Abecassis, S., Arcay, D., and Lallemand, S.: Subduction initiation at fracture
zones: conditions and various modes, in: abstracts of the GeoMod conference,
17–20 October, p. 14, La Grande Motte, France,
available at:
http://geomod2016.gm.univ-montp2.fr/Home.html (last access: 20 December 2019), 2016.
a,
b
Adam, C., King, S., Vidal, V., Rabinowicz, M., Jalobeanu, A., and Yoshida, M.:
Variation of the subsidence parameters, effective thermal conductivity, and
mantle dynamics, Earth Planet. Sc. Lett., 426, 130–142, 2015. a
Arcay, D., Lallemand, S., and Doin, M.-P.: Back-arc Strain in Subduction Zones:
Statistical Observations vs. Numerical Modelling, Geochem. Geophys.
Geosyst., 9, Q05015,
https://doi.org/10.1029/2007GC001875,
2008.
a
Arculus, R. J., Ishizuka, O., Bogus, K. A., Gurnis, M., Hickey-Vargas, R.,
Aljahdali, M. H., Bandini-Maeder, A. N., Barth, A. P., Brandl, P. A., Drab,
L., do Monte Guerra, R., Hamada, M., Jiang, F., Kanayama, K., Kender, S.,
Kusano, Y., Li, H., Loudin, L. C., Maffione, M., Marsaglia, K. M., McCarthy,
A., Meffre, S., Morris, A., Neuhaus, M., Savov, I. P., Sena, C., Tepley III,
F. J., van der Land, C., and Yogodzinski Zhang, G. M.: A record of
spontaneous subduction initiation in the Izu-Bonin-Mariana arc, Nat.
Geosci., 8, 728–733,
https://doi.org/10.1038/ngeo2515, 2015.
a,
b
Baes, M. and Sobolev, S.: Mantle Flow as a Trigger for Subduction Initiation: A
Missing Element of the Wilson Cycle Concept, Geochem. Geophys.
Geosyst., 18, 4469–4486,
https://doi.org/10.1002/2017GC006962, 2017.
a,
b
Baes, M., Gerya, T., and Sobolev, S. V.: 3-D thermo-mechanical modeling of
plume-induced subduction initiation, Earth Planet. Sc. Lett.,
453, 193–203, 2016.
a,
b
Behn, M. D., Lin, J., and Zuber, M. T.: Evidence for weak oceanic transform
faults, Geophys. Res. Lett., 29, 60-1–60-4,
https://doi.org/10.1029/2002GL015612,
2002.
a
Bloomer, S.: Distribution and origin of igneous rocks from the landward slopes
of the Mariana Trench: Implications for its structure and evolution, J.
Geophys. Res., 88, 7411–7428, 1983. a
Bloomer, S. and Hawkins, J.: Petrology and geochemistry of boninite series
volcanic rocks from the Mariana trench, Contrib. Mineral. Petrol., 97,
361–377, 1983. a
Bonatti, E., Ligi, M., Borsetti, A., Gasperini, L., Negri, A., and Sartori, R.:
Lower Cretaceous deposits trapped near the equatorial Mid-Atlantic
Ridge, Nature, 380, 518–520, 1996. a
Bousquet, R., Goffé, B., Henry, P., Le Pichon, X., and Chopin, C.:
Kinematic, thermal and petrological model of the Central Alps: Lepontine
metamorphism in the upper crust and eclogitisation of the lower crust,
Tectonophysics, 273, 105–127, 1997. a
Boutelier, D. and Beckett, D.: Initiation of Subduction Along Oceanic Transform
Faults: Insights From Three-Dimensional Analog Modeling Experiments,
Front. Earth Sci., 6, 204,
https://doi.org/10.3389/feart.2018.00204,
2018.
a
Buck, W. R. and Parmentier, E.: Convection beneath young oceanic lithosphere:
Implications for thermal structure and gravity, J. Geophys.
Res.-Sol. Ea., 91, 1961–1974, 1986.
a,
b
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.
a,
b
Cannat, M., Mamaloukas-Frangoulis, V., Auzende, J.-M., Bideau, D., Bonatti, E.,
Honnorez, J., Lagabrielle, Y., Malavieille, J., and Mevel, C.: A geological
cross-section of the Vema fracture zone transverse ridge, Atlantic ocean,
J. Geodynam., 13, 97–117,
https://doi.org/10.1016/0264-3707(91)90034-C, 1991.
a,
b
Carlson, R. L. and Herrick, C. N.: Densities and porosities in the oceanic
crust and their variations with depth and age, J. Geophys.
Res.-Sol. Ea., 95, 9153–9170,
https://doi.org/10.1029/JB095iB06p09153,
1990.
a
Christensen, U. R.: Convection with pressure- and temperature-dependent
non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343–384, 1984. a
Christensen, U. R.: An Eulerian technique for thermomechanical modeling, J.
Geophys. Res., 97, 2015–2036, 1992.
a,
b
Cloetingh, S., Wortel, R., and Vlaar, N. J.: On the initiation of subduction
zones, Pure Appl. Geophys., 129, 7–25,
https://doi.org/10.1007/BF00874622, 1989.
a
Crameri, F. and Tackley, P. J.: Subduction initiation from a stagnant lid and
global overturn: new insights from numerical models with a free surface,
Prog. Earth Planet. Sci., 3, 30,
https://doi.org/10.1186/s40645-016-0103-8, 2016.
a,
b,
c
Crameri, F., Tackley, P., Meilick, I., Gerya, T., and Kaus, B.: A free plate
surface and weak oceanic crust produce single-sided subduction on Earth,
Geophys. Res. Lett., 39, L03306,
https://doi.org/10.1029/2011GL050046, 2012.
a
Demouchy, S., Tommasi, A., Ballaran, T. B., and Cordier, P.: Low strength of
Earth’s uppermost mantle inferred from tri-axial deformation experiments on
dry olivine crystals, Phys. Earth Planet. In., 220,
37–49, 2013. a
Deschamps, A. and Lallemand, S.: The West Philippine Basin: a
Paleocene-Oligocene backarc basin opened between two opposed subduction
zones., J. Geophys. Res., 107, 2322,
https://doi.org/10.1029/2001JB001706, 2002.
a,
b,
c
Deschamps, A. and Lallemand, S.: Geodynamic setting of Izu-Bonin-Mariana
boninites, Geological Society, London, Special Publications, 219, 163–185,
https://doi.org/10.1144/GSL.SP.2003.219.01.08, 2003.
a,
b
Deschamps, A., Monié, P., Lallemand, S., Hsu, S.-K., and Yeh, J.: Evidence
for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate,
Earth Planet. Sci. Lett., 179, 503–516, 2000. a
Detrick, R. and Purdy, G.: The crustal structure of the Kane fracture zone
from seismic refraction studies, J. Geophys. Res., 85, 3759–3777, 1980. a
Dewandel, B., Lachassagne, P., and Qatan, A.: Spatial measurements of stream
baseflow, a relevant method for aquifer characterization and permeability
evaluation. Application to a hard-rock aquifer, the Oman ophiolite,
Hydrol. Process., 18, 3391–3400,
https://doi.org/10.1002/hyp.1502,
2004.
a
Doin, M.-P. and Henry, P.: Subduction initiation and continental crust
recycling: the roles of rheology and eclogitization, Tectonophysics, 342,
163–191, 2001.
a,
b,
c
Doo, W.-B., Hsu, S.-K., Yeh, Y., Tsai, C., and Chang, C.: Age and tectonic
evolution of the northwest corner of the West Philippine Basin, Mar. Geophys.
Res., 36, 113–125,
https://doi.org/10.1007/s11001-014-9234-8, 2015.
a
Drury, M. R.: Dynamic recrystallization and strain softening of olivine
aggregates in the laboratory and the lithosphere, Geological Society, London,
Special Publications, 243, 143–158, 2005. a
Duarte, J.-A. C., Rosas, F., Terrinha, P., Schellart, W. P., Boutelier, D.,
Gutscher, M., and Ribeiro, A.: Are subduction zones invading the Atlantic?
Evidence from the southwest Iberia margin, Geology, 41, 839–842, 2013. a
Dumoulin, C., Doin, M.-P., and Fleitout, L.: Heat transport in stagnant lid
convection with temperature- and pressure-dependent Newtonian or
non-Newtonian rheology, J. Geophys. Res., 104, 12759–12778, 1999.
a,
b
Dymkova, D. and Gerya, T.: Porous fluid flow enables oceanic subduction
initiation on Earth, Geophys. Res. Lett., 40, 5671–5676,
https://doi.org/10.1002/2013GL057798, 2013.
a,
b,
c,
d,
e,
f
Eakin, D., McIntosh, K., Van Avendonk, H., and Lavier, L.: New geophysical
constraints on a failed subduction initiation: The structure and potential
evolution of the Gagua Ridge and Huatung Basin, Geochem. Geophys. Geosyst.,
16, 1–21, 2015. a
Escartín, J. and Cannat, M.: Ultramafic exposures and the gravity signature
of the lithosphere near the Fifteen-Twenty Fracture Zone
(Mid-Atlantic Ridge, 14
∘–16.5
∘ N), Earth Planet. Sci. Lett., 171,
411–424, 1999. a
Escartín, J., Hirth, G., and Evans, B.: Nondilatant brittle deformation of
serpentinites: Implications for Mohr-Coulomb theory and the strength of
faults, J. Geophys. Res., 102, 2897–2913, 1997. a
Farough, A., Moore, D. E., Lockner, D. A., and Lowell, R. P.: Evolution of
fracture permeability of ultramafic rocks undergoing serpentinization at
hydrothermal conditions: An experimental study, Geochem. Geophys.
Geosyst., 17, 44–55,
https://doi.org/10.1002/2015GC005973,
2016.
a
Farrington, R. J., Moresi, L.-N., and Capitanio, F. A.: The role of
viscoelasticity in subducting plates, Geochem. Geophys. Geosyst.,
15, 4291–4304,
https://doi.org/10.1002/2014GC005507,
2014.
a
Fournier, M., Chamot-Rooke, N., Rodriguez, M., Huchon, P., Petit, C., Beslier,
M., and Zaragosi, S.: Owen Fracture Zone: The Arabia–India plate boundary
unveiled, Earth Planet. Sci. Lett., 302, 247–252, 2011. a
Fujiwara, T., Tamura, C., Nishizawa, A., Fujioka, K., Kobayashi, K., and
Iwabuchi, Y.: Morphology and tectonics of the Yap Trench, Mar. Geophys. Res.,
21, 69–86, 2000. a
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson,
C. R.: Interaction of subducted slabs with the mantle transition-zone: A
regime diagram from 2-D thermo-mechanical models with a mobile trench and an
overriding plate, Geochem. Geophys. Geosyst., 15, 1739–1765,
https://doi.org/10.1002/2014GC005257, 2014.
a
Gerya, T., Connolly, J., and Yuen, D.: Why is terrestrial subduction
one-sided?, Geology, 36, 43–46, 2008.
a,
b,
c,
d,
e
Godard, M., Luquot, L., Andreani, M., and Gouze, P.: Incipient hydration of
mantle lithosphere at ridges: A reactive-percolation experiment, Earth Planet. Sc. Lett., 371–372, 92–102,
https://doi.org/10.1016/j.epsl.2013.03.052,
2013.
a
Grose, C. J. and Afonso, J. C.: Comprehensive plate models for the thermal
evolution of oceanic lithosphere, Geochem. Geophys. Geosyst., 14,
3751–3778, 2013.
a,
b,
c
Gurnis, M., Hall, C., and Lavier, L.: Evolving force balance during incipient
subduction, Geochem. Geophys. Geosyst., 5, Q07001,
https://doi.org/10.1029/2003GC000681, 2004.
a,
b,
c,
d,
e
Gutscher, M., Malod, J., Rehaul, J.-P., Contrucci, I., Klingelhoefer, F.,
Mendes-Victor, L., and Sparkman, W.: Evidence for active subduction beneath
Gibraltar, Geology, 30, , 1071–1074, 2002. a
Hall, C. and Gurnis, M.: Catastrophic initiation of subduction following forced
convergence across fra ctures zones, Earth Planet. Sci. Lett., 212, 15–30,
https://doi.org/10.1016/S0012-821X(03)00242-5, 2003.
a,
b,
c,
d,
e,
f,
g,
h
Hall, C. E. and Gurnis, M.: Strength of fracture zones from their bathymetric
and gravitational evolution, J. Geophys. Res.-Sol. Ea.,
110, 1402,
https://doi.org/10.1029/2004JB003312,
2005.
a
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: The influence of microstructure on deformation of olivine in the grain-boundary sliding regime, J. Geophys. Res.-Sol. Ea.,
117, 1402,
https://doi.org/10.1029/2012JB009305,
2012.
a
Hegarty, K. A. and Weissel, J. K.: Complexities in the Development of the
Caroline Plate Region, Western Equatorial Pacific, in: The Ocean Basins and
Margins, edited by: Nairn, A., Stehli, F., and Uyeda, S., Springer, Boston, MA, 7B,
277–301,
https://doi.org/10.1007/978-1-4615-8041-6_6, 1988.
a,
b
Hegarty, K. A., Weissel, J. K., and Hayes, D. E.: Convergence at the
Caroline-Pacific Plate Boundary: Collision and Subduction, chap. 18, pp.
326–348, American Geophysical Union (AGU),
https://doi.org/10.1029/GM027p0326,
1983.
a
Hickey-Vargas, R., Yogodzinski, G., Ishizuka, O., McCarthy, A., Bizimis, M.,
Kusano, Y., Savov, I., and Arculus, R.: Origin of depleted basalts during
subduction initiation and early development of the Izu-Bonin-Mariana island
arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin,
Geochem. Cosmochem. Ac., 229, 85–111,
https://doi.org/10.1016/j.gca.2018.03.007, 2018.
a
Hidas, K., Tommasi, A., Garrido, C. J., Padrón-Navarta, J. A., Mainprice, D.,
Vauchez, A., Barou, F., and Marchesi, C.: Fluid-assisted strain localization
in the shallow subcontinental lithospheric mantle, Lithos, 262, 636–650,
https://doi.org/10.1016/j.lithos.2016.07.038,
2016.
a
Hussong, D. and Uyeda, S.: Tectonic processes and the history of the Mariana
Arc: a synthesis of the results of Deep Sea Drilling Project Leg 60, Initial
Rep. Deep Sea Drill. Proj., 60, 909–929, 1981. a
Ishizuka, O., Kimura, J.-I., Li, Y. B., Stern, R. J., Reagan, M. K., Taylor,
R. N., Ohara, Y., Bloomer, S. H., Ishii, T., Hargrove, U. S., and Haraguchi,
S.: Early stages in the evolution of Izu-Bonin arc volcanism: New age,
chemical, and isotopic constraints, Earth Planet. Sc. Lett., 250,
385–401,
https://doi.org/10.1016/j.epsl.2006.08.007,
2006.
a
Ishizuka, O., Tani, K., Reagan, M. K., Kanayama, K., Umino, S., Harigane, Y.,
Sakamoto, I., Miyajima, Y., Yuasa, M., and Dunkley, D. J.: The timescales of
subduction initiation and subsequent evolution of an oceanic island arc,
Earth Planet. Sc. Lett., 306, 229–240,
https://doi.org/10.1016/j.epsl.2011.04.006,
2011.
a,
b
Ishizuka, O., Taylor, R. N., Ohara, Y., and Yuasa, M.: Upwelling, rifting, and
age-progressive magmatism from the Oki-Daito mantle plume, Geology, 41,
1011–1014,
https://doi.org/10.1130/G34525.1, 2013.
a
Ishizuka, O., Hickey-Vargas, R., Arculus, R. J., Yogodzinski, G. M., Savov,
I. P., Kusano, Y., McCarthy, A., Brandl, P. A., and Sudo, M.: Age of
Izu-Bonin-Mariana arc basement, Earth Planet. Sc. Lett.,
481, 80–90,
https://doi.org/10.1016/j.epsl.2017.10.023,
2018.
a
Johnson, J. A., Hickey-Vargas, R., Fryer, P., Salters, V., and Reagan, M. K.:
Geochemical and isotopic study of a plutonic suite and related early volcanic
sequences in the southern Mariana forearc, Geochem. Geophys.
Geosyst., 15, 589–604,
https://doi.org/10.1002/2013GC005053,
2014.
a
Karato, S.-I., Paterson, M. S., and FitzGerald, J. D.: Rheology of synthetic
olivine aggregates: Influence of grain size and water, J. Geophys.
Res.-Sol. Ea., 91, 8151–8176,
https://doi.org/10.1029/JB091iB08p08151,
1986.
a
Kuo, B.-Y., Chi, W.-C., Lin, C.-R., Chang, E.-Y., Collins, J., and Liu, C.-S.:
Two-station measurement of Rayleigh wave phase velocities for the Huatung
basin, the westernmost Philippine Sea, with OBS: implications for regional
tectonics, Geophys. J. Int., 179, 1859–1869,
https://doi.org/10.1111/j.1365-246X.2009.04391.x, 2009.
a
Lallemand, S.: High rates of arc consumption by subduction processes: Some
consequences, Geology, 23, 551–554, 1995. a
Lallemand, S.: Philippine Sea Plate inception, evolution and consumption with
special emphasis on the early stages of Izu-Bonin-Mariana subduction,
Prog. Earth Planet. Sci., 3, 15,
https://doi.org/10.1186/s40645-016-0085-6, 2016.
a,
b,
c,
d,
e
Lebrun, J.-F., Lamarche, G., and Collot, J.-Y.: Subduction initiation at a
strike-slip plate boundary: the Cenozoic Pacific-Australian plate boundary,
south of New Zealand, Geophys. Res. Lett., 108, 2453,
https://doi.org/10.1029/2002JB002041,
2003.
a
Leng, W. and Gurnis, M.: Subduction initiation at relic arcs, Geophys. Res.
Lett., 42, 7014–7021, 2015.
a,
b
Lu, G., Kaus, B. J. P., Zhao, L., and Zheng, T.: Self-consistent subduction
initiation induced by mantle flow, Terra Nova, 27, 130–138,
https://doi.org/10.1111/ter.12140, 2015.
a,
b
Maia, M., Sichel, S., Briais, A., Brunelli, D., Ligi, M., Ferreira, N., Campos,
T., Mougel, B., Brehme, I., Hémond, C., Motoki, A., Moura, D., Scalabrin,
C., Pessanha, I., Alves, E., Ayres, A., and Oliveira, P.: Extreme mantle
uplift and exhumation along a transpressive transform fault, Nat. Geosci., 9. 619–623,
https://doi.org/10.1038/NGEO2759, 2016.
a
McKenzie, D. P.: The Initiation of Trenches, in: Island Arcs, Deep Sea Trenches and Back-Arc Basins, edited by: Talwani, M. and Pitman, W. C., Maurice Ewing Series, 1, 57–61, American Geophysical Union (AGU),
https://doi.org/10.1029/ME001p0057,
1977.
a,
b
Meckel, T., Mann, P., Mosher, S., and Coffin, M.: Influence of cumulative
convergence on lithospheric thrust fault development and topography along the
Australian-Pacific plate boundary south of New Zealand, Geochem. Geophys.
Geosyst., 6, Q09010,
https://doi.org/10.1029/2005GC000914, 2005.
a,
b
Michibayashi, K. and Mainprice, D.: The role of pre-existing mechanical
anisotropy on shear zone development within oceanic mantle lithosphere: an
example from the Oman ophiolite, J. Petrol., 45, 405–414, 2004. a
Moore, D., Lockner, D., Tanaka, H., and Iwata, K.: The coefficient of friction
of chrysotile gouge at seismogenic depths, Int. Geol. Rev., 46,
385–398, 2004. a
Morency, C., Doin, M.-P., and Dumoulin, C.: Three-dimensional numerical
simulations of mantle flow beneath mid-ocean ridges, J. Geophys.
Res.-Sol. Ea., 110, B11407,
https://doi.org/10.1029/2004JB003454,
2005.
a
Mortimer, N., Gans, P. B., Palin, J., Herzer, R. H., Pelletier, B., and
Monzier, M.: Eocene and Oligocene basins and ridges of the Coral Sea-New
Caledonia region: Tectonic link between Melanesia, Fiji, and Zealandia,
Tectonics, 33, 1386–1407,
https://doi.org/10.1002/2014TC003598, 2014.
a
Natland, J. and Tarney, J.: Petrologic evolution of the Mariana Arc and
back-arc basin system – a synthesis of drilling results in the South
Philippine Sea, Initial Reports of the Deep Sea Drilling Project, 60,
877–908, 1981.
a,
b
Nikolaeva, K., Gerya, T. V., and Connolly, J. A.: Numerical modelling of
crustal growth in intraoceanic volcanic arcs, Phys. Earth Planet. In., 171, 336–356,
https://doi.org/10.1016/j.pepi.2008.06.026, 2008.
a
Nikolaeva, K., Gerya, T. V., and Marques, F. O.: Subduction initiation at
passive margins: numerical modeling, J. Geophys. Res., 115, B03406,
https://doi.org/10.1029/2009JB006549, 2010.
a,
b,
c,
d,
e
Patriat, M., Pichot, T., Westbrook, G., Umber, M., Deville, E., Bénard, F.,
Roest, W., Loubrieu, B., and the Antiplac cruise party: Evidence for
Quaternary convergence between the North American and South American plates,
east of the Lesser Antilles, Geology, 39, 979–982, 2011. a
Patriat, M., Collot, J., Danyushevsky, L., Fabre, M., Meffre, S., Falloon, T.,
Rouillard, P., Pelletier, B., Roach, M., and Fournier, M.: Propagation of
back-arc extension into the arc lithosphere in the southern New Hebrides
volcanic arc, Geochem. Geophys. Geosyst., 16, 3142–3159,
https://doi.org/10.1002/2015GC005717,
2015.
a,
b,
c,
d
Pichot, T., Patriat, M., Westbrook, G., Nalpas, T., Gutscher, M., Roest, W.,
Deville, E., Moulin, M., Aslanian, D., and Rabineau, M.: The Cenozoic
tectonostratigraphic evolution of the Barracuda Ridge and Tiburon Rise, at
the western end of the North America – South America plate boundary zone,
Mar. Geol., 303–306, 154–171,
https://doi.org/10.1016/j.margeo.2012.02.001, 2012.
a
Raleigh, C. and Paterson, M.: Experimental deformation of serpentinite and its
tectonic implications, J. Geophys. Res., 70, 3965–3985, 1965. a
Ranalli, G.: Rheology of the Earth, Chapman and Hall, London, 2nd edn., 1995.
a,
b
Reagan, M. K., Heaton, D. E., Schmitz, M. D., Pearce, J. A., Shervais, J. W.,
and Koppers, A. A.: Forearc ages reveal extensive short-lived and rapid
seafloor spreading following subduction initiation, Earth Planet. Sc. Lett., 506, 520–529,
https://doi.org/10.1016/j.epsl.2018.11.020,
2019.
a
Ribe, N. and Christensen, U.: Three-dimensional modeling of plume-lithosphere
interaction, J. Geophys. Res., 99, 699–682, 1994.
a,
b
Rocchi, V., Sammonds, P. R., and Kilburn, C. R.: Flow and fracture maps for
basaltic rock deformation at high temperatures, J. Volcanol.
Geoth. Res., 120, 25–42,
https://doi.org/10.1016/S0377-0273(02)00343-8,
2003.
a
Searle, R.: Multiple, closely spaced transform faults in fast-slipping
fractures zones, Geology, 11, 607–610, 1983.
a,
b
Seton, M., Flament, N., Whittaker, J., Müller, R., Gurnis, M., and Bower, D.:
Ridge subduction sparked reorganization of the Pacific plate-mantle system
60–50 million years ago, Geophys. Res. Lett., 42, 1732–1740,
https://doi.org/10.1002/2015GL063057, 2015.
a
Sibuet, J.-C., Hsu, S.-K., Le Pichon, X., Le Formal, J.-P., Reed, D.,
Moore, G., and Liu, C.-S.: East Asia plate tectonics since 15 Ma: constraints
from the Taiwan region, Tectonophysics, 344, 103–134, 2002. a
Stein, S. and Stein, S.: A model for the global variation in oceanic depth and
heat flow with lithospheric age, Nature, 359, 123–129, 1992. a
Stern, R. J. and Gerya, T.: Subduction initiation in nature and models: A
review, Tectonophysics, 746,
173–198,
https://doi.org/10.1016/j.tecto.2017.10.014, 2018.
a,
b,
c,
d
Tesei, T., Harbord, C. W. A., De Paola, N., Collettini, C., and Viti, C.:
Friction of Mineralogically Controlled Serpentinites and Implications for
Fault Weakness, J. Geophys. Res.-Sol. Ea., 123,
6976–6991,
https://doi.org/10.1029/2018JB016058,
2018.
a
Tetreault, J. L. and Buiter, S. J. H.: Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments, Solid Earth, 5, 1243–1275,
https://doi.org/10.5194/se-5-1243-2014, 2014.
a
Tompkins, M. J. and Christensen, N. I.: Effects of pore pressure on
compressional wave attenuation in a young oceanic basalt, Geophys. Res. Lett., 26, 1321–1324,
https://doi.org/10.1029/1999GL900216,
1999.
a
Tortella, D., Torne, M., and Perez-Estaun, A.: Geodynamic Evolution of the
Eastern Segment of the Azores-Gibraltar Zone: The Gorringe Bank and the Gulf
of Cadiz Region, Mar. Geophys. Res., 19, 211–230,
https://doi.org/10.1023/A:1004258510797, 1997.
a
Turcotte, D. and Schubert, G.: Geodynamics: Applications of continuum physics
to geological problems, Cambridge University Press, New York, second edn.,
1982.
a,
b,
c
Ueda, K., Gerya, T., and Sobolev, S. V.: Subduction initiation by
thermal–chemical plumes: Numerical studies, Phys. Earth Planet. In., 171, 296–312,
https://doi.org/10.1016/j.pepi.2008.06.032, 2008.
a,
b,
c
van Keken, P., King, S., Schmeling, H., Christensen, U., Neumeister, D., and
Doin, M.-P.: A comparison of methods for the modeling of thermochemical
convection, J. Geophys. Res., 102, 22477–22495, 1997. a
Violay, M., Gibert, B., Mainprice, D., Evans, B., Dautria, J.-M., Azais, P.,
and Pezard, P.: An experimental study of the brittle-ductile transition of
basalt at oceanic crust pressure and temperature conditions, J.
Geophys. Res.-Sol. Ea., 117, B03213,
https://doi.org/10.1029/2011JB008884,
2012.
a,
b
Whattam, S. A. and Stern, R. J.: Late Cretaceous plume-induced subduction
initiation along the southern margin of the Caribbean and NW South America:
The first documented example with implications for the onset of plate
tectonics, Gond. Res., 27, 38–63,
https://doi.org/10.1016/j.gr.2014.07.011,
2015.
a
Wolfson-Schwehr, M., Boettcher, M. S., McGuire, J. J., and Collins, J. A.: The
relationship between seismicity and fault structure on the Discovery
transform fault, East Pacific Rise, Geochem. Geophys. Geosyst., 15,
3698–3712,
https://doi.org/10.1002/2014GC005445,
2014.
a
Yongsheng, Z., Changrong, H., Xiaoge, H., Juan, S., Zunan, S., and Hua, K.:
Rheological Complexity of Mafic Rocks and Effect of Mineral Component on
Creep of Rocks, Earth Sci. Front., 16, 76–87, 2009. a
Zhou, X., Li, Z.-H., Gerya, T. V., Stern, R. J., Xu, Z., and Zhangi, J.:
Subduction initiation dynamics along a transform fault control trench
curvature and ophiolite ages, Geology, 46, 607–610,
https://doi.org/10.1130/G40154.1, 2018.
a,
b,
c,
d,
e
Zhu, G., Gerya, T. V., Yuen, D. A., Honda, S., Yoshida, T., and Connolly, J.
A. D.: Three-dimensional dynamics of hydrous thermal-chemical plumes in
oceanic subduction zones, Geochem. Geophys. Geosyst., 10, Q11006,
https://doi.org/10.1029/2009GC002625,
2009.
a
Zhu, G., Gerya, T. V., Honda, S., Tackley, P. J., and Yuen, D. A.: Influences
of the buoyancy of partially molten rock on 3-D plume patterns and melt
productivity above retreating slabs, Phys. Earth Planet. In., 185, 112–121,
https://doi.org/10.1016/j.pepi.2011.02.005,
2011.
a