Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 2.921
IF2.921
IF 5-year value: 3.087
IF 5-year
3.087
CiteScore value: 4.8
CiteScore
4.8
SNIP value: 1.314
SNIP1.314
IPP value: 2.87
IPP2.87
SJR value: 0.993
SJR0.993
Scimago H <br class='widget-line-break'>index value: 38
Scimago H
index
38
h5-index value: 36
h5-index36
Download
Short summary
We propose a new exploration of the concept of spontaneous lithospheric collapse at a transform fault (TF) by performing a large study of conditions allowing instability of the thicker plate using 2-D thermomechanical simulations. Spontaneous subduction is modelled only if extreme mechanical conditions are assumed. We conclude that spontaneous collapse of the thick older plate at a TF evolving into mature subduction is an unlikely process of subduction initiation at modern Earth conditions.
SE | Articles | Volume 11, issue 1
Solid Earth, 11, 37–62, 2020
https://doi.org/10.5194/se-11-37-2020
Solid Earth, 11, 37–62, 2020
https://doi.org/10.5194/se-11-37-2020

Research article 08 Jan 2020

Research article | 08 Jan 2020

Can subduction initiation at a transform fault be spontaneous?

Diane Arcay et al.

Related authors

Effects of basal drag on subduction dynamics from 2D numerical models
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth Discuss., https://doi.org/10.5194/se-2020-121,https://doi.org/10.5194/se-2020-121, 2020
Revised manuscript accepted for SE
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Tectonics
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020,https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Effects of basal drag on subduction dynamics from 2D numerical models
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth Discuss., https://doi.org/10.5194/se-2020-121,https://doi.org/10.5194/se-2020-121, 2020
Revised manuscript accepted for SE
Short summary
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020,https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
The enigmatic curvature of Central Iberia and its puzzling kinematics
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020,https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the Western Black Sea
William Bosworth and Gábor Tari
Solid Earth Discuss., https://doi.org/10.5194/se-2020-105,https://doi.org/10.5194/se-2020-105, 2020
Revised manuscript accepted for SE
Short summary

Cited articles

Abecassis, S., Arcay, D., and Lallemand, S.: Subduction initiation at fracture zones: conditions and various modes, in: abstracts of the GeoMod conference, 17–20 October, p. 14, La Grande Motte, France, available at: http://geomod2016.gm.univ-montp2.fr/Home.html (last access: 20 December 2019), 2016. a, b
Adam, C., King, S., Vidal, V., Rabinowicz, M., Jalobeanu, A., and Yoshida, M.: Variation of the subsidence parameters, effective thermal conductivity, and mantle dynamics, Earth Planet. Sc. Lett., 426, 130–142, 2015. a
Afonso, J. C., Zlotnik, S., and Fernandez, M.: Effects of compositional and rheological stratifications on small-scale convection under the oceans: Implications for the thickness of oceanic lithosphere and seafloor flattening, Geophys. Res. Lett., 35, L20308, https://doi.org/10.1029/2008GL035419, 2008. a
Arcay, D.: Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age, Solid Earth, 3, 467–488, https://doi.org/10.5194/se-3-467-2012, 2012. a
Arcay, D.: Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting, Phys. Earth Planet. Inter., 269, 112–132, https://doi.org/10.1016/j.pepi.2017.05.008, 2017. a, b
Publications Copernicus
Download
Short summary
We propose a new exploration of the concept of spontaneous lithospheric collapse at a transform fault (TF) by performing a large study of conditions allowing instability of the thicker plate using 2-D thermomechanical simulations. Spontaneous subduction is modelled only if extreme mechanical conditions are assumed. We conclude that spontaneous collapse of the thick older plate at a TF evolving into mature subduction is an unlikely process of subduction initiation at modern Earth conditions.
Citation