked in earthquake studies. To better understand its seismic past, we dug 17 trenches and discovered evidence of 15 ancient earthquakes over the past ca. 20,000 years. The findings show that earthquakes in this area tend to cluster in time, likely due to stress shifting between nearby faults, and can reach a magnitude of 6.5.
Franz A. Livio, Anna M. Blumetti, Valerio Comerci, Francesca Ferrario, Gilberto Binda, Marco Caciagli, Michela Colombo, Pio Di Manna, Fernando Ferri, Fiorenzo Fumanti, Roberto Gambillara, Maurizio Guerra, Luca Guerrieri, Paolo Lorenzoni, Valerio Materni, Francesco Miscione, Rosa Nappi, Rosella Nave, Kathleen Nicoll, Alba Peiro, Marco Pizza, Roberto Pompili, Luca M. Puzzilli, Mauro Roma, Aurora Rossi, Valerio Ruscito, Vincenzo Sapia, Argelia Silva Fragoso, Emanuele Scaramuzzo, Frank Thomas, Giorgio Tringali, Stefano Urbini, Andrea Zerboni, and Alessandro M. Michetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2531, https://doi.org/10.5194/egusphere-2025-2531, 2025
Short summary
Short summary
The Rieti Basin in Central Italy, though surrounded by active faults, has been largely overlooked in earthquake studies. To better understand its seismic past, we dug 17 trenches and discovered evidence of 15 ancient earthquakes over the past ca. 20,000 years. The findings show that earthquakes in this area tend to cluster in time, likely due to stress shifting between nearby faults, and can reach a magnitude of 6.5.
Alberto Mariani, Jacopo Borsotti, Franz Livio, Giacomo Villa, Martin Metzger, and Fabiano Monti
EGUsphere, https://doi.org/10.31223/X5972C, https://doi.org/10.31223/X5972C, 2025
Short summary
Short summary
We developed a new model to estimate snow depth using radar satellite data. By correcting for how the viewing angle affects signal reflection, we reduced errors by nearly 40 %. Tested in the Alps and Norway, the method improves fine-scale snow monitoring, supporting avalanche forecasting and water management.
Giorgio Tringali, Domenico Bella, Franz Livio, Anna Maria Blumetti, Gianluca Groppelli, Luca Guerrieri, Marco Neri, Vincenzo Adorno, Rosario Pettinato, Sara Trotta, and Alessandro M. Michetti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4078, https://doi.org/10.5194/egusphere-2024-4078, 2025
Short summary
Short summary
Trenches were excavated to provide data for relocating buildings damaged by the 2018 earthquake on Mt. Etna. The paleoseismological results along the Fiandaca Fault revealed 3 surface faulting events occurred in: 2018, 1894 and another unknown one in the Early Middle Ages. To verify an increasing trend in seismicity, fault scarps were analysed obtaining movements over different timescales, starting from 115000 years ago, suggesting a very recent growth in flank instability on Etna eastern flank.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Cited articles
Abramowitz, M. and Stegun, I. (Eds.): Handbook of Mathematical Functions, Dover Publications, New York, USA, ISBN 978-0-486-61272-0, 1970.
Allmendinger, R.: FaultKin 8 [code and data set], https://www.rickallmendinger.net/faultkin, last access: 3 April 2024.
Armienti, P., Corazzato, C., Groppelli, G., Natoli, E., and Pasquare, G.: Geological and petrographical study of Montecampione Triassic subvolcanic bodies (Southern Alps, Italy). Preliminary geodynamic results, B. Soc. Geol. Ital., 2, 67–78, 2003.
Baggio, P. and De Marco, L.: La serie basale tardo-paleozoica del Varesotto e le mineralizzazioni ad uranio della Valganna, Comitato nazionale per le ricerche nucleari – Studi Ricerche Divisione Geomineraria, 3, 15–103, 1960.
Bakos, F., Del Moro, A., and Visona, D.: The Hercynian volcano-phitonic association of Ganna (Lake Lugano, Central Southern Alps, Italy), Eur. J. Mineral., 2, 373–384, https://doi.org/10.1127/ejm/2/3/0373, 1990.
Barth, S., Oberli, F., and Meier, M.: Th-Pb versus U-Pb isotope systematics in allanite from co-genetic rhyolite and granodiorite: Implications for geochronology, Earth Planet. Sc. Lett., 124, 149–159, 1994.
Beltrando, M., Stockli, D. F., Decarlis, A., and Manatschal, G.: A crustal-scale view at rift localization along the fossil Adriatic margin of the Alpine Tethys preserved in NW Italy, Tectonics, 34, 1927–1951, https://doi.org/10.1002/2015TC003973, 2015.
Berger, A., Mercolli, I., Kapferer, N., and Fügenschuh, B.: Single and double exhumation of fault blocks in the internal Sesia-Lanzo Zone and the Ivrea-Verbano Zone (Biella, Italy), Int. J. Earth Sci., 101, 1877–1894, https://doi.org/10.1007/s00531-012-0755-6, 2012.
Bernoulli, D.: Zur Geologie des Monte Generoso: (Lombardische Alpen); ein Beitrag zur Kenntnis der südalpinen Sedimente, Beitr. Geol. Karte Schweiz, N. F., 118, 1–134, 1964.
Bernoulli, D.: The pre-Alpine geodynamic evolution of the Southern Alps: a short summary, Bulletin für angewandte Geologie, 12, 3–10, 2007.
Bernoulli, D., Ambrosi, C., Scapozza, C., Stockar, R., and Schenker, F., Gaggero, L., Antognini, M. and Bronzini, S.: Foglio 1373 Mendrisio (parte Est) con parte Ovest del foglio Como. – Atlante geologico della Svizzera 1: 25 000, Note esplicative, in: Ufficio federale di topografia, edited by: Dall'Agnolo, S., CH-3084 Wabern, ISBN 978-3-302-40077-8, 2018.
Berra, F., Galli, M. T., Reghellin, F., Torricelli, S., and Fantoni, R.: Stratigraphic evolution of the Triassic–Jurassic succession in the Western Southern Alps (Italy): the record of the two-stage rifting on the distal passive margin of Adria, Basin Res., 21, 335–353, https://doi.org/10.1111/j.1365-2117.2008.00384.x, 2009.
Berra, F., Tiepolo, M., Caironi, V., and Siletto, G. B.: U–Pb zircon geochronology of volcanic deposits from the Permian basin of the Orobic Alps (Southern Alps, Lombardy): chronostratigraphic and geological implications, Geol. Mag., 152, 429–443, https://doi.org/10.1017/S0016756814000405, 2015.
Berra, F., Felletti, F., and Tessarollo, A.: Stratigraphic Architecture of a Transtensional Continental Basin in Low-Latitude Semiarid Conditions: The Permian Succession of the Central Orobic Basin (Southern Alps, Italy), J. Sediment. Res., 86, 408–429, https://doi.org/10.2110/jsr.2016.26, 2016.
Bertotti, G., Picotti, V., Bernoulli, D., and Castellarin, A.: From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous, Sediment. Geol., 86, 53–76, https://doi.org/10.1016/0037-0738(93)90133-P, 1993.
Bertotti, G., Seward, D., Wijbrans, J., Ter Voorde, M., and Hurford, A. J.: Crustal thermal regime prior to, during, and after rifting: A geochronological and modeling study of the Mesozoic South Alpine rifted margin, Tectonics, 18, 185–200, https://doi.org/10.1029/1998TC900028, 1999.
Bigi, G., Cosentino, D., Parotto, M., Sartori, R., and Scandone, P.: Structural Model of Italy Scale 1 V 500:000 – Consiglio 10 Nazionale delle Ricerche – Progetto Finalizzato Geodinamica, SELCA, Firenze, Italy, 1990.
Boehnke, P. and Harrison, T. M.: A meta-analysis of geochronologically relevant half-lives: what's the best decay constant?, Int. Geol. Rev., 56, 905–914, https://doi.org/10.1080/00206814.2014.908420, 2014.
Bonin, B., Brandlein, P., Bussy, F., Desmons, J., Eggenberger, U., Finger, F., Graf, K., Marro, C., Mercolli, I., Oberhänsli, R., Ploquin, A., Quadt von, A., Raumer von, J., Schaltegger, U., Steyrer, H.P., Visonà, D., and Vivier, G.: Late Varisican Magmatic Evolution of the Alpine Basement, in: The pre-Mesozoic Geology in the Alps, edited by: von Raumer, J., and Neubauer, F., Springer, Berlin, Germany, 169–199, https://doi.org/10.1007/978-3-642-84640-3, 1993.
Boriani, A. and Villa, I. M.: Geochronology of regional metamorphism in the Ivrea-Verbano zone and Serie dei Laghi, Italian Alps, Schweiz. Miner. Petrog., 77, 381–401, 1997.
Boriani, A., Burlini, L., and Sacchi, R.: The Cossato-Mergozzo-Brissago Line and the Pogallo Line (Southern Alps, Northern Italy) and their relationships with the late-Hercynian magmatic and metamorphic events, Tectonophysics, 182, 91–102, https://doi.org/10.1016/0040-1951(90)90344-8, 1990.
Boriani, A., Sassi, F., and Sassi, R.: The basement complexes in Italy, with special regards to those exposed in the Alps: a review, Episodes, 26, 186–192, https://doi.org/10.18814/epiiugs/2003/v26i3/006, 2003.
Brack, P. and Rieber, H.: Towards a better definition of the Anisian/Ladinian boundary: New biostratigraphic data and correlations of boundary sections from the Southern Alps, Eclogae Geol. Helv., 86, 415–527, 1993.
Cadel, G.: Geology and uranium mineralization of the Collio Basin (central Southern Alps, Italy), Uranium, 2, 215–240, 1986.
Carraro, F. and Ferrara, G.: Alpine “Tonalite” at Miagliano, Biella (Zona Diorito-Kinzigitica). A preliminary note, Schweiz. Miner. Petrog., 48, 75–80, 1968.
Carslaw, H. and Jaeger, J.: Conduction of Heat in Solids, Clarendon Press, Oxford, United Kingdom, 510 pp., ISBN-10: 0198533683, 1959.
Casati, P.: Tettonismo e sedimentazione nel settore occidentale delle Alpi Meridionali durante il tardo Paleozoico, il Triassico e il Giurassico, Riv. Ital. Paleontologia Stratigrafia, 84, 313–326, 1978.
Cassinis, G., Perotti, C. R., and Ronchi, A.: Permian continental basins in the Southern Alps (Italy) and peri-mediterranean correlations, Int. J. Earth Sci., 101, 129–157, https://doi.org/10.1007/s00531-011-0642-6, 2012.
Cassinis, G., Perotti, C., and Santi, G.: Post-Variscan Verrucano-like deposits in Italy, and the onset of the alpine tectono-sedimentary cycle, Earth-Sci. Rev., 185, 476–497, 2018.
Castellarin, A., Lucchini, F., Rossi, P. L., Selli, L., and Simboli, G.: The Middle Triassic magmatic-tectonic arc development in the Southern Alps, Tectonophysics, 146, 79–89, 1988.
Colombo, M., Di Capua, A., Livio, F., Scaramuzzo, E., and Tringali, G.: Volcanic and tectonic interaction during the Permian geodynamic event: new insights from the Lugano-Varese district, Southern Alps, (Italy-Switzerland), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-16466, https://doi.org/10.5194/egusphere-egu25-16466, 2025.
De Min, A., Velicogna, M., Ziberna, L., Chiaradia, M., Alberti, A., and Marzoli, A.: Triassic magmatism in the European Southern Alps as an early phase of Pangea break-up, Geol. Mag., 157, 1800–1822, https://doi.org/10.1017/S0016756820000084, 2020.
Di Battistini, G., Bargossi, G. M., Spotti, G., and Toscani, L.: Andesites of the late Hercynian volcanic sequence in Trentino Alto Adige (Northen Italy), Rendiconti Società Italiana Mineralogia Petrologia, 43, 1087–1100, 1988.
Diella, V., Spalla, M. I., and Tunesi, A.: Contrasting thermomechanical evolutions in the Southalpine metamorphic basement of the Orobic Alps (Central Alps, Italy), J. Metamorph. Geol., 10, 203–219, https://doi.org/10.1111/j.1525-1314.1992.tb00079.x, 1992.
Di Paola, S., Spalla, M. I., and Gosso, G.: New structural mapping and metamorphic evolution of the Domaso Cortafo Zone (Southern Alps-Lake Como), Memorie di Scienze Geologiche, Padova, 53, 1–14, 2001.
Doglioni, C.: Geological remarks on the relationships between extension and convergent geodynamic settings, Tectonophysics, 252, 253–267, https://doi.org/10.1016/0040-1951(95)00087-9, 1995.
Ehlers, T. A., Willett, S. D., Armstrong, P. A., and Chapman, D. S.: Exhumation of the central Wasatch Mountains, Utah: 2. Thermokinematic model of exhumation, erosion, and thermochronometer interpretation, J. Geophys. Res.-Sol. Ea., 108, 2173, https://doi.org/10.1029/2001JB001723, 2003.
Elter, F. M., Gaggero, L., Mantovani, F., Pandeli, E., and Costamagna, L. G.: The Atlas-East Variscan-Elbe shear system and its role in the formation of the pull-apart Late Palaeozoic basins, Int. J. Earth Sci., 109, 739–760, https://doi.org/10.1007/s00531-020-01830-y, 2020.
Ferrando, S., Bernoulli, D., and Compagnoni, R.: The Canavese zone (internal Western Alps): a distal margin of Adria, Schweiz. Miner. Petrog., 84, 237–259, 2004.
Finger, F. and Steyrer, H. P.: I-type granitoids as indicators of a late Paleozoic convergent ocean–continent margin along the southern flank of the central European Variscan orogen, Geology, 18, 1207–1210, 1990.
Finger, F. and Steyrer, H. P.: Comments and Replies on I-type granitoids as indicators of a late Paleozoic convergent ocean–continent margin along the southern flank of the central European Variscan orogen, Geology, 19, 1245–1248, 1991.
Furrer, H.: The Kalkschieferzone (Upper Meride Limestone; Ladinian) near Meride (Canton Ticino, Southern Switzerland) and the evolution of a Middle Triassic intraplatform basin, Eclogae Geol. Helv., 88, 827–852, 1995.
Gaetani, M.: From Permian to Cretaceous: Adria as pivotal between extensions and rotations of Tethys and Atlantic Oceans, Journal of the Virtual Explorer, 36, 3–46, https://doi.org/10.3809/jvirtex.2010.00235, 2010.
Gaetani, M., Gnaccolini, M., Jadoul, F., and Garzanti, E.: Multiorder sequence stratigraphy in the Triassic system of the western Southern Alps: Mesozoic and Cenozoic sequence stratigraphy of European basins, SEPM Special Publications, 60, 701–717, 1998.
Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M.: Effect of alpha-damage annealing on apatite thermochronology, Chem. Geol., 266, 157–170, https://doi.org/10.1016/j.chemgeo.2009.06.001, 2009.
Giger, M.: Geochronologische und petrographische Studien an Geröllen und Sedimenten der Gonfolite Lombarda Gruppe (Südschweiz und Norditalien) und ihr Vergleich mit dem alpinen Hinterland, PhD thesis, University of Bern, Bern, Switzerland, 227 pp., 1991.
Giorno, M., Barale, L., Bertok, C., Frenzel, M., Looser, N., Guillong, M., Bernasconi, S., and Martire, L.: Sulfide-associated hydrothermal dolomite and calcite reveal a shallow burial depth for Alpine-type Zn-(Pb) deposits, Geology, 50, 853–858, https://doi.org/10.1130/G49812.1, 2022.
Govi, M: Geologia del territorio compreso tra il Lago di Lugano e la Val Marchirolo, Studi e Ricerche della Divisione Geomineraria del CNR, 3, 160–217, 1960.
Gretter, N., Ronchi, A., Langone, A., and Perotti, C. R.: The transition between the two major Permian tectono-stratigraphic cycles in the central Southern Alps: results from facies analysis and U/Pb geochronology, Int. J. Earth Sci., 102, 1181–1202, https://doi.org/10.1007/s00531-013-0886-4, 2013.
Handy, M. R., Franz, L., Heller, F., Janott, B., and Zurbriggen, R.: Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland), Tectonics, 18, 1154–1177, https://doi.org/10.1029/1999TC900034, 1999.
Heberer, B., Reverman, R. L., Fellin, M. G., Neubauer, F., Dunkl, I., Zattin, M., Seward, D., Genser, J., and Brack, P.: Postcollisional cooling history of the Eastern and Southern Alps and its linkage to Adria indentation, Int. J. Earth Sci., 106, 1557–1580, https://doi.org/10.1007/s00531-016-1367-3, 2016.
Hourigan, J. K., Reiners, P. W., and Brandon, M. T.: U–Th zonation-dependent alpha-ejection in chronometry, Geochim. Cosmochim. Ac., 69, 3349–3365, https://doi.org/10.1016/j.gca.2005.01.024, 2005.
Hunziker, J. C.: Rb–Sr and K–Ar age determination and the Alpine tectonic history of the Western Alps, Mem. Ist. Geol. Mineral. Univ. Padova, 31, 5–55, 1974.
Hurford, A. J.: Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line, Contrib. Mineral. Petr., 92, 413–427, 1986.
Jäger, E. and Faul, H.: Altersbestimmungen an einigen Schweizer Gesteinen und dem Granit von Baveno, Schweiz. Miner. Petrog., 40, 10–12, 1960.
Jongmans, W. J. and Ritter, E.: Die Karbonflora der Schweiz, Beiträge zur geologischen Karte der Schweiz, Kümmerly und Frey, 116 pp., 1960.
Kalin, O. and Trümpy, D.: Sedimentation und Palaotektonik in den westlichen Sudalpen: Zur triasisch-jurassischen Geschichte des Monte Nudo-Beckens, Eclogae Geol. Helv., 70, 295–350, 1960.
Karakas, O., Wotzlaw, J. F., Guillong, M., Ulmer, P., Brack, P., Economos, R., Bergantzm G. W., Sinigoi, S., and Bachmann, O.: The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes, Geology, 47, 719–723, https://doi.org/10.1130/G46020.1, 2019.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long alpha-particle stopping distances in (U–Th–Sm) He geochronology: Refinement of the baseline case, Geochm. Cosmochim. Ac., 75, 7779–7791, https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Locchi, S., Zanchetta, S., and Zanchi, A.: Evidence of Early Permian extension during the post-Variscan evolution of the central Southern Alps (N Italy), Int. J. Earth Sci., 111, 1717–1738, https://doi.org/10.1007/s00531-022-02220-2, 2022.
Lorenz, V. and Nicholls, I. A.: Plate and intraplate processes of Hercynian Europe during the Late Paleozoic, Tectonophysics, 107, 25–56, 1984.
Malavieille, J., Guihot, P., Costa, S., Lardeaux, J. M., and Gardien, V.: Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin, Tectonophysics, 177, 139–149, 1990.
Marocchi, M., Morelli, C., Mair, V., Klötzli, U., and Bargossi, G. M.: Evolution of Large Silicic Magma Systems: New U–Pb Zircon Data on the NW Permian Athesian Volcanic Group (Southern Alps, Italy), J. Geol., 116, 480–498, 2008.
Marrett, R. and Allmendinger, R. W.: Kinematic analysis of fault-slip data, J. Struct. Geol., 12, 973–986, 1990.
Martin, S., Bigazzi, G., Zattin, M., Viola, G., and Balestrieri, M. L.: Neogene kinematics of the Giudicarie fault (Central-Eastern Alps, Italy): new apatite fission-track data, Terra Nova, 10, 217–221, 1998.
Martin, S., Toffolo, L., Moroni, M., Montorfano, C., Secco, L., Agnini, C., Nimis, P., and Tumiati, S.: Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps, Lithos, 284–285, 276–295, https://doi.org/10.1016/j.lithos.2017.04.002, 2017.
McDowell, F. W.: Potassium-argon ages from the Ceneri zone, Southern Swiss Alps, Contrib. Mineral. Petr., 28, 165–182, 1970.
McDowell, F. W. and Schmid, R.: Potassium-argon ages from the Valle d'Ossola section of the Ivrea-Verbano zone (northern Italy), Schweiz. Miner. Petrog., 48, 205–210, 1968.
Mohn, G., Manatschal, G., Müntener, O., Beltrando, M., and Masini, E.: Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins, Int. J. Earth Sci., 99, 75–101, 2010.
Mohn, G., Manatschal, G., Masini, E., and Müntener, O.: Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy), Int. J. Earth Sci., 100, 937–961, 2011.
Mohn, G., Manatschal, G., Beltrando, M., Masini, E., and Kusznir, N.: Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins, Tectonics, 31, TC1012, https://doi.org/10.1029/2011TC002961, 2012.
Molli, G., Brogi, A., Caggianelli, A., Capezzuoli, E., Liotta, D., Spina, A., and Zibra, I. Late Palaeozoic tectonics in Central Mediterranean: a reappraisal, Swiss J. Geosci., 113, 23, https://doi.org/10.1186/s00015-020-00375-1. 2020.
Muttoni, G., Kent, D. V., Garzanti, E., Brack, P., Abrahamsen, N., and Gaetani, M.: Early Permian Pangea `B'to Late Permian Pangea “A”, Earth Planet. Sc. Lett., 215, 379–394, https://doi.org/10.1016/S0012-821X(03)00452-7, 2003.
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M., and Zanchi, A.: Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian, GeoArabia, 14, 17–48, https://doi.org/10.2113/geoarabia140417, 2009.
Naliboff, J. B., Buiter, S. J., Péron-Pinvidic, G., Osmundsen, P. T., and Tetreault, J.: Complex fault interaction controls continental rifting, Nat. Commun., 8, 1179, https://doi.org/10.1038/s41467-017-00904-x, 2017.
Peron-Pinvidic, G., Manatschal, G., and Osmundsen, P. T.: Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts, Mar. Petrol. Geol., 43, 21–47, https://doi.org/10.1016/j.marpetgeo.2013.02.002, 2013.
Pohl, F., Froitzheim, N., Obermüller, G., Tomaschek, F., Schröder, O., Nagel, T. J., Schiunnach, D., and Heuser, A.: Kinematics and age of syn-intrusive detachment faulting in the Southern Alps: Evidence for Early Permian crustal extension and implications for the Pangea A versus B Controversy, Tectonics, 37, 3668–3689, https://doi.org/10.1029/2018TC004974, 2018,
Pomella, H., Stipp, M., and Fügenschuh, B.: Thermochronological record of thrusting and strike-slip faulting along the Giudicarie fault system (Alps, Northern Italy), Tectonophysics, 579, 118–130, https://doi.org/10.1016/J.Tecto.2012.04.015, 2012.
QGIS Association: QGIS Geographic Information System, QGIS Association [code and data set], https://qgis.org/it/site/, last access: 3 April 2024.
Quick, J. E., Sinigoi, S., Peressini, G., Demarchi, G., Wooden, J. L., and Sbisà, A.: Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km, Geology, 37, 603–606, 2009.
Real, C., Fassmer, K., Carosi, R., Froitzheim, N., Rubatto, D., Groppo, C., Münker. C., and Ferrando, S.: Carboniferous–Triassic tectonic and thermal evolution of the middle crust section of the Dervio–Olgiasca Zone (Southern Alps), J. Metamorph. Geol., 41, 685–718, https://doi.org/10.1111/jmg.12714, 2023.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand orogenic erosion, Annu. Rev. Earth Pl. Sc., 34, 419–466, https://doi.org/10.1146/annurev.earth.34.031405.125202, 2006.
Reiners, P. W., Spell, T. L., Nicolescu, S., and Zanetti, K. A.: Zircon thermochronometry: He diffusion and comparisons with dating, Geochim. Cosmochim. Ac., 68, 1857–1887, https://doi.org/10.1016/j.gca.2003.10.021, 2004.
Renesto, S. and Stockar, R.: First record of a coelacanth fish from the Middle Triassic Meride Limestone of Monte San Giorgio (Canton Ticino, Switzerland), Riv. Ital. Paleontol. S., 124, 639–653, 2018.
Reverman, R. L., Fellin, M. G., Herman, F., Willett, S. D., and Fitoussi, C.: Climatically versus tectonically forced erosion in the Alps: Thermochronometric constraints from the Adamello Complex, Southern Alps, Italy, Earth Planet. Sc. Lett., 339, 127–138, https://doi.org/10.1016/j.epsl.2012.04.051, 2012.
Roda, M., Regorda, A., Spalla, M. I., and Marotta, A. M.: What drives Alpine Tethys opening? Clues from the review of geological data and model predictions, Geol. J., 54, 2646–2664, https://doi.org/10.1002/gj.3316, 2019.
Rosenberg, C. L. and Kissling, E.: Three-dimensional insight into Central-Alpine collision: Lower-plate or upper-plate indentation?, Geology, 41, 1219–1222, https://doi.org/10.1130/G34584.1, 2013.
Scaramuzzo, E., Livio, F. A., Granado, P., Di Capua, A., and Bitonte, R.: Anatomy and kinematic evolution of an ancient passive margin involved into an orogenic wedge (Western Southern Alps, Varese area, Italy and Switzerland), Swiss J. Geosci., 115, 4, https://doi.org/10.1186/s00015-021-00404-7, 2022.
Schaltegger, U. and Brack, P.: Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps, Int. J. Earth Sci., 96, 1131–1151, https://doi.org/10.1007/s00531-006-0165-8, 2007.
Shuster, D. L., Flowers, R. M., and Farley, K. A.: The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sc. Lett., 249, 148–161, https://doi.org/10.1016/j.gca.2008.10.013, 2006.
Siegesmund, S., Layer, P., Dunkl, I., Vollbrecht, A., Steenken, A., Wemmer, K., and Ahrendt, H.: Exhumation and deformation history of the lower crustal section of the Valstrona di Omegna in the Ivrea Zone, southern Alps, Geological Society, London, Special Publications, 298, 45–68, https://doi.org/10.1144/SP298.3, 2008.
Siletto, G. B., Spalla, M. I., Tunesi, A., Lardeaux, J. M., and Colombo, A.: Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy, in: Pre-Mesozoic geology in the Alps, edited by: Von Raumer, J. F. and Neubauer, F., Springer, Berlin, Germany, 585–598, ISBN-10: 3642846424, 1993.
Spalla, M. I., Diella, V., Pigazzini, N.., Siletto, G. B., and Gosso, G.: Significato tettonico della transizione Cld-And nelle metapeliti del Basamento Sudalpino (Alta Val Camonica), Rendiconti della Società Geologica Italiana, 2, 182–183, 2006.
Stampfli, G. M.: The Intra-Alpine terrain: a Paleotethyan remnant in the Alpine Variscides, Eclogae Geol. Helv., 89, 13–42, 1996.
Stampfli, G. M.: Tethyan oceans, in: Tectonics and Magmatism in Turkey and Surrounding Area, edited by: Bozkurt, E., Winchester, J. A., and Piper, J. D. A., Geological Society, London, Special Publications, 173, 1–23, ISBN 1-86239-064-9, 2000.
Stampfli, G. M. and Kozur, H. W.: Europe from the Variscan to the Alpine cycles, in: European Lithosphere Dynamics, edited by: Gee, D. G. and Stephenson, R. A., Geological Society, London, Memoirs, 32, 57–82, https://doi.org/10.1144/GSL.MEM.2006.032.01.04, 2006.
Stille, P. and Buletti, M.: Nd-Sr isotopic characteristics of the Lugano volcanic rocks and constraints on the continental crust formation in the South Alpine domain (N-Italy-Switzerland), Contrib. Mineral. Petr., 96, 140–150, 1987.
Stockar, R.: Facies, depositional environment, and palaeoecology of the Middle Triassic Cassina beds (Meride Limestone, Monte San Giorgio, Switzerland), Swiss J. Geosci., 103, 101–119, https://doi.org/10.1007/s00015-010-0008-2, 2010.
Stockar, R., Adatte, T., Baumgartner, P. O., and Föllmi, K. B.: Palaeoenvironmental significance of organic facies and stable isotope signatures: the Ladinian San Giorgio Dolomite and Meride Limestone of Monte San Giorgio (Switzerland, WHL UNESCO), Sedimentology, 60, 239–269, https://doi.org/10.1111/sed.12021, 2013.
Storck, J. C., Brack, P., Wotzlaw, J. F., and Ulmer, P.: Timing and evolution of Middle Triassic magmatism in the Southern Alps (northern Italy), J. Geol. Soc. London, 176, 253–268, 2019.
Torsvik, T. H. and Cocks, L. R. M.: Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review, J. Geol. Soc. London, 161, 555–572, 2004.
Visonà, D.: Plutonismo basico ercinico nel Sudalpino delle Alpi Orientali: primi dati per un modello di tettonica a placche ercinica, Rendiconti della Società geologica italiana, 5, 105–107, https://doi.org/10.1007/s005310100200, 1982.
Von Raumer, J., Stampfli, G., Borel, G., and Bussy, F.: Organization of pre-Variscan basement areas at the north-Gondwanan margin, Int. J. Earth Sci., 91, 35–52, 2002.
Welch, B. L.: The generalization of “Student's” problem when several different population variances are involved, Biometrika, 34, 28–35, 1947.
Willett, S. D., Herman, F., Fox, M., Stalder, N., Ehlers, T. A., Jiao, R., and Yang, R.: Bias and error in modelling thermochronometric data: resolving a potential increase in Plio-Pleistocene erosion rate, Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021, 2021.
Wilson, J. T.: Static or mobile earth: the current scientific revolution, P. Am. Philos. Soc., 112, 309–320, 1968.
Wilson, R. W., Houseman, G. A., Buiter, S. J. H., McCaffrey, K. J., and Doré, A. G.: Fifty years of the Wilson Cycle concept in plate tectonics: an overview, Geological Society, London, Special Publications, 470, 1–17, https://doi.org/10.1144/SP470-2019-58, 2019.
Winterer, E. L. and Bosellini, A.: Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy, AAPG Bull., 65, 394–421, https://doi.org/10.1306/2F9197E2-16CE-11D7-8645000102C1865D, 1981.
Withjack, M. O., Islam, Q. T., and La Pointe, P. R.: Normal faults and their hanging-wall deformation: an experimental study, AAPG Bull., 79, 1–17, https://doi.org/10.1306/8D2B1494-171E-11D7-8645000102C1865D, 1995.
Wolff, R., Dunkl, I., Kiesselbach, G., Wemmer, K., and Siegesmund, S.: Thermochronological constraints on the multiphase exhumation history of the Ivrea-Verbano Zone of the Southern Alps, Tectonophysics, 579, 104–117, https://doi.org/10.1016/j.tecto.2012.03.019, 2012.
Zanchetta, S., D'Adda, P., Zanchi, A., Barberini, V., and Villa, I. M.: Cretaceous-Eocene compression in the central Southern Alps (N Italy) inferred from dating of pseudotachylytes along regional thrust faults, J. Geodyn., 51, 245–263, https://doi.org/10.1016/j.jog.2010.09.004, 2011.
Zanchetta, S., Malusà, M. G., and Zanchi, A.: Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps), Lithosphere, 7, 662–681, https://doi.org/10.1130/L466.1, 2015.
Zanchi, A., Zanchetta, S., Berio, L., Berra, F., and Felletti, F.: Low-angle normal faults record Early Permian extensional tectonics in the Orobic Basin (Southern Alps, N Italy), Ital. J. Geosci., 138, 184–201, https://doi.org/10.3301/IJG.2018.35, 2019.
Zanetti, A., Mazzucchelli, M., Sinigoi, S., Giovanardi, T., Peressini, G., and Fanning, M.: SHRIMP U–Pb zircon Triassic intrusion age of the Finero mafic complex (Ivrea–Verbano Zone, Western Alps) and its geodynamic implications, J. Petrol., 54, 2235–2265, 2013.
Zanoni, D. and Spalla, M. I.: The Variscan evolution in the basement cobbles of the Permian Ponteranica Formation by microstructural and petrologic analysis, Ital. J. Geosci., 137, 254–271, https://doi.org/10.3301/IJG.2018.12, 2018.
Zattin, M., Cuman, A., Fantoni, R., Martin, S., Scotti, P., and Stefani, C.: From Middle Jurassic heating to Neogene cooling: The thermochronological evolution of the southern Alps, Tectonophysics, 414, 191–202, https://doi.org/10.1016/J.Tecto.2005.10.020, 2006.
Ziegler, P. A. and Stampfli, G. M.: Late Paleozoic-Early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys, in: Permian continental deposits of Europe and other areas. Regional reports and correlations, edited by: Cassinis, G., Monografie di Natura Bresciana, Grafo, Brescia, Italy, 17–34, 2001.
Zingg, A., Handy, M. R., Hunziker, J. C., and Schmid, S. M.: Tectonometamorphic history of the Ivrea Zone and its relationship to the crustal evolution of the Southern Alps, Tectonophysics, 182, 169–192, https://doi.org/10.1016/0040-1951(90)90349-D, 1990.
Zorn, H.: Paläontologische, stratigraphische und sedimentologische Untersuchungen des Salvatoredolomits (Mitteltrias) der Tessiner Kalkalpen: unter besonderer Berücksichtigung der Mikrofazies, Diagenese und Taxionomie der Lamellibranchiata, Schweiz. Paläontol. Abh., 91, 1–90, 1971.
Zwingmann, H. and Mancktelow, N.: Timing of Alpine fault gouges, Earth Planet. Sc. Lett., 223, 415–425, https://doi.org/10.1016/j.epsl.2004.04.041, 2004.
Executive editor
I concur with the AE's assessment that this paper presents valuable new models on the Permo-Triassic evolution of the Alps.
I concur with the AE's assessment that this paper presents valuable new models on the...
Short summary
We address the transition between the Paleozoic Variscan and Alpine Mesozoic–Cenozoic cycles using tectono-stratigraphy and thermochronology. This transition unfolds through a multi-phase rifting history. An initial rifting stage occurred in the early Permian, followed in the early–middle Permian by a phase of transcurrent tectonics. This was succeeded by a period of erosion/non-deposition in the middle Permian. Crustal stretching in the Middle Triassic marked the onset of the Alpine cycle.
We address the transition between the Paleozoic Variscan and Alpine Mesozoic–Cenozoic cycles...