Articles | Volume 11, issue 3
https://doi.org/10.5194/se-11-1097-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1097-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upper Jurassic carbonate buildups in the Miechów Trough, southern Poland – insights from seismic data interpretations
Łukasz Słonka
CORRESPONDING AUTHOR
Institute of Geological Sciences, Polish Academy of Sciences (IGS PAS), Twarda Street 51/55, 00-818 Warsaw, Poland
Piotr Krzywiec
Institute of Geological Sciences, Polish Academy of Sciences (IGS PAS), Twarda Street 51/55, 00-818 Warsaw, Poland
Related authors
No articles found.
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Seismic wave modeling of fluid-saturated fractured porous rock: including fluid pressure diffusion effects of discretely distributed large-scale fractures
Integration of automatic implicit geological modelling in deterministic geophysical inversion
Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships
Seismic amplitude response to internal heterogeneity of mass-transport deposits
Investigation of the effects of surrounding media on the distributed acoustic sensing of a helically wound fibre-optic cable with application to the New Afton deposit, British Columbia
Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
An efficient probabilistic workflow for estimating induced earthquake parameters in 3D heterogeneous media
Dynamic motion monitoring of a 3.6 km long steel rod in a borehole during cold-water injection with distributed fiber-optic sensing
On the comparison of strain measurements from fibre optics with a dense seismometer array at Etna volcano (Italy)
The impact of seismic interpretation methods on the analysis of faults: a case study from the Snøhvit field, Barents Sea
Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico
On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones
Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods
New regional stratigraphic insights from a 3D geological model of the Nasia sub-basin, Ghana, developed for hydrogeological purposes and based on reprocessed B-field data originally collected for mineral exploration
Characterisation of subglacial water using a constrained transdimensional Bayesian transient electromagnetic inversion
Subsurface characterization of a quick-clay vulnerable area using near-surface geophysics and hydrological modelling
Electrical formation factor of clean sand from laboratory measurements and digital rock physics
Drill bit noise imaging without pilot trace, a near-surface interferometry example
Calibrating a new attenuation curve for the Dead Sea region using surface wave dispersion surveys in sites damaged by the 1927 Jericho earthquake
Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan
Yingkai Qi, Xuehua Chen, Qingwei Zhao, Xin Luo, and Chunqiang Feng
Solid Earth, 15, 535–554, https://doi.org/10.5194/se-15-535-2024, https://doi.org/10.5194/se-15-535-2024, 2024
Short summary
Short summary
Fractures tend to dominate the mechanical and hydraulic properties of porous rock and impact the scattering characteristics of passing waves. This study takes into account the poroelastic effects of fractures in numerical modeling. Our results demonstrate that scattered waves from complex fracture systems are strongly affected by the fractures.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023, https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Short summary
In this work we analyze signals emitted from wind turbines. They induce sound as well as ground motion waves which propagate through the subsurface and are registered by sensitive instruments. In our data we observe when these signals are present and how strong they are. Some signals are present in ground motion and sound data, providing the opportunity to study similarities and better characterize emissions. Furthermore, we study the amplitudes with distance to improve the signal prediction.
Jonathan Ford, Angelo Camerlenghi, Francesca Zolezzi, and Marilena Calarco
Solid Earth, 14, 137–151, https://doi.org/10.5194/se-14-137-2023, https://doi.org/10.5194/se-14-137-2023, 2023
Short summary
Short summary
Submarine landslides commonly appear as low-amplitude zones in seismic data. Previous studies have attributed this to a lack of preserved internal structure. We use seismic modelling to show that an amplitude reduction can be generated even when there is still metre-scale internal structure, by simply deforming the bedding. This has implications for interpreting failure type, for core-seismic correlation and for discriminating landslides from other "transparent" phenomena such as free gas.
Sepidehalsadat Hendi, Mostafa Gorjian, Gilles Bellefleur, Christopher D. Hawkes, and Don White
Solid Earth, 14, 89–99, https://doi.org/10.5194/se-14-89-2023, https://doi.org/10.5194/se-14-89-2023, 2023
Short summary
Short summary
In this study, the modelling results are used to help understand the performance of a helically wound fibre (HWC) from a field study at the New Afton mine, British Columbia. We introduce the numerical 3D model to model strain values in HWC to design more effective HWC system. The DAS dataset at New Afton, interpreted in the context of our modelling, serves as a practical demonstration of the extreme effects of surrounding media and coupling on HWC data quality.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
La Ode Marzujriban Masfara, Thomas Cullison, and Cornelis Weemstra
Solid Earth, 13, 1309–1325, https://doi.org/10.5194/se-13-1309-2022, https://doi.org/10.5194/se-13-1309-2022, 2022
Short summary
Short summary
Induced earthquakes are natural phenomena in which the events are associated with human activities. Although the magnitudes of these events are mostly smaller than tectonic events, in some cases, the magnitudes can be high enough to damage buildings near the event's location. To study these (high-magnitude) induced events, we developed a workflow in which the recorded data from an earthquake are used to describe the source and monitor the area for other (potentially high-magnitude) earthquakes.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jennifer E. Cunningham, Nestor Cardozo, Chris Townsend, and Richard H. T. Callow
Solid Earth, 12, 741–764, https://doi.org/10.5194/se-12-741-2021, https://doi.org/10.5194/se-12-741-2021, 2021
Short summary
Short summary
This work investigates the impact of commonly used seismic interpretation methods on the analysis of faults. Fault analysis refers to fault length, displacement, and the impact these factors have on geological modelling and hydrocarbon volume calculation workflows. This research was conducted to give geoscientists a better understanding of the importance of interpretation methods and the impact of unsuitable methology on geological analyses.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Laurent Guillou-Frottier, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche, and Gaétan Link
Solid Earth, 11, 1571–1595, https://doi.org/10.5194/se-11-1571-2020, https://doi.org/10.5194/se-11-1571-2020, 2020
Short summary
Short summary
In the first kilometers of the subsurface, temperature anomalies due to heat conduction rarely exceed 20–30°C. However, when deep hot fluids in the shallow crust flow upwards, for example through permeable fault zones, hydrothermal convection can form high-temperature geothermal reservoirs. Numerical modeling of hydrothermal convection shows that vertical fault zones may host funnel-shaped, kilometer-sized geothermal reservoirs whose exploitation would not need drilling at depths below 2–3 km.
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Elikplim Abla Dzikunoo, Giulio Vignoli, Flemming Jørgensen, Sandow Mark Yidana, and Bruce Banoeng-Yakubo
Solid Earth, 11, 349–361, https://doi.org/10.5194/se-11-349-2020, https://doi.org/10.5194/se-11-349-2020, 2020
Short summary
Short summary
Time-domain electromagnetic (TEM) geophysics data originally collected for mining purposes were reprocessed and inverted. The new inversions were used to construct a 3D model of the subsurface geology to facilitate hydrogeological investigations within a DANIDA-funded project. Improved resolutions from the TEM enabled the identification of possible paleovalleys of glacial origin, suggesting the need for a reevaluation of the current lithostratigraphy of the Voltaian sedimentary basin.
Siobhan F. Killingbeck, Adam D. Booth, Philip W. Livermore, C. Richard Bates, and Landis J. West
Solid Earth, 11, 75–94, https://doi.org/10.5194/se-11-75-2020, https://doi.org/10.5194/se-11-75-2020, 2020
Short summary
Short summary
This paper presents MuLTI-TEM, a Bayesian inversion tool for inverting TEM data with independent depth constraints to provide statistical properties and uncertainty analysis of the resistivity profile with depth. MuLTI-TEM is highly versatile, being compatible with most TEM survey designs, ground-based or airborne, along with the depth constraints being provided from any external source. Here, we present an application of MuLTI-TEM to characterise the subglacial water under a Norwegian glacier.
Silvia Salas-Romero, Alireza Malehmir, Ian Snowball, and Benoît Dessirier
Solid Earth, 10, 1685–1705, https://doi.org/10.5194/se-10-1685-2019, https://doi.org/10.5194/se-10-1685-2019, 2019
Short summary
Short summary
Land–river reflection seismic, hydrogeological modelling, and magnetic investigations in an area prone to quick-clay landslides in SW Sweden provide a detailed description of the subsurface structures, such as undulating fractured bedrock, a sedimentary sequence of intercalating leached and unleached clay, and coarse-grained deposits. Hydrological properties of the coarse-grained layer help us understand its role in the leaching process that leads to the formation of quick clays in the area.
Mohammed Ali Garba, Stephanie Vialle, Mahyar Madadi, Boris Gurevich, and Maxim Lebedev
Solid Earth, 10, 1505–1517, https://doi.org/10.5194/se-10-1505-2019, https://doi.org/10.5194/se-10-1505-2019, 2019
Mehdi Asgharzadeh, Ashley Grant, Andrej Bona, and Milovan Urosevic
Solid Earth, 10, 1015–1023, https://doi.org/10.5194/se-10-1015-2019, https://doi.org/10.5194/se-10-1015-2019, 2019
Short summary
Short summary
Data acquisition costs mainly borne by expensive vibrator machines (i.e., deployment, operations, and maintenance) can be regarded as the main impediment to wide application of seismic methods in the mining industry. Here, we show that drill bit noise can be used to image the shallow subsurface when it is optimally acquired and processed. Drill bit imaging methods have many applications in small scale near-surface projects, such as those in mining exploration and geotechnical investigation.
Yaniv Darvasi and Amotz Agnon
Solid Earth, 10, 379–390, https://doi.org/10.5194/se-10-379-2019, https://doi.org/10.5194/se-10-379-2019, 2019
Ulrich Polom, Hussam Alrshdan, Djamil Al-Halbouni, Eoghan P. Holohan, Torsten Dahm, Ali Sawarieh, Mohamad Y. Atallah, and Charlotte M. Krawczyk
Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, https://doi.org/10.5194/se-9-1079-2018, 2018
Short summary
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
Cited articles
Adámek, J.: The Jurassic floor of the Bohemian Massif in Moravia – geology and paleogeography, Bull. Geosci., 80, 291–305, 2005.
Afanasenkov, A. P., Nikishin, A. M., and Obukhov, A. N.: Geology of the
Eastern Black Sea, Scientific World, Moscow, 72 pp., 2007.
Bachtel, S. L., Dunn, P. A., Rahardjanto, S. P., Kissling, R. D., Martono,
D., and MacDonald, B. A.: Seismic stratigraphic evolution of the Miocene–Pliocene Segitiga Platform, East Natuna Sea, Indonesia: The origin,
growth, and demise of an isolated carbonate platform, in: Seismic imaging of
carbonate reservoirs and systems, edited by: Eberli, G. P., Massaferro, J.
L., and Sarg, J. F., AAPG Memoir, 81, 309–328, https://doi.org/10.1306/M81928, 2004.
Barski, M. and Matyja, B. A.: Stratygrafia górnej jury podłoża
zapadliska przedkarpackiego w oparciu o mikroskamieniałości, Kwartalnik AGH Geologia, 34, 163–164, 2008.
Belopolsky, A. V. and Droxler, A. W.: Seismic expressions of prograding
carbonate bank margins: Middle Miocene, Maldives, Indian Ocean, in: Seismic
imaging of carbonate reservoirs and systems, edited by: Eberli, G. P.,
Massaferro, J. L., and Sarg, J. F., AAPG Memoir, 81, 267–290, https://doi.org/10.1306/M81928, 2004.
Blendinger, W., Bowlin, B., Zijp, F. R., Darke, G., and Ekroll, M.:
Carbonate buildup flank deposits: an example from the Permian (Barents Sea,
northern Norway) challenges classical facies models, Sediment. Geol., 112,
89–103, https://doi.org/10.1016/S0037-0738(97)00025-0, 1997.
Borgomano, J. R. F. and Peters, J. M.: Outcrop and seismic expressions of
coral reefs, carbonate platforms, and adjacent deposits in the Tertiary of
the Salalah Basin, South Oman, in: Seismic imaging of carbonate reservoirs
and systems, edited by: Eberli, G. P., Massaferro, J. L., and Sarg, J. F.,
AAPG Memoir, 81, 251–266, https://doi.org/10.1306/M81928, 2004.
Bubb, J. N. and Hatlelid, W. G.: Seismic Stratigraphy and Global Changes of
Sea Level, Part 10: Seismic Recognition of Carbonate Buildups, in: Seismic
Stratigraphy – Applications to Hydrocarbon Exploration, edited by: Payton,
C. E., AAPG Memoir, 26, 185–204, 1977.
Buness, H., Hartmann, H., Rumpel, H. M., Beilecke, T., Musmann, P., and
Schulz, R.: Seismic Exploration of Deep Hydrogeothermal Reservoirs in Germany, in: Expanded Abstracts, World Geothermal Congress, Bali, Indonesia,
2010.
Burgess, P. M., Winefield, P., Minzoni, M., and Elders, C.: Methods for
identification of isolated carbonate buildups from seismic reflection data,
AAPG Bull., 97, 1071–1098, https://doi.org/10.1306/12051212011, 2013.
Chang, J., Hsu, H., Liu, C., Lee, T., Chiu, S., Su, C., Ma, Y., Chiu, Y.,
Hung, H., Lin, Y., and Chiu, C.: Seismic sequence stratigraphic analysis of
the carbonate platform, north offshore Taiping Island, Dangerous Grounds,
South China Sea. Tectonophysics, 702, 70–81, https://doi.org/10.1016/j.tecto.2015.12.010, 2017.
Colpaert, A., Pickard, N., Mienert, J., Henriksen, L. B., Rafaelsen, B., and
Andreassen, K.: 3D seismic analysis of an Upper Palaeozoic carbonate succession of the Eastern Finnmark Platform area, Norwegian Barents Sea,
Sediment. Geol., 197, 79–98, https://doi.org/10.1016/j.sedgeo.2006.09.001, 2007.
Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., and Van Wees, J. D.: Tectonic evolution of the Mid-Polish Trough: modelling
implications and significance for central European geology, Tectonophysics,
252, 179–195, https://doi.org/10.1016/0040-1951(95)00104-2, 1995.
Dadlez, R., Marek, S., and Pokorski, J. (Eds.): Paleogeographical Atlas of
Epicontinental Permian and Mesozoic in Poland (1:2 500 000), Polish Geological Institute, Warszawa, 1998.
Dadlez, R., Marek, S., and Pokorski, J. (Eds.): Geological Map of Poland
without Cainozoic Deposits (1:1 000 000), Polish Geological Institute,
Warszawa, 2000.
Di Lucia, M., Sayago, J., Frijia, G., Cotti, A., Sitta, A., and Mutti, M.:
Facies and seismic analysis of the Late Carboniferous – Early Permian
Finnmark carbonate platform (southern Norwegian Barents Sea): An assessment
of the carbonate factories and depositional geometries, Mar. Petrol. Geol.,
79, 372–393, https://doi.org/10.1016/j.marpetgeo.2016.10.029, 2017.
Dudek, D. and Wójcik, A.: Daily report: well Belvedere-1, unpublished
technical report, PNiG Jasło Sp. z o.o, 2011.
Dudek, D., Wójcik, A., Gała, J., and Jacek, M.: Geological Log: well
Belvedere-1, unpublished technical report, NAFTGAZ Wołomin, 2011.
Dżułyński, S.: The Origin of the Upper Jurassic Limestones in the
Cracow Area, Rocznik Polskiego Towarzystwa Geologicznego, 21, 125–180, 1952.
Eberli, G. P., Anselmetti, F. S., Betzler, C., Van Konijnenburg, J. H., and
Bernoulli, D.: Carbonate platform to basin transitions on seismic data and
in outcrops: Great Bahama Bank and the Maiella Platform margin, Italy, in:
Seismic imaging of carbonate reservoirs and systems, edited by: Eberli, G.
P., Massaferro, J. L., and Sarg, J. F., AAPG Memoir, 81, 207–250,
https://doi.org/10.1306/M81928, 2004.
Ellis, P. M., Wilson, R. C., and Leinfelder, R. R.: Controls on Upper Jurassic carbonate buildup development in the Lusitanian Basin, Portugal,
in: Carbonate Platforms: Facies, Sequences and Evolution, edited by: Tucker,
M. E., Wilson, J. L., Crevello, P. D., and Sarg, J. R., Spec. Publ. Int. Assoc. Sedimentolog., 9, 169–202, https://doi.org/10.1002/9781444303834.ch7, 1990.
Elvebakk, G., Hunt, D. W., and Stemmerik, L.: From isolated buildups to
buildup mosaics: 3D seismic sheds new light on upper Carboniferous–Permian
fault controlled carbonate buildups, Norwegian Barents Sea, Sediment. Geol.,
152, 7–17, https://doi.org/10.1016/S0037-0738(02)00232-4, 2002.
Epting, M.: The Miocene carbonate buildups, central Luconia, offshore Sarawak, in: Atlas of seismic stratigraphy, edited by: Bally, A. W., AAPG
Stud. Geol., 27, 168–173, 1989.
Feldman-Olszewska, A.: Depositional systems and cyclicity in the intracratonic Early Jurassic basin in Poland, Geol. Q., 41, 475–489, 1997a.
Feldman-Olszewska, A.: Depositional architecture of the Polish epicontinental Middle Jurassic basin, Geol. Q., 41 491–508, 1997b.
Fontaine, J. M., Cussey, R., Lacaze J., Lanaud, R,. and Yapaudjian, L.: Seismic interpretation of carbonate depositional environments, AAPG Bull.,
71, 281–297, https://doi.org/10.1306/94886E7F-1704-11D7-8645000102C1865D, 1987.
Fournier, F. and Borgomano, J.: Geological significance of seismic reflections and imaging of the reservoir architecture in the Malampaya gas
field (Philippines), AAPG Bull., 91, 235–258, https://doi.org/10.1306/10160606043, 2007.
Fournier, F., Montaggioni, L. F., and Borgomano, J.: Paleoenvironments and
high-frequency cyclicity in the Cenozoic south-east Asian shallow-water
carbonates: A case study from the Oligo-Miocene buildups of Malampaya
(offshore Palawan, Philippines), Mar. Petrol. Geol., 21, 1–22,
https://doi.org/10.1016/j.marpetgeo.2003.11.012, 2004.
Fournier, F., Borgomano, J., and Montaggioni, L. F.: Development patterns
and controlling factors of Tertiary carbonate buildups: Insights from
high-resolution 3D seismic and well data in the Malampaya gas field (offshore Palawan, Philippines), Sediment. Geol., 175, 189–215,
https://doi.org/10.1016/j.sedgeo.2005.01.009, 2005.
Gliniak, P., Urbaniec, A.: Oxford biohermal structures in the area
Bochnia-Sędziszów in seismic 3D recording, Nafta-Gaz, 10, 545–556, 2001.
Gliniak, P. and Urbaniec, A.: Geophysical characteristic of Oxfordian
bioherms in the Carpathian foreland area in the aspect of new techniques of
hydrocarbons searching (in Polish with English summary), Nafta-Gaz, 61,
343–348, 2005.
Gliniak, P., Laskowicz, R., and Urbaniec, A.: Upper Jurassic organic
constructions in Bochnia – Dębica area – possibility of recognition on
seismic section and exploration prospections of hydrocarbon reservoirs (in
Polish, with English summary), Institute of Oil and Gas – Kraków
Special Paper, 110, 161–165, 2000.
Gliniak, P., Laskowicz, A., Urbaniec, A., Such, P., and Leśniak, G.:
Reservoir rocks and facies development of the Upper Jurassic carbonate in
Zawada – Lękawica area, Nafta-Gaz, 11, 597–606, 2001.
Gliniak P., Laskowicz, R., Urbaniec, A., Leśniak, G., and Such, P.: The
facies development and reservoir properties in Late Jurassic carbonate
sediments in the central Carpathian foreland, in: Deformation, Fluid Flow
and Reservoir Appraisal in Foreland Fold, edited by: Swennen, R., Roure, F.,
and Granath, J. W., AAPG Hedberg Ser., 1, 347–355, 2004.
Gliniak, P., Gutowski, J., and Urbaniec, A.: Organic buildups recognized upon well and seismic data within the Upper Jurassic formations of the Carpathian foreland, Poland; perspectives for hydrocarbon exploration, Volumina Jurassica, 3, 29–43, 2005.
Golonka, J.: The Upper Jurassic microfacies in the Carpathian foreland, Biuletyn Instytutu Geologicznego, 310, 5–38, 1978.
Golonka, J.: Plate tectonic evolution of the southern margin of Eurasia in
the Mesozoic and Cenozoic, Tectonopysics, 381, 235–273,
https://doi.org/10.1016/j.tecto.2002.06.004, 2004.
Golonka J., Oszczypko, N., and Ślączka, A.: Geodynamic evolution and
paleogeography of the Carpathian-Panonian region – a global perspective, Slovak Geolog. Mag., 6, 139–142, 2000.
Grötsch, J. and Mercadier, C.: Integrated 3-D reservoir modeling based
on 3-D seismic: The Tertiary Malampaya and Camago buildups, offshore
Palawan, Philippines, AAPG Bull., 83, 1703–1727,
https://doi.org/10.1306/E4FD4247-1732-11D7-8645000102C1865D, 1999.
Guo, L., Vincent, S. J., and Lavrishchev, V.: Upper Jurassic Reefs from the
Russian Western Caucasus: Implications for the Eastern Black Sea, Turk. J.
Earth Sci., 20, 629–653, https://doi.org/10.3906/yer-1012-5, 2011.
Gutowski, J. and Koyi, H.: Influence of oblique basement strike-slip faults
on the Mesozoic evolution of the south-eastern segment of the Mid-Polish
Trough, Basin Res., 19, 67–86, https://doi.org/10.1111/j.1365-2117.2007.00312.x, 2007.
Gutowski, J., Popadyuk, I. V., and Olszewska, B.: Late Jurassic-earliest
Cretaceous evolution of the epicontinental sedimentary basin of southeastern
Poland and Western Ukraine, Geol. Q., 49, 31–44, https://doi.org/10.7306/gq.v49i1.7364, 2005.
Gutowski, J., Złonkiewicz, Z., Matyja, B. A., Pieńkowski, G., Radwańska, U., Radwański, A., and Wierzbowski, A.: Field trip B2 –
Upper Jurassic shallow-water carbonate platform and open shelf facies. Shallow water carbonates of the Holy Cross Mountains, in: Field trip guidebook of the 7th International Congress on the Jurassic System, edited by: Wierzbowski, A., Aubrecht, R., Golonka, J., Gutowski, J., Krobicki, M., Matyja, B. A., Pieńkowski, G., and Uchman, A., Kraków, Poland, 169–198, 2006.
Gutowski, J., Urbaniec, A., Złonkiewicz, Z., Bobrek, L., Świetlik, B.,
and Gliniak, P.: Upper Jurassic and Lower Cretaceous of the Middle Polish
Carpathian Foreland, Biuletyn Państwowego Instytutu Geologicznego, 426, 1–26, 2007.
Gwinner, M. P.: Carbonate rocks of the Upper Jurassic in SW-Germany, in:
Sedimentology of parts of Central Europe, edited by: Müller, G., Verlag Waldemar Kramer, Frankfurt am Main, 193–207, 1971.
Handford, C. R. and Loucks, R. G.: Carbonate Depositional Sequences and
Systems Tracts – Responses of Carbonate Platforms to Relative Sea-Level
Changes, in: Carbonate sequence stratigraphy: Recent development and applications, edited by: Loucks, R. G. and Sarg, J. F., AAPG Memoir, 57,
3–41, https://doi.org/10.1306/M57579C1, 1993.
Hartmann, H., Buness, H., Krawczyk, C. M., and Schulz, R.: 3-D seismic
analysis of a carbonate platform in the Molasse Basin – reef distribution
and internal separation with seismic attributes, Tectonophysics, 572–573,
16–25, https://doi.org/10.1016/j.tecto.2012.06.033, 2012.
Isern, A. R., Anselmetti, F. S., and Blum, P.: A Neogene carbonate platform,
slope, and shelf edifice shaped by sea level and ocean currents, Marion Plateau (northeast Australia), in: Seismic imaging of carbonate reservoirs
and systems, edited by: Eberli, G. P., Massaferro, J. L., and Sarg, J. F.,
AAPG Memoir, 81, 291–307, https://doi.org/10.1306/M81928, 2004.
Jędrzejowska-Tyczkowska, H., Misiarz, P., Golonka, J., and Przejczowska,
A.: Outrop information and seismic analogs in analysis of Jurassic buildups
(Poland), in: Proceedings of the 67th EAGE Conference & Exhibition,
Madrid, https://doi.org/10.3997/2214-4609-pdb.1.P295, 2005.
Jędrzejowska-Tyczkowska, H., Golonka, J., Misiarz, P., Krobicki, M.,
Matyszkiewicz, J., Olszewska, B., Przejczowska, A., and Oszczypko, N.: Upper
Jurassic carbonate buildups in the Carpathian foreland in Poland: geological
and geophysical setting, Volumina Jurassica, 4, 92–93, 2006.
Jurkowska, A.: Inoceramid stratigraphy and depositional architecture of the
Campanian and Maastrichtian of the Miechów Synclinorium (southern Poland), Acta Geol. Pol., 66, 59–84, https://doi.org/10.1515/agp-2015-0025, 2016.
Kendall, C. G. St. C. and Schlager, W.: Carbonates and relative changes in
sea level, Mar. Geol., 44, 181–212, https://doi.org/10.1016/0025-3227(81)90118-3, 1981.
Kiessling, W., Flügel, E., and Golonka, J.: Paleoreef Maps: Evaluation
of a Comprehensive Database on Phanerozoic Reefs, AAPG Bull., 83, 1552–1587, https://doi.org/10.1306/E4FD4215-1732-11D7-8645000102C1865D, 1999.
Kochman, A. and Matyszkiewicz, J.: Experimental method for estimation of
compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland, Acta Geol. Pol., 63,
681–696, https://doi.org/10.2478/agp-2013-0029, 2013.
Koša, E.: Sea-level changes, shoreline journeys, and the seismic
stratigraphy of Central Luconia, Miocene-present, offshore Sarawak, NW Borneo, Mar. Petrol. Geol., 59, 35–55, https://doi.org/10.1016/j.marpetgeo.2014.07.005, 2015.
Krajewski, M. and Schlagintweit, F.: Crescentiella-microbial-cement
microframeworks in the Upper Jurassic reefs of the Crimean Peninsula, Facies, 64, 21, https://doi.org/10.1007/s10347-018-0534-3, 2018.
Krajewski, M., Matyszkiewicz, J., Król, K., and Olszewska, B.: Facies of
the Upper Jurassic–Lower Cretaceous deposits from the southern part of the
Carpathian Foredeep basement in the Kraków–Rzeszów area (southern
Poland), Ann. Soc. Geol. Pol., 81, 269–290, 2011.
Krajewski, M., Olchowy, P., and Felisiak, I.: Late Jurassic facies architecture of the Złoczew Graben: implications for evolution of the
tectonic-controlled northern peri-Tethyan shelf (Upper Oxfordian–Lower
Kimmeridgian, Poland), Facies, 62, 4, https://doi.org/10.1007/s10347-015-0455-3, 2016.
Krajewski, M., Olchowy, P., Zatoń, M., and Bajda, T.: Kimmeridgian
hardground-sequence boundary from the Mesozoic margin of the Holy Cross
Mountains (central Poland): implications for the evolution of the northern
Tethyan carbonate shelf, Facies, 63, 15, https://doi.org/10.1007/s10347-017-0496-x, 2017.
Krajewski, M., Olchowy, P. and Rudziński, D.: Sedimentary successions in
the Middle–Upper Oxfordian reef deposits from the southern part of the
Kraków–Częstochowa Upland (Southern Poland), Geol. Q., 62, 653–668, https://doi.org/10.7306/gq.1429, 2018.
Krzywiec, P.: Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian Foredeep Basin – results of seismic data interpretation, Mar. Petrol. Geol., 18, 13–38,
https://doi.org/10.1016/S0264-8172(00)00037-4, 2001.
Krzywiec, P.: Mid-Polish Trough inversion – seismic examples, main mechanisms and its relationship to the Alpine – Carpathian collision, in:
Continental Collision and the Tectonosedimentary Evolution of Forelands,
edited by: Bertotti, G., Schulmann, K., and Cloetingh, S., EGU Stephan
Mueller Special Publication Series, 1, 151–165, https://doi.org/10.5194/smsps-1-151-2002, 2002.
Krzywiec, P.: Devonian-Cretaceous repeated subsidence and uplift along the
Tornquist-Teisseyre Zone in SE Poland – insight from seismic data
interpretation, Tectonophysics, 475, 142–159, https://doi.org/10.1016/j.tecto.2008.11.020, 2009.
Krzywiec, P., Gutowski, J., Walaszczyk, I., Wróbel, G., and Wybraniec, S.: Tectonostratigraphic model of the Late Cretaceous inversion along the
Nowe Miasto–Zawichost Fault Zone, SE Mid-Polish Trough, Geol. Q., 53,
27–48, 2009.
Krzywiec, P., Stachowska, A., and Stypa, A.: The only way is up – on Mesozoic uplifts and basin inversion events in SE Poland, in: Mesozoic
Resource Potential in the Southern Permian Basin, edited by: Kilhams, B.,
Kukla, P. A., Mazur, S., McKie, T., Mijnlieff, H. F., and Van Ojik, K.,
Geol. Soc. London Spec. Publ., 469, 33–57, https://doi.org/10.1144/SP469.14, 2018.
Kusumastuti, A., Van Rensbergen, P., and Warren, J. K.: Seismic sequence
analysis and reservoir potential of drowned Miocene carbonate platforms in
the Madura Strait, East Java, Indonesia, APPG Bull., 86, 213–232,
https://doi.org/10.1306/61EEDA94-173E-11D7-8645000102C1865D, 2002.
Kutek, J.: Le probleme du Rauracien et de l'Astartien de Pologne, Rocznik Polskiego Towarzystwa Geologicznego, 35, 263–272, 1965.
Kutek, J.: The Kimmeridgian and Upper Oxfordian in the SW margins of the
Holy Cross Mts., (Central Poland). Part I. Stratigraphy, Acta Geol. Pol., 18, 493–586, 1968.
Kutek, J.: The Kimmeridgian and Upper Oxfordian in the SW margins of the
Holy Cross Mts., (Central Poland). Part II. Paleogeography, Acta Geol. Pol., 19, 221–321, 1969.
Kutek, J.: Jurassic tectonic events in south-eastern Poland, Acta Geol.
Pol., 44, 67–221, 1994.
Kutek, J.: The Polish Mesozoic Rift Basin, in: Peri-Tethys Memoir 6:
Peri-Tethyan Rift/Wrench Basins and Passive Margins, edited by: Ziegler, P.
A., Cavazza, W., Robertson, A. H. F., and Crasquin-Soleau, S., Memoir Mus.
Natl. Hist., 186, 213–236, 2001.
Kutek, J. and Głazek, J.: The Holy Cross Area, Central Poland, in the Alpine Cycle, Acta Geol. Pol., 22, 603–653, 1972.
Lach, A.: Master Log for Chopin-1 well, unpublished technical report, GEOKRAK, 2011a.
Lach, A.: Master Log for Belvedere-1 well, unpublished technical report,
GEOKRAK, 2011b.
Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U.,
Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R.,
Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A.,
Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H.: The origin
of Jurassic reefs: current research developments and results, Facies, 31,
1–56, https://doi.org/10.1007/bf02536932, 1994.
Leinfelder, R. R., Werner, W., Nose, M., Schmid, D. U., Krautter, M., Laternser, R., Takacs, M., and Hartmann, D.: Paleoecology, growth parameters
and dynamics of coral, sponge and microbolite reefs from the Late Jurassic,
Göttinger Arb. Geol. Paläont. Sb., 2, 227–248, 1996.
Leinfelder, R. R., Schmid, D. U., Nose, M., and Werner, W.: Jurassic reef
patterns – the expression of a changing globe, in: Phanerozoic reef patterns, edited by: Kiessling, W., Flügel, E., and Golonka, J., SEPM
Spec. Publ., 72, 465–520, https://doi.org/10.2110/pec.02.72.0465, 2002.
Lott, G. K., Wong, T. E., Dusar, M., Andsbjerg, J., Mönnig, E.,
Feldman-Olszewska, A., and Verreussel, R. M. C. H.: Jurassic, in: Petroleum
geological atlas of the Southern Permian Basin Area, edited by: Doornenbal,
J. C. and Stevenson, A.G., EAGE Publications, Houten, 175–193, 2010.
Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R., and
Schulz, R.: 3D seismic survey explores geothermal targets for reservoir
characterization at Unterhaching, Munich, Germany, Geothermics, 50, 167–179, https://doi.org/10.1016/j.geothermics.2013.09.007, 2014.
Macurda, D. B.: Carbonate Seismic Facies Analysis, in: Carbonate seismology,
edited by: Marfurt, K. J. and Palaz, A., SEG Geophys. Dev. Ser., 6, 95–119, https://doi.org/10.1190/1.9781560802099, 1997.
Marek, S. and Pajchlowa, M. (Eds.): Epicontinental Permian and Mesozoic in
Poland, Prace Państwowego Instytutu Geologicznego, 153, 1–452, 1997.
Matyja, B. A.: The Oxfordian in the south-western margin of the Holy Cross
Mts, Acta Geol. Pol., 27, 41–64, 1977.
Matyja, B. A.: Development of the Mid-Polish Trough versus Late Jurassic
evolution in the Carpathian Foredeep area, Geol. Q., 51, 49–62, 2009.
Matyja, B. A. and Barski, M.: Stratygrafia górnej jury podłoża
zapadliska przedkarpackiego, Tomy Jurajskie, 4, 39–50, 2007.
Matyja, B. A. and Pisera, A.: Late Jurassic European sponge megafacies:
general perspective, in: 3rd Intern. Symp. Jurassic Stratigraphy Abstracts,
Poitiers, France, 81 pp., 1991.
Matyja, B. A. and Tarkowski, R.: Lower and Middle Oxfordian ammonite
biostratigraphy at Zalas in the Crakow Upland, Acta Geol. Pol., 31, 1–14,
1981.
Matyja, B. A. and Wierzbowski, A.: Biogeographic differentiation of the
Oxfordian and Early Kimmeridgian ammonite faunas of Europe, and its
stratigraphic consequences, Acta Geol. Pol., 45, 1–8, 1995.
Matyja, B. A. and Wierzbowski, A.: Sea bottom relief and bathymetry of Late
Jurassic sponge megafacies in Poland, Geores. Forum, 1–2, 333–340, 1996.
Matyja, B. A. and Wierzbowski, A.: Open shelf facies of the Polish Jura
Chain, in: Field trip guidebook of the 7th International Congress on the Jurassic System, edited by: Wierzbowski, A., Aubrecht, R., Golonka, J., Gutowski, J., Krobicki, M., Matyja, B. A., Pieńkowski, G., and Uchman, A., Kraków, Poland, 198–206, 2006.
Matyja, B. A., Gutowski, J., and Wierzbowski, A.: The open shelf-carbonate
platform succession at the Oxfordian/Kimmeridgian boundary in the SW margin
of the Holy Cross Mts: stratigraphy, facies and ecological implications,
Acta Geol. Pol., 39, 29–48, 1989.
Matyja, B. A., Wierzbowski, A., Radwańska, U., and Radwański, A.:
Stop B2.8 – Małogoszcz, large quarry of cement works (Lower and lowermost
Upper Kimmeridgian), in: Field trip guidebook of the 7th International Congress on the Jurassic System, edited by: Wierzbowski, A., Aubrecht, R. ,
Golonka, J., Gutowski, J., Krobicki, M., Matyja, B. A., Pieńkowski, G.,
and Uchman, A., Kraków, Poland, 190–198, 2006.
Matyszkiewicz, J.: Sedimentation and diagenesis of the Upper Oxfordian
cyanobacterial sponge-limestones in Piekary near Kraków, Ann. Soc. Geol.
Pol., 59, 201–232, 1989.
Matyszkiewicz, J.: Genesis of stromatactis in an Upper Jurassic carbonate
buildup (Mlynka, Cracow region, Southern Poland): internal reworking and
erosion of organic growth cavities, Facies, 28, 87–96, 1993.
Matyszkiewicz, J.: The significance of Saccocoma-calciturbidites for the
analysis of the Polish Epicontinental Late Jurassic Basin: an example from
the Southern Cracow–Wielun Upland (Poland), Facies, 34, 23–40,
https://doi.org/10.1007/bf02546155, 1996.
Matyszkiewicz, J.: Microfacies, sedimentation and some aspects of diagenesis
of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan Shelf: a comparative study on the Lochen area (Schwäbische
Alb) and the Cracow area (Cracow–Wielun Upland, Poland), Berliner
geowissenschaftliche Abhandlungen, 21, 1–111, 1997a.
Matyszkiewicz, J.: Stromatactis cavities and stromatactis-like cavities in
the Upper Jurassic carbonate buildups at Młynka and Zabierzów (Oxfordian, southern Poland), Ann. Soc. Geol. Pol., 67, 45–55, 1997b.
Matyszkiewicz, J.: Sea-bottom relief versus differential compaction in ancient platform carbonates: a critical reassessment of an example form Upper Jurassic of the Cracow-Wieluń Upland, Ann. Soc. Geol. Pol., 69, 63–79, 1999.
Matyszkiewicz, J.: A role of the Cracovian region in the Late Jurassic
sedimentation of the Cracow-Częstochowa Upland (southern Poland), Przegląd Geologiczny, 49, 724–727, 2001.
Matyszkiewicz, J.: The Cracow-Częstochowa Upland (Southern Poland) – The Land of White Cliffs and Caves, Przegląd Geologiczny, 56, 647–652, 2008.
Matyszkiewicz, J. and Felisiak, I.: Microfacies and diagenesis of an Upper
Oxfordian carbonate buildup in Mydlniki (Cracow area, Southern Poland), Facies, 27, 179–190, https://doi.org/10.1007/bf02536811, 1992.
Matyszkiewicz, J. and Kochman, A.: Pressure dissolution features in Oxfordian microbial-sponge buildups with pseudonodular texture, Kraków Upland, Poland, Ann. Soc. Geol. Pol., 86, 355–377, https://doi.org/10.14241/asgp.2016.008, 2016.
Matyszkiewicz, J., Krajewski, M., and Kędzierski, J.: Origin and evolution of an Upper Jurassic complex of carbonate buildups from Zegarowe Rocks (Kraków–Wieluń Upland, Poland), Facies, 52, 249–263,
https://doi.org/10.1007/s10347-005-0038-9, 2006.
Matyszkiewicz, J., Kochman, A., and Duś, A.: Influence of local sedimentary conditions on development of microbialites in the Oxfordian
carbonate buildups from the southern part of the Kraków-Częstochowa
Upland (south Poland), Sediment. Geol., 263–264, 109–132,
https://doi.org/10.1016/j.sedgeo.2011.08.005, 2012.
Matyszkiewicz, J., Kochman, A., Rzepa, G., Gołębiowska, B., Krajewski,
M., Gaidzik, K., and Żaba, J.: Epigenetic silicification of the Upper
Oxfordian limestones in the Sokole Hills (Kraków-Częstochowa
Upland): relationship to facies development and tectonics, Acta Geol. Pol.,
65, 181–203, https://doi.org/10.1515/agp-2015-0007, 2015a.
Matyszkiewicz, J., Felisiak, I., Hoffmann, M., Kochman, A., Kołodziej, B.,
Krajewski, M., and Olchowy, P.: Transgressive Callovian succession and
Oxfordian microbial-sponge carbonate buildups in the Kraków Upland, in:
Guidebook for field trips accompanying 31st IAS Meeting of Sedimentology,
edited by: Haczewski, G., Polish Geological Society, Kraków, Poland,
51–74, 2015b.
Matyszkiewicz, J., Krajewski, M., Kochman, A., Kozłowski, A., and Duliński, M.: Oxfordian neptunian dykes with brachiopods from the
southern part of the Kraków-Częstochowa Upland (southern Poland) and
their links to hydrothermal vents, Facies, 62, 12, https://doi.org/10.1007/s10347-016-0464-x, 2016.
Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V.,
and Lewandowski, M.: Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica?, Tectonics, 34, 2465–2477, https://doi.org/10.1002/2015TC003934, 2015.
Mikucka-Reguła, T.: Dokumentacja wynikowa z otworów: WODZISŁAW 1,
WODZISŁAW 2, WODZISŁAW 3, KALINA 1, KLONÓW 1, WĘCHADŁÓW 1, LIPÓWKA 1, RACŁAWICE 2, Archival report: borehole studies, Cat. SW/P/933, Arch. PGNiG S.A., Warszawa, 1968.
Misiarz, P.: Coherence analysis of 3D seismic record for detection and
characterisation of biohermal objects and structural discontinuities in the
Carpathian Foreland, Nafta-Gaz, 59, 70–79, 2003.
Misiarz, P., Jędrzejowska-Tyczkowska, H., Oszczypko, N., Golonka, J.,
Olszewska, B., and Matyszkiewicz, J.: Oxfordian bioherms from the central
part of the Carpathian foreland (Poland) – seismic modeling results, in:
Proceedings of the AAPG Regional Conference with GSA, Prague, Czech Republic, 94 pp., 2004.
Morycowa, E. and Moryc, W.: The Upper Jurassic sediments in the foreland of
the Polish Carpathians (Sandomierz Basin), Ann. Soc. Geol. Pol., 46, 231–288, 1976.
Morycowa, E. and Moryc, W.: Upper Jurassic–Lower Cretaceous carbonate
complex in Dąbrowa Tarnowska–Szczucin area (Carpathian foreland), Biuletyn Państwowego Instytutu Geologicznego, 447, 25–48, 2011.
Myśliwiec, M., Borys, Z., Bosak, B., Liszka, B., Madej, K., Maksym, A.,
Oleszkiewicz, K., Pietrusiak, M., Plezia, B., Staryszak, G., Świętnicka, G., Zielińska, C., Zychowicz, K., Gliniak, P.,
Florek, R., Zacharski, J., Urbaniec, A., Górka, A., Karnkowski P., and
Karnkowski, P. H.: Hydrocarbon resources of the Polish Carpathian Foredeep:
Reservoirs, traps, and selected hydrocarbon fields, in: The Carpathians and
their foreland: Geology and hydrocarbon resources, edited by: Golonka, J.,
and Picha, F. J., AAPG Memoir, 84, 351–393, https://doi.org/10.1306/985613M843073, 2006.
Neuhaus, D., Borgomano, J., Jauffred, J.-C., Mercadier, C., Olotu, S., and
Grötsch, J.: Quantitative seismic reservoir characterization of an
Oligocene–Miocene carbonate buildup: Malampaya field, Philippines, in:
Seismic imaging of carbonate reservoirs and systems, edited by: Eberli, G. P., Massaferro, J. L., and Sarg, J. F., AAPG Memoir, 81, 169–183,
https://doi.org/10.1306/M81928, 2004.
Olivier N., Colombié, C., Pittet, B., and Lathuiličre, B.: Microbial
carbonates and corals on the marginal French Jura platform (Late Oxfordian,
Molinges section), Facies, 57, 469–492, https://doi.org/10.1007/s10347-010-0246-9, 2011.
Olszewska, B., Matyszkiewicz, J., Król, K., and Krajewski, M.: Correlation of the Upper Jurassic-Cretaceous epicontinental sediments in
southern Poland and south western Ukraine based on thin sections, Biuletyn
Państwowego Instytutu Geologicznego, 453, 29–80, 2012.
Pharaoh, T., Dusar, M., Geluk, M., Kockel, F., Krawczyk, C., Krzywiec, P.,
Scheck-Wenderoth, M., Thybo, H., Vejbæk, O., and Van Wees, J. D.: Tectonic evolution, in: Petroleum geological atlas of the Southern Permian
Basin Area, edited by: Doornenbal, J. C. and Stevenson, A. G., EAGE
Publications, Houten, 25–57, 2010.
Philips, T., Jackson, C. A. L., Bell, R., and Valencia, A.: Rivers, reefs,
and deltas; Geomorphological evolution of the Jurassic of the Farsund Basin,
offshore southern Norway, Petrol. Geosci., 26, 81–100, https://doi.org/10.1144/petgeo2018-056, 2019.
Pieńkowski, G., Schudack, M. E., Bosák, P., Enay, R., Feldman-Olszewska, A., Golonka, J., Gutowski, J., Herngreen, G. F. W., Jordan, P., Krobicki, M., Lathuiliere, B., Leinfelder, R. R., Michalík, J., Mönnig, E., Noe-Nygaard, N., Pálfy, J., Pint, A., Rasser, M. W., Reisdorf, A. G., Schmid, D. U., Schweigert, G., Surlyk, F., Wetzel, A., and Wong, T. E.: Jurassic In: The Geology of Central Europe, in: Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., Geological Society, London, 823–922, https://doi.org/10.1144/CEV2P, 2008.
Posamentier, H. W., Laurin, P., Warmath, A., Purnama, M., and Drajat, D.:
Seismic stratigraphy and geomorphology of Oligocene to Miocene carbonate
buildups offshore Madura, Indonesia, in: Cenozoic carbonate systems of Australasia, edited by: Morgan, W. A., George, A. D., Harris, P. M., Kupecz,
J. A., and Sarg, J. F., SEPM Spec. Publ., 95, 175–194, https://doi.org/10.2110/sepmsp.095.175, 2010.
Pożaryski, W.: Tectonics. Part 1. Polish Lowlands, in: Geology of Poland IV (in Polish only), edited by: Pożaryski, W., Wydawnictwa Geologiczne, Warszawa, Poland, 2–34, 1974.
Pożaryski, W.: The early Alpine Laramide Epoch in the Platform development east of the Fore Sudetic and Silesian-Cracovian monoclines, in:
Geology of Poland IV, edited by: Pożaryski, W., Wydawnictwa Geologiczne,
Warszawa, Poland, 351–416, 1977.
Pożaryski, W. and Brochwicz-Lewiński, W.: On the Polish Trough,
Geol. Mijnbouw, 57, 545–557, 1978.
Pożaryski, W. and Brochwicz-Lewiński, W.: On the Mid-Polish Aulacogen, Geol. Q., 23, 271–290, 1979.
Pożaryski, W. and Żytko, K.: On the Mid-Polish Aulacogen and the
Carpathian Geosyncline, Acad. Pol. Sci. Bull. Sér. Sci. Géol. Géogr., 28, 303–316, 1981.
Rafaelsen, B., Elvebakk, G., Andreassen, K., Stemmerik, L., Colpaert, A.,
and Samuelsberg, T. J.: From detached to attached carbonate buildup complexes – 3D seismic data from the upper Palaeozoic, Finnmark Platform, southwestern Barents Sea, Sediment. Geol., 206, 17–32, https://doi.org/10.1016/j.sedgeo.2008.03.001, 2008.
Rankey, E. C., Schlaich, M., Mokhtar, S., Ghon, G., Ali, S. H., and Poppelreiter, M.: Seismic architecture of a Miocene isolated carbonate
platform and associated off-platform strata (Central Luconia Province,
offshore Malaysia), Mar. Petrol. Geol., 102, 477–495,
https://doi.org/10.1016/j.marpetgeo.2019.01.009, 2019.
Read, J. F.: Carbonate Platform Facies Models, AAPG Bull., 69, 1–21,
https://doi.org/10.1306/AD461B79-16F7-11D7-8645000102C1865D, 1985.
Resak, M., Narkiewicz, M., and Littke, R.: New basin modelling results from
the Polish part of the Central European Basin system: implications for the
Late Cretaceous–Early Paleogene structural inversion, Int. J. Earth Sci.,
97, 955–972, https://doi.org/10.1007/s00531-007-0246-3, 2008.
Rosleff-Soerensen, B., Reuning, L., Back, S., and Kukla, P.: Seismic geomorphology and growth architecture of a Miocene barrier reef, Browse
Basin, NW-Australia, Mar. Petrol. Geol., 29, 233–254, https://doi.org/10.1016/j.marpetgeo.2010.11.001, 2012.
Saqab, M. M. and Bourget, J.: Seismic geomorphology and evolution of early
mid Miocene isolated carbonate build-ups in the Timor Sea, North West Shelf
of Australia, Mar. Geol., 369, 224–245, https://doi.org/10.1016/j.margeo.2016.06.007, 2016.
Sarg, J. F.: Carbonate Sequence Stratigraphy, in: Sea-Level Changes: An
Integrated Approach, edited by: Wilgus, C. K., Hastings, B. S., Posamentier,
H., Van Wagoner, J., Ross, C. A., and Kendall, C. G. St. C., SEPM Spec. Publ., 42, 7–108, https://doi.org/10.2110/pec.88.01.0155, 1988.
Sayago, J., Di Luccia, M., Mutti, M., Sitta, A., Cotti, A., and Frijia, G.:
Late Paleozoic seismic sequence stratigraphy and paleogeography of the
paleo-Loppa High in the Norwegian Barents Sea, Mar. Petrol. Geol., 97, 192–208, https://doi.org/10.1016/j.marpetgeo.2018.05.038, 2018.
Scheck-Wenderoth, M., Krzywiec, P., Zülke, R., Maystrenko, Y., and
Frizheim, N.: Permian to Cretaceous tectonics, in: The Geology of Central
Europe. Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., Geological
Society, London, UK, 999–1030, https://doi.org/10.1144/CEV2P, 2008.
Schlager, W.: Carbonate sedimentology and sequence stratigraphy, SEPM
Concept. Sedimentol. Paleontol., 8, 209 pp., https://doi.org/10.2110/csp.05.08, 2005.
Shahzad, K., Betzler, C., Ahmed, N., Qayyum, F., Spezzaferri, S., and Qadir,
A.: Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling
factors, Int. J. Earth Sci. (Geol. Rundsch.), 107, 481–504,
https://doi.org/10.1007/s00531-017-1504-7, 2018.
Shahzad, K., Betzler, C., and Qayyum, F.: Controls on the Paleogene
carbonate platform growth under greenhouse climate conditions (Offshore
Indus Basin), Mar. Petrol. Geol., 101, 519–539, https://doi.org/10.1016/j.marpetgeo.2018.12.025, 2019.
Szwed, Z. and Wójcik, A.: Geological Log: well Chopin-1, unpublished
technical report, NAFTGAZ Wołomin, 2011a.
Szwed, Z. and Wójcik, A.: Daily report: well Chopin-1, unpublished
technical report, PNiG Jasło Sp. z o.o., 2011b.
Trammer, J.: Lower to Middle Oxfordian sponges of the Polish Jura, Acta
Geol. Pol., 32, 1–39, 1982.
Trammer, J.: Sponge bioherms in the Jasna Góra Beds (Oxfordian of the
Polish Jura Chain), Przegl. Geol., 33, 78–81, 1985.
Trammer, J.: Middle to Upper Oxfordian sponges of the Polish Jura, Acta
Geol. Pol., 39, 49–92, 1989.
Urban, E. and Wandas, T.: Dokumentacja wynikowa otworu: Michałów 1,
Michałow 3, Archival report: borehole studies, Cat. SW/P/1009, Arch. PGNiG S.A., Warszawa, 1968.
Urbaniec, A.: Lithofacial development of the Upper Jurassic and Lower Cretaceous deposits in the Dąbrowa Tarnowska-Dębica area based on
the 3D seismic interpretations, unpublished PhD Thesis, Faculty of Geology, Geophysics and Environmental Protection of AGH, Kraków, 2019.
Van Tuyl, J., Alves, T. M., and Cherns, L.: Geometric and depositional responses of carbonate build-ups to Miocene sea level and regional tectonics
offshore northwest Australia, Mar. Petrol. Geol., 94, 144–165,
https://doi.org/10.1016/j.marpetgeo.2018.02.034, 2018.
Van Tuyl, J., Alves, T., Cherns, L., Antonatos, G., Burgess, P., and Masiero, I. Geomorphological evidence of carbonate build-up demise on equatorial margins: A case study from offshore northwest Australia, Mar. Petrol. Geol., 104, 125–149, https://doi.org/10.1016/j.marpetgeo.2019.03.006, 2019.
Veeken, P. and Van Moerkerken, B.: Seismic Stratigraphy and Depositional
Facies Models, EAGE Publications, Houten, 494 pp., 2013.
Wessely, G.: Geologie von Niederösterreich, Geologische Bundesanstalt, Wien, 416 pp., 2006.
Wierzbowski, A., Atrops, F., Grabowski, J., Hounslow, M., Matyja, B. A.,
Olóriz, F., Page, K., Parent, H., Rogov, M. A., Schweigert, G., Villaseñor, A. B., Wierzbowski, H., and Wright, J. K.: Towards a
consistent Oxfordian–Kimmeridgian global boundary: current state of
knowledge, Volumina Jurassica, 14, 15–50, 2016.
Wierzbowski, H.: Seawater temperatures and carbon isotope variations in
central European basins at the Middle–Late Jurassic transition (Late
Callovian–Early Kimmeridgian), Palaeogeogr. Palaeocl., 440, 506–523, https://doi.org/10.1016/j.palaeo.2015.09.020, 2015.
Wu, S., Yuan, S., Zhang, G., Ma, Y., Mi, L., and Xu, N.: Seismic characteristics of a reef carbonate reservoir and implications for
hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern
South China Sea, Mar. Petrol. Geol., 26, 817–823, https://doi.org/10.1016/j.marpetgeo.2008.04.008, 2009.
Yubo, M. Shiguo, W., Fuliang, L., Dongdong, D., Qiliang, S., Yintao, L., and
Mingfeng, G.: Seismic characteristics and development of the Xisha carbonate
platforms, northern margin of the South China Sea, J. Asian Earth Sci., 40, 770–783, https://doi.org/10.1016/j.jseaes.2010.11.003, 2011.
Zampetti, V., Schlager, W., van Konijnenburg, J. H., and Everts, A. J.:
Depositional history and origin of porosity in a Miocene carbonate platform
of Central Luconia, offshore Sarawak, Bull. Geol. Soc. Malaysia, 47, 139–152, https://doi.org/10.7186/bgsm47200311, 2003.
Zampetti, V., Schlager, W., van Konijnenburg, J. H., and Everts, A. J.:
Architecture and growth history of a Miocene carbonate platform from 3D
seismic reflection data; Luconia Province, offshore Sarawak, Malaysia, Mar.
Petrol. Geol., 21, 517–534, https://doi.org/10.1016/j.marpetgeo.2004.01.006, 2004.
Ziegler, P. A.: Geological atlas of western and central Europe, Shell
International Petroleum Maatschappij B.V., Geological Society, London, 239 pp., 1990.
Zimmer, W. and Wessely G.: Exploration results in thrust- and subthrust complexes in the Alps and below the Vienna Basin in Austria, in: Oil and gas
in Alpidic Thrustbelts and Basins of Central and Eastern Europe, edited by:
Wessely, G. and Liebl, W., EAGE Special Pub. 5, Geol. Soc., London, 81–107, https://doi.org/10.3997/2214-4609.201410141, 1996.
Złonkiewicz, Z.: Evolution of the Miechów Depression basin in the
Jurassic as a result of regional tectonical changes, Przegląd Geologiczny, 54, 534–540, 2006.
Złonkiewicz, Z.: The Callovian and Upper Jurassic section in the Nida
Trough, Przegląd Geol., 57, 521–530, 2009.
Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.,
Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., and Żytko,
K.: Tectonic subdivision of Poland, Komitet Nauk Geologicznych PAN, Wrocław, Poland, 60 pp., 2011.
Żytko K., Gucik, S., Ryłko, W., Oszczypko, N., Zając, R., Garlicka, I., Nemčok, J., Elias, M., Mencik, E., Dvorak, J., Stranik, Z., Rakus, M., and Matejovska, O.: Geological map of the Western Outer Carpathians and their foreland without Quaternary formations (1:500 000),
in: Geological Atlas of the Western Outer Carpathians and their Foreland,
edited by: Poprawa, D. and Nemčok, J., Polish Geological Institute,
Warszawa, Poland, 1988.
Short summary
This paper shows the results of seismic interpretations that document the presence of large Upper Jurassic carbonate buildups in the Miechów Trough (S Poland). Our work fills the gap in recognition of the Upper Jurassic carbonate depositional system of southern Poland. The results also provide an excellent generic reference point, showing how and to what extent seismic data can be used for studies of carbonate depositional systems, in particular for the identification of the carbonate buildups.
This paper shows the results of seismic interpretations that document the presence of large...