Articles | Volume 12, issue 6
https://doi.org/10.5194/se-12-1287-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1287-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stress rotation – impact and interaction of rock stiffness and faults
Karsten Reiter
CORRESPONDING AUTHOR
Institute of Applied Geosciences, TU Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Related authors
Lalit Sai Aditya Reddy Velagala, Oliver Heidbach, Moritz Ziegler, Karsten Reiter, Mojtaba Rajabi, Andreas Henk, Silvio B. Giger, and Tobias Hergert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4559, https://doi.org/10.5194/egusphere-2025-4559, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We assess the fault impact on the stress field in northern Switzerland using 3D geomechanical models, calibrated with stress data. We see that faults affect the stresses only locally, with negligible impact beyond 1 km, suggesting that faults may not be necessary in reservoir-scale models predicting stresses of undisturbed rock volumes, such as for a deep geological repository. Omitting them can substantially reduce modelling time and computational cost without compromising prediction accuracy.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Sarah Diekmeier, Karsten Reiter, Andreas Henk, and Colin Friebe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-489, https://doi.org/10.5194/essd-2024-489, 2025
Manuscript not accepted for further review
Short summary
Short summary
The study explores the potential for storing carbon-rich products in Germany to support climate goals. Using geological data, we identified old mining sites suitable for storing products like graphite and oxalate from negative emissions technologies. Results show significant storage potential, both above and below ground, offering a sustainable solution. By reusing existing mining areas, Germany can advance towards carbon neutrality, reducing costs and environmental impact.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Lalit Sai Aditya Reddy Velagala, Oliver Heidbach, Moritz Ziegler, Karsten Reiter, Mojtaba Rajabi, Andreas Henk, Silvio B. Giger, and Tobias Hergert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4559, https://doi.org/10.5194/egusphere-2025-4559, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We assess the fault impact on the stress field in northern Switzerland using 3D geomechanical models, calibrated with stress data. We see that faults affect the stresses only locally, with negligible impact beyond 1 km, suggesting that faults may not be necessary in reservoir-scale models predicting stresses of undisturbed rock volumes, such as for a deep geological repository. Omitting them can substantially reduce modelling time and computational cost without compromising prediction accuracy.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Sarah Diekmeier, Karsten Reiter, Andreas Henk, and Colin Friebe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-489, https://doi.org/10.5194/essd-2024-489, 2025
Manuscript not accepted for further review
Short summary
Short summary
The study explores the potential for storing carbon-rich products in Germany to support climate goals. Using geological data, we identified old mining sites suitable for storing products like graphite and oxalate from negative emissions technologies. Results show significant storage potential, both above and below ground, offering a sustainable solution. By reusing existing mining areas, Germany can advance towards carbon neutrality, reducing costs and environmental impact.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Cited articles
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: 3D crustal stress state of Western Central Europe according to a data-calibrated geomechanical model – first results, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2020-199, in review, 2020. a
Aichroth, B., Prodehl, C., and Thybo, H.: Crustal structure along the Central Segment of the EGT from seismic-refraction studies, Tectonophysics, 207, 43–64, https://doi.org/10.1016/0040-1951(92)90471-H, 1992. a, b
Anderson, E. M.: The dynamics of faulting, Transactions of the Edinburgh Geological Society, 8, 387–402, https://doi.org/10.1144/transed.8.3.387, 1905. a
Anderson, E. M.: The Dynamics of Faulting and Dyke Formation with Application to Britain, 2nd edn., Oliver and Boyd, London and Edinburgh, 1951. a
Artyushkov, E. V.: Stresses in the lithosphere caused by crustal thickness inhomogeneities, J. Geophys. Res., 78, 7675–7708, https://doi.org/10.1029/JB078i032p07675, 1973. a, b
Assameur, D. M. and Mareschal, J.-C.: Stress induced by topography and crustal density heterogeneities: implication for the seismicity of southeastern Canada, Tectonophysics, 241, 179–192, https://doi.org/10.1016/0040-1951(94)00202-K, 1995. a
Bada, G., Cloetingh, S., Gerner, P., and Horvâth, F.: Sources of recent tectonic stress in the Pannonian region:inferences from finite element modelling, Geophys. J. Int., 134, 87–101, https://doi.org/10.1046/j.1365-246x.1998.00545.x, 1998. a
Bell, J. S., Caillet, G., and Adams, J.: Attempts to detect open fractures and non-sealing faults with dipmeter logs, Geol. Soc. Spec. Publ., 65, 211–220, https://doi.org/10.1144/GSL.SP.1992.065.01.16, 1992. a, b
Blundell, D. J., Freeman, R., Müller, S., Button, S., and Mueller, S.: A continent revealed: The European Geotraverse, structure and dynamic evolution, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511608261, 1992. a
Bott, M. and Dean, D. S.: Stress Systems at Young Continental Margins, Nature Physical Science, 235, 23–25, https://doi.org/10.1038/physci235023a0, 1972. a
Brown, E. T. and Hoek, E.: Trends in relationships between measured in-situ stresses and depth, Int. J. Rock Mech. Min., 15, 211–215, https://doi.org/10.1016/0148-9062(78)91227-5, 1978. a, b, c
Buchmann, T. J. and Connolly, P. T.: Contemporary kinematics of the Upper Rhine Graben: A 3D finite element approach, Global Planet. Change, 58, 287–309, https://doi.org/10.1016/j.gloplacha.2007.02.012, 2007. a, b
Byerlee, J.: Friction of Rocks, Pure Appl. Geophys., 116, 615–626, https://doi.org/10.1007/BF00876528, 1978. a
Coblentz, D. D. and Richardson, R. M.: Statistical trends in the intraplate stress field, J. Geophys. Res., 100, 20245, https://doi.org/10.1029/95JB02160, 1995. a
Cornet, F. H. and Röckel, T.: Vertical stress profiles and the significance of “stress decoupling”, Tectonophysics, 581, 193–205, https://doi.org/10.1016/j.tecto.2012.01.020, 2012. a
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T.: Fault lubrication during earthquakes, Nature, 471, 494–498, https://doi.org/10.1038/nature09838, 2011. a
Eisbacher, G. H. and Bielenstein, H. U.: Elastic strain recovery in Proterozoic rocks near Elliot Lake, Ontario, J. Geophys. Res., 76, 2012–2021, https://doi.org/10.1029/JB076i008p02012, 1971. a
Engelder, T.: Deviatoric stressitis: A virus infecting the Earth science community, EOS T. Am. Geophys. Un., 75, 209, https://doi.org/10.1029/94EO00885, 1994. a
Evans, K. F., Engelder, T., and Plumb, R. A.: Appalachian Stress Study: 1. A detailed description of in situ stress variations in Devonian shales of the Appalachian Plateau, J. Geophys. Res., 94, 7129, https://doi.org/10.1029/JB094iB06p07129, 1989. a
Fleitout, L. and Froidevaux, C.: Tectonics and topography for a lithosphere containing density heterogeneities, Tectonics, 1, 21–56, https://doi.org/10.1029/TC001i001p00021, 1982. a
Fordjor, C. K., Bell, J. S., and Gough, D. I.: Breakouts in Alberta and stress in the North American plate, Can. J. Earth Sci., 20, 1445–1455, https://doi.org/10.1139/e83-130, 1983. a
Frank, F. C.: Plate Tectonics, the Analogy with Glacier Flow, and Isostasy, in: Flow and Fracture of Rocks, edited by: Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B., AGU, Washington D. C., geophysica edn., 285–292, https://doi.org/10.1029/GM016p0285, 1972. a
Franke, W.: The Variscan orogen in Central Europe: construction and collapse, Geol. Soc. Mem., 32, 333–343, https://doi.org/10.1144/GSL.MEM.2006.032.01.20, 2006. a
Franke, W.: Topography of the Variscan orogen in Europe: Failed-not collapsed, Int. J. Earth Sci., 103, 1471–1499, https://doi.org/10.1007/s00531-014-1014-9, 2014. a
Franke, W. and Dulce, J.-C.: Back to sender: tectonic accretion and recycling of Baltica-derived Devonian clastic sediments in the Rheno-Hercynian Variscides, Int. J. Earth Sci., 106, 377–386, https://doi.org/10.1007/s00531-016-1408-y, 2017. a
Franke, W., Bortfeld, R. K., Brix, M., Drozdzewski, G., Dürbaum, H. J., Giese, P., Janoth, W., Jödicke, H., Reichert, C., Scherp, A., Schmoll, J., Thomas, R., Thünker, M., Weber, K., Wiesner, M. G., and Wong, H. K.: Crustal structure of the Rhenish Massif: results of deep seismic reflection lines Dekorp 2-North and 2-North-Q, Geol. Rundsch., 79, 523–566, https://doi.org/10.1007/BF01879201, 1990. a
Froidevaux, C., Paquin, C., and Souriau, M.: Tectonic stresses in France: In situ measurements with a flat jack, J. Geophys. Res.-Sol. Ea., 85, 6342–6346, https://doi.org/10.1029/JB085iB11p06342, 1980. a
Ghosh, A., Holt, W. E., Flesch, L. M., and Haines, A. J.: Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate, Geology, 34, 321–324, https://doi.org/10.1130/G22071.1, 2006. a
Ghosh, A., Holt, W. E., and Flesch, L. M.: Contribution of gravitational potential energy differences to the global stress field, Geophys. J. Int., 179, 787–812, https://doi.org/10.1111/j.1365-246X.2009.04326.x, 2009. a, b
Grad, M. and Tiira, T.: The Moho depth map of the European Plate, Geophys. J. Int., 176, 279–292, https://doi.org/10.1111/j.1365-246X.2008.03919.x, 2009. a
Grad, M., Polkowski, M., and Ostaficzuk, S. R.: High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland, Tectonophysics, 666, 188–210, https://doi.org/10.1016/j.tecto.2015.10.022, 2016. a
Gregersen, S.: Crustal stress regime in Fennoscandia from focal mechanisms, J. Geophys. Res., 97, 11821, https://doi.org/10.1029/91JB02011, 1992. a, b
Greiner, G.: In-situ stress measurements in Southwest Germany, Tectonophysics, 29, 265–274, https://doi.org/10.1016/0040-1951(75)90150-X, 1975. a
Greiner, G. and Illies, J. H.: Central Europe: Active or residual tectonic
stresses, Pure Appl. Geophys., 115, 11–26, https://doi.org/10.1007/BF01637094, 1977. a
Hast, N.: The state of stresses in the upper part of the earth's crust: A reply, Eng. Geol., 2, 339–344, https://doi.org/10.1016/0013-7952(69)90021-0, 1969. a
Hast, N.: Global Measurements of Absolute Stress, Philos. T. R. Soc. A, 274, 409–419, https://doi.org/10.1098/rsta.1973.0070, 1973. a
Hast, N.: The state of stress in the upper part of the Earth's crust as determined by measurements of absolute rock stress, Naturwissenschaften, 61, 468–475, https://doi.org/10.1007/BF00622962, 1974. a
Heidbach, O., Tingay, M. R. P., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B.: Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 482, 3–15, https://doi.org/10.1016/j.tecto.2009.07.023, 2010. a
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Team: World Stress Map Database Release 2016. V.1.1 [dataset], GFZ Data Services, https://doi.org/10.5880/WSM.2016.001, 2016. a
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M. R. P., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., and Zoback, M. D.: The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007, 2018. a, b, c, d, e, f, g
Hergert, T. and Heidbach, O.: Geomechanical model of the Marmara Sea region-II. 3-D contemporary background stress field, Geophys. J. Int., 185, 1090–1102, https://doi.org/10.1111/j.1365-246X.2011.04992.x, 2011. a, b
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., and Marschall, P.: Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland, Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, 2015. a
Herget, G.: Variation of rock stresses with depth at a Canadian iron mine, Int. J. Rock Mech. Min., 10, 37–51, https://doi.org/10.1016/0148-9062(73)90058-2, 1973. a, b
Hickman, S. H. and Zoback, M. D.: Stress orientations and magnitudes in the SAFOD pilot hole, Geophys. Res. Lett., 31, L15S12, https://doi.org/10.1029/2004GL020043, 2004. a, b, c, d
Homberg, C., Hu, J., Angelier, J., Bergerat, F., and Lacombe, O.: Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains), J. Struct. Geol., 19, 703–718, https://doi.org/10.1016/S0191-8141(96)00104-6, 1997. a, b, c
Humphreys, E. D. and Coblentz, D. D.: North American dynamics and western U. S. tectonics, Rev. Geophys., 45, RG3001, https://doi.org/10.1029/2005RG000181, 2007. a, b
Kaiser, A., Reicherter, K., Hübscher, C., and Gajewski, D.: Variation of the present-day stress field within the North German Basin – Insights from thin shell FE modeling based on residual GPS velocities, Tectonophysics, 397, 55–72, https://doi.org/10.1016/j.tecto.2004.10.009, 2005. a, b, c, d, e, f, g
Kastrup, U., Zoback, M.-L. L., Deichmann, N., Evans, K. F., Giardini, D., and Michael, A. J.: Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions, J. Geophys. Res., 109, B01402, https://doi.org/10.1029/2003jb002550, 2004. a
King, R., Backé, G., Tingay, M., Hillis, R., and Mildren, S.: Stress deflections around salt diapirs in the Gulf of Mexico, Geol. Soc. Spec. Publ., 367, 141–153, https://doi.org/10.1144/SP367.10, 2012. a
Klügel, T., Ahrendt, H., Oncken, O., Käfer, N., Schäfer, F.,
and Weiss, B.: Alter und Herkunft der Sedimente und des Detritus der
nördlichen Phyllit-Zone (Taunussüdrand), Zeitschrift der
Deutschen Geologischen Gesellschaft, 145, 172–191, 1994. a
Kohlbeck, F., Roch, K.-H., and Scheidegger, A. E.: In Situ Stress Measurements in Austria, in: Tectonic Stresses in the Alpine-Mediterranean Region, edited by: Scheidegger, A. E., Springer, Vienna, 21–29, https://doi.org/10.1007/978-3-7091-8588-9_5, 1980. a
Kroner, U. and Romer, R. L.: Two plates – Many subduction zones: The Variscan orogeny reconsidered, Gondwana Res., 24, 298–329, https://doi.org/10.1016/j.gr.2013.03.001, 2013. a
Kroner, U., Hahn, T., Romer, R. L., and Linnemann, U.: The Variscan orogeny in
the Saxo-Thuringian zone – heterogenous overprint of Cadomian/Paleozoic
peri-Gondwana crust, Special Paper 423: The Evolution of the Rheic Ocean: From
Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision,
Geol. Soc. Am. Spec. Publ., 423, 153–172, https://doi.org/10.1130/2007.2423(06), 2007. a
Laubach, S. E., Clift, S. J., Hill, R. E., and Fix, J.: Stress Directions in
Cretaceous Frontier Formation, Green River Basin, Wyoming, in: Rediscover the
Rockies; 43rd Annual Field Conference Guidebook, Casper, Wyoming, 13–16 September 1992, 75–86, 1992. a
Lindner, E. N. E. N. and Halpern, J. A.: In-situ stress in North America: A compilation, Int. J. Rock Mech. Min., 15, 183–203, https://doi.org/10.1016/0148-9062(78)91225-1, 1978. a, b
Linnemann, U. e.: Das Saxothuringikum: Abriss der präkambrischen und paläozoischen Geologie von Sachsen und Thüringen, Staatliche Naturhistorische Sammlung Dresden, Museum für Mineralogie und Geologie, Dresden, geologican edn., 2004. a
Lund, B. and Zoback, M. D.: Orientation and magnitude of in situ stress to
6.5 km depth in the Baltic Shield, Int. J. Rock Mech. Min., 36, 169–190, https://doi.org/10.1016/S0148-9062(98)00183-1, 1999. a, b
Lund Snee, J.-E. and Zoback, M. D.: State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity, The Leading Edge, 37, 127–134, https://doi.org/10.1190/tle37020127.1, 2018. a
Lund Snee, J.-E. and Zoback, M. D.: Multiscale variations of the crustal stress field throughout North America, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-15841-5, 2020. a
Mantovani, E., Viti, M., Albarello, D., Tamburelli, C., Babbucci, D., and Cenni, N.: Role of kinematically induced horizontal forces in Mediterranean tectonics: insights from numerical modeling, J. Geodyn., 30, 287–320, https://doi.org/10.1016/S0264-3707(99)00067-8, 2000. a, b, c
Martínez-Garzón, P., Bohnhoff, M., Kwiatek, G., and Dresen, G.: Stress tensor changes related to fluid injection at The Geysers geothermal field, California, Geophys. Res. Lett., 40, 2596–2601, https://doi.org/10.1002/grl.50438, 2013. a
Matte, P.: Tectonics and plate tectonics model for the Variscan belt of Europe, Tectonophysics, 126, 329–374, https://doi.org/10.1016/0040-1951(86)90237-4, 1986. a
Mazzotti, S. and Townend, J.: State of stress in central and eastern North American seismic zones, Lithosphere, 2, 76–83, https://doi.org/10.1130/L65.1, 2010. a, b
McCutchen, W. R.: Some elements of a theory for In-situ stress, Int. J. Rock Mech. Min., 19, 201–203, https://doi.org/10.1016/0148-9062(82)90890-7, 1982. a, b
Meissner, R. and Bortfeld, R. K.: DEKORP-Atlas : Results of Deutsches Kontinentales Reflexionsseismisches Programm, Springer, Berlin Heidelberg, 1990. a
Miller, D. J. and Dunne, T.: Topographic perturbations of regional stresses and consequent bedrock fracturing, J. Geophys. Res.-Sol. Ea., 101, 25523–25536, https://doi.org/10.1029/96JB02531, 1996. a
Minster, J. B. and Jordan, T. H.: Present-day plate motions, J. Geophys. Res., 83, 5331, https://doi.org/10.1029/JB083iB11p05331, 1978. a
Mooney, W. D., Ritsema, J., and Hwang, Y. K.: Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere, Earth Planet. Sc. Lett., 357–358, 78–83, https://doi.org/10.1016/j.epsl.2012.08.032, 2012. a
Müller, B., Zoback, M.-L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., and Ljunggren, C.: Regional patterns of tectonic stress in Europe, J. Geophys. Res., 97, 11783, https://doi.org/10.1029/91JB01096, 1992. a, b, c, d
Müller, B., Heidbach, O., Negut, M., Sperner, B., and Buchmann, T. J.: Tectonophysics Attached or not attached – evidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania, Tectonophysics, 482, 139–149, https://doi.org/10.1016/j.tecto.2009.08.022, 2010. a
Müller, B., Schilling, F., Röckel, T., and Heidbach, O.: Induced Seismicity in Reservoirs: Stress Makes the Difference, Erdöl Erdgas Kohle, 134, 33–37, https://doi.org/10.19225/180106, 2018. a
Naliboff, J. B., Lithgow-Bertelloni, C., Ruff, L. J., and de Koker, N.: The effects of lithospheric thickness and density structure on Earth's stress field, Geophys. J. Int., 188, 1–17, https://doi.org/10.1111/j.1365-246X.2011.05248.x, 2012. a, b
Oncken, O.: Transformation of a magmatic arc and an orogenic root during oblique collision and it's consequences for the evolution of the European Variscides (Mid-German Crystalline Rise), Geol. Rundsch., 86, 2–20, https://doi.org/10.1007/s005310050118, 1997. a
Oncken, O., Franzke, H. J., Dittmar, U., and Klügel, T.: Rhenohercynian foldbelt: Metamorphic Units (Northern Phyllite Zone), Structure, in: Pre-Permian Geology of Central and Western Europe, edited by: Dallmeyer, R. D., Franke, W., and Weber, K., Springer, Berlin, 109–117, 1995. a
Osokina, D.: Hierarchical properties of a stress field and its relation to fault displacements, J. Geodyn., 10, 331–344, https://doi.org/10.1016/0264-3707(88)90039-7, 1988. a
Petit, J. P. and Mattauer, M.: Palaeostress superimposition deduced from mesoscale structures in limestone: the Matelles exposure, Languedoc, France, J. Struct. Geol., 17, 245–256, https://doi.org/10.1016/0191-8141(94)E0039-2, 1995. a
Pierdominici, S. and Heidbach, O.: Stress field of Italy – Mean stress orientation at different depths and wave-length of the stress pattern, Tectonophysics, 532–535, 301–311, https://doi.org/10.1016/j.tecto.2012.02.018, 2012. a
Plumb, R. A. and Cox, J. W.: Stress directions in eastern North America determined to 4.5 km from borehole elongation measurements, J. Geophys. Res., 92, 4805, https://doi.org/10.1029/JB092iB06p04805, 1987. a
Ranalli, G. and Chandler, T. E.: The Stress Field in the Upper Crust as Determined from In Situ Measurements, Geol. Rundsch., 64, 653–674, https://doi.org/10.1007/BF01820688, 1975. a
Reinecker, J. and Lenhardt, W. A.: Present-day stress field and deformation in eastern Austria, Int. J. Earth Sci., 88, 532–550, https://doi.org/10.1007/s005310050283, 1999. a, b
Reiter, K.: Stress rotation – impact and interaction of rock stiffness and faults (input files), Technical University of Darmstadt, https://doi.org/10.48328/tudatalib-560, 2021. a
Reiter, K. and Heidbach, O.: 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada), Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, 2014. a, b
Richardson, R. M., Solomon, S. C., and Sleep, N. H.: Tectonic stress in the plates, Rev. Geophys., 17, 981–1019, https://doi.org/10.1029/RG017i005p00981, 1979. a, b, c
Rispoli, R.: Stress fields about strike-slip faults inferred from stylolites and tension gashes, Tectonophysics, 75, T29–T36, https://doi.org/10.1016/0040-1951(81)90274-2, 1981. a, b
Roberts, M. and Schweitzer, J.: Geotechnical areas associated with the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa, J. S. Afr. I. Min. Metall., 99, 157–166, 1999. a
Röckel, T. and Lempp, C.: Der Spannungszustand im Norddeutschen Becken, Erdöl Erdgas Kohle, 119, 73–80, 2003. a
Roth, F. and Fleckenstein, P.: Stress orientations found in North-East Germany differ from the West European trend, Terra Nova, 13, 289–296, https://doi.org/10.1046/j.1365-3121.2001.00357.x, 2001. a
Saucier, F., Humphreys, E. D., and Weldon, R.: Stress near geometrically complex strike-slip faults: Application to the San Andreas Fault at Cajon Pass, southern California, J. Geophys. Res., 97, 5081–5094, https://doi.org/10.1029/91JB02644, 1992. a
Schoenball, M. and Davatzes, N. C.: Quantifying the heterogeneity of the tectonic stress field using borehole data, J. Geophys. Res.-Sol. Ea., 122, 6737–6756, https://doi.org/10.1002/2017JB014370, 2017. a
Sheorey, P. R.: A theory for In Situ stresses in isotropic and transverseley isotropic rock, Int. J. Rock Mech. Min., 31, 23–34, https://doi.org/10.1016/0148-9062(94)92312-4, 1994. a, b, c
Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Reinecker, J., and Fuchs, K.: Tectonic stress in the Earth's crust: advances in the World Stress Map project, Geol. Soc. Spec. Publ., 212, 101–116, 2003. a
Stein, S., Cloetingh, S., Sleep, N. H., and Wortel, R.: Passive Margin Earthquakes, Stresses and Rheology, in: Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Springer, Dordrecht, the Netherlands, 231–259, https://doi.org/10.1007/978-94-009-2311-9_14, 1989. a
Tesauro, M., Kaban, M. K., and Cloetingh, S. A.: Global strength and elastic thickness of the lithosphere, Global Planet. Change, 90–91, 51–57, https://doi.org/10.1016/j.gloplacha.2011.12.003, 2012. a
Tingay, M. R. P., Müller, B., Reinecker, J., Heidbach, O., Wenzel, F., and Fleckenstein, P.: Understanding tectonic stress in the oil patch: The World Stress Map Project, The Leading Edge, 24, 1276–1282, https://doi.org/10.1190/1.2149653, 2005. a
Tommasi, A., Vauchez, A., and Daudré, B.: Initiation and propagation of shear zones in a heterogeneous continental lithosphere, J. Geophys. Res.-Sol. Ea., 100, 22083–22101, https://doi.org/10.1029/95JB02042, 1995. a, b, c, d
Tullis, T. E.: Reflections on Measurement of Residual-Stress in Rock, Pure Appl. Geophys., 115, 57–68, https://doi.org/10.1007/bf01637097, 1977. a
van Wees, J. D., Orlic, B., van Eijs, R., Zijl, W., Jongerius, P., Schreppers, G. J., Hendriks, M., and Cornu, T.: Integrated 3D geomechanical modelling for deep subsurface deformation: a case study of tectonic and human-induced deformation in the eastern Netherlands, Geol. Soc. Spec. Publ., 212, 313–328, https://doi.org/10.1144/GSL.SP.2003.212.01.21, 2003. a, b
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic mapping tools: Improved version released, EOS T. Am. Geophys. Un., 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013. a
Yassir, N. A. and Zerwer, A.: Stress regimes in the Gulf coast, offshore Louisiana: Data from well-bore breakout analysis, AAPG Bull., 81, 293–307, https://doi.org/10.1306/522B4311-1727-11D7-8645000102C1865D, 1997. a, b
Zakharova, N. V. and Goldberg, D. S.: In situ stress analysis in the northen Newark Basin: implications for induced seismicity from CO2 injection, J. Geophys. Res.-Sol. Ea., 119, 1–13, https://doi.org/10.1002/2013JB010492, 2014. a
Ziegler, M. and Heidbach, O.: Matlab script Stress2Grid, GFZ Data Services,
https://doi.org/10.5880/WSM.2019.002, 2017. a
Ziegler, M. O., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G.,
Stromeyer, D., Dahm, T., Dresen, G., Hofmann, G., Stromeyer, D., Dahm, T.,
Dresen, G., and Hofmann, G.: Mining-Induced Stress Transfer and Its Relation
to a Mw 1.9 Seismic
Event in an Ultra-deep South African Gold Mine, Pure Appl. Geophys., 172, 2557–2570, https://doi.org/10.1007/s00024-015-1033-x, 2015. a
Ziegler, M. O., Heidbach, O., Zang, A., Martínez-Garzón, P., and Bohnhoff, M.: Estimation of the differential stress from the stress rotation angle in low permeable rock, Geophys. Res. Lett., 44, 6761–6770, https://doi.org/10.1002/2017GL073598, 2017. a
Zoback, M.-L. L. M. D., Adams, J., Assumpção, M., Bell, J. S., Bergman, E. A., Blümling, P., Brereton, N. R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregersen, S., Gupta, H. K., Gvishiani, A., Jacob, K., Klein, R., Knoll, P., Magee, M., Mercier, J. L., Müller, B., Paquin, C., Rajendran, K., Stephansson, O., Suarez, G., Suter, M., Udias, A., Xu, Z. H., and Zhizhin, M.: Global patterns of tectonic stress, Nature, 341, 291–298, https://doi.org/10.1038/341291a0, 1989. a, b, c, d, e, f
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio),...