Articles | Volume 11, issue 2
Solid Earth, 11, 691–717, 2020
https://doi.org/10.5194/se-11-691-2020
Solid Earth, 11, 691–717, 2020
https://doi.org/10.5194/se-11-691-2020

Research article 30 Apr 2020

Research article | 30 Apr 2020

Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes

Dan J. Clark et al.

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Tectonics
Effects of basal drag on subduction dynamics from 2D numerical models
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021,https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021,https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020,https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020,https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
The enigmatic curvature of Central Iberia and its puzzling kinematics
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020,https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary

Cited articles

Adams, J., Wetmiller, R., Hasegawa, H., and Drysdale, J.: The first surface faulting from a historical earthquake in North America, Nature, 352, 617619, https://doi.org/10.1038/352617a0, 1991. 
Adams, J., Percival, J., Wetmiller, R., Drysdale, J., and Robertson, P.: Geological controls on the 1989 Ungava surface rupture a preliminary interpretation, Geological Survey of Canada Paper, 92C, 147155, https://doi.org/10.4095/132858, 1992. 
Agisoft LCC: Agisoft PhotoScan Pro 1.4.3, available at: http://www.agisoft.com, last access: November 2018. 
Allen, T. I.: Seismic hazard estimation in stable continental regions: does PSHA meet the needs for modern engineering design in Australia?, Bulletin of the New Zealand Society for Earthquake Engineering, 53, 22–36, 2020. 
Allen, T. I., Dhu, T., Cummins, P. R., and Schneider, J. F.: Empirical Attenuation of Ground-Motion Spectral Amplitudes in Southwestern Western Australia, B. Seismol. Soc. Am., 96, 572–585, 2006. 
Download
Short summary
A magnitude 5.3 reverse-faulting earthquake in September 2018 near Lake Muir in southwest Western Australia was followed after 2 months by a collocated magnitude 5.2 strike-slip event. The first event produced a ~ 5 km long and up to 0.5 m high west-facing surface rupture, and the second triggered event deformed but did not rupture the surface. The earthquake sequence was the ninth to have produced surface rupture in Australia. None of these show evidence for prior Quaternary surface rupture.