Articles | Volume 12, issue 2
Solid Earth, 12, 463–481, 2021
https://doi.org/10.5194/se-12-463-2021
Solid Earth, 12, 463–481, 2021
https://doi.org/10.5194/se-12-463-2021

Research article 24 Feb 2021

Research article | 24 Feb 2021

Crustal structure of southeast Australia from teleseismic receiver functions

Mohammed Bello et al.

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, geoelectrics, and electromagnetics | Discipline: Seismology
Seismic monitoring of the Auckland Volcanic Field during New Zealand's COVID-19 lockdown
Kasper van Wijk, Calum J. Chamberlain, Thomas Lecocq, and Koen Van Noten
Solid Earth, 12, 363–373, https://doi.org/10.5194/se-12-363-2021,https://doi.org/10.5194/se-12-363-2021, 2021
Short summary
Using horizontal-to-vertical spectral ratios to construct shear-wave velocity profiles
Janneke van Ginkel, Elmer Ruigrok, and Rien Herber
Solid Earth, 11, 2015–2030, https://doi.org/10.5194/se-11-2015-2020,https://doi.org/10.5194/se-11-2015-2020, 2020
Short summary
Crustal structures beneath the Eastern and Southern Alps from ambient noise tomography
Ehsan Qorbani, Dimitri Zigone, Mark R. Handy, Götz Bokelmann, and AlpArray-EASI working group
Solid Earth, 11, 1947–1968, https://doi.org/10.5194/se-11-1947-2020,https://doi.org/10.5194/se-11-1947-2020, 2020
Short summary
Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion
Laura Ermert, Jonas Igel, Korbinian Sager, Eléonore Stutzmann, Tarje Nissen-Meyer, and Andreas Fichtner
Solid Earth, 11, 1597–1615, https://doi.org/10.5194/se-11-1597-2020,https://doi.org/10.5194/se-11-1597-2020, 2020
Short summary
Deep learning for fast simulation of seismic waves in complex media
Ben Moseley, Tarje Nissen-Meyer, and Andrew Markham
Solid Earth, 11, 1527–1549, https://doi.org/10.5194/se-11-1527-2020,https://doi.org/10.5194/se-11-1527-2020, 2020
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, data sources and analysis, NOAA technical memorandum NESDIS NGDC-24, 19 pp, 2009. 
Ammon, C. J.: The isolation of receiver effects from teleseismic P waveforms, B. Seismol. Soc. Am., 81, 2504–2510, 1991. 
Ammon, C. J., Randall, G., and Zandt, G.: On the nonuniqueness of receiver function inversions, J. Geophys. Res., 95, 15303–15318, 1990. 
Arroucau, P., Rawlinson, N., and Sambridge, M.: New insight into Cainozoic sedimentary basins and Palaeozoic suture zones in southeast Australia from ambient noise surface wave tomography, Geophys. Res. Lett., 37, L07303, https://doi.org/10.1029/2009GL041974, 2010. 
Bannister, S., Yu, J., Leitner, B., and Kennett, B. L. N.: Variations in crustal structure across the transition from West to East Antarctica, Southern Victoria Land, Geophys. J. Int., 155, 870–884, 2003. 
Download
Short summary
In this study, ground motion caused by distant earthquakes recorded in southeast Australia is used to image the structure of the crust and underlying mantle. This part of the Australian continent was assembled over the last 500 million years, but it remains poorly understood. By studying variations in crustal properties and thickness, we find evidence for the presence of an old microcontinent that is embedded in the younger terrane and forms a connection between Victoria and Tasmania.