Articles | Volume 12, issue 2
https://doi.org/10.5194/se-12-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crustal structure of southeast Australia from teleseismic receiver functions
Mohammed Bello
Department Geology and Geophysics, University of Aberdeen, Aberdeen,
UK
Department of Physics, Abubakar Tafawa Balewa University, Bauchi,
Nigeria
David G. Cornwell
Department Geology and Geophysics, University of Aberdeen, Aberdeen,
UK
Nicholas Rawlinson
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Cambridge, Cambridge, UK
Anya M. Reading
School of Natural Sciences (Physics), University of Tasmania, Hobart,
Australia
Othaniel K. Likkason
Department of Physics, Abubakar Tafawa Balewa University, Bauchi,
Nigeria
Related authors
No articles found.
Tingwei Yang, ChuanChuan Lü, Tianyao Hao, Nicholas Rawlinson, Tao Xu, Sri Widiyantoro, Alfian Alfian, Muhammad Taufiq Rafie, and David Prambudi Sahara
EGUsphere, https://doi.org/10.5194/egusphere-2025-3105, https://doi.org/10.5194/egusphere-2025-3105, 2025
Short summary
Short summary
We studied the crust beneath Celebes Sea and Makassar Strait in East Indonesia to better understand how the region formed and moves today. Using ocean-bottom and land-based seismometers, we discovered significant differences in crust thickness and unusual underground structures associated with major faults. These findings help explain past tectonic activity and may improve understanding of earthquake hazards in the area.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024, https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, data sources and analysis, NOAA technical memorandum NESDIS
NGDC-24, 19 pp, 2009.
Ammon, C. J.: The isolation of receiver effects from teleseismic P
waveforms, B. Seismol. Soc. Am., 81, 2504–2510, 1991.
Ammon, C. J., Randall, G., and Zandt, G.: On the nonuniqueness of receiver
function inversions, J. Geophys. Res., 95, 15303–15318, 1990.
Arroucau, P., Rawlinson, N., and Sambridge, M.: New insight into Cainozoic
sedimentary basins and Palaeozoic suture zones in southeast Australia from
ambient noise surface wave tomography, Geophys. Res. Lett., 37, L07303,
https://doi.org/10.1029/2009GL041974, 2010.
Bannister, S., Yu, J., Leitner, B., and Kennett, B. L. N.: Variations in
crustal structure across the transition from West to East Antarctica,
Southern Victoria Land, Geophys. J. Int., 155, 870–884, 2003.
Bello, M., Cornwell, D. G., Rawlinson, N., Reading, A. M., and Likkason, O. K.: Crustal structure of southeast Australia from teleseismic receiver functions,
figshare, Dataset, https://doi.org/10.6084/m9.figshare.12233723.v1, 2020.
Bello, M., Cornwell, D. G., Rawlinson, N., and Reading, A. M.: Insights into
the structure and dynamics of the upper mantle beneath Bass Strait,
southeast Australia, using shear wave splitting, Phys. Earth Planet. Inter.,
289, 45–62, https://doi.org/10.1016/j.pepi.2019.02.002, 2019a.
Bello, M., Rawlinson, N., Cornwell, D. G., Crowder, E., Salmon, M., and
Reading, A. M.: Structure of the crust and upper mantle beneath Bass Strait,
southeast Australia, from teleseismic body wave tomography, Phys. Earth
Planet. Inter., 294, 106276, https://doi.org/10.1016/j.pepi.2019.106276, 2019b.
Berry, R. F., Steele, D. A., and Maffre, S.: Proterozoic metamorphism in
Tasmania: implications for tectonic reconstructions, Prec. Res., 166,
387–396, https://doi.org/10.1016/j.precamres.2007.05.004, 2008.
Bodin, T., Salmon, M., Kennett, B. L. N., and Sambridge, M.: Probabilistic
surface reconstruction from multiple datasets: an example for the Australian
Moho, J. Geophys. Res.-Sol. Ea., 117, B10307,
https://doi.org/10.1029/2012JB009547, 2012a.
Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P.: Transdimensional
tomography with unknown data noise, Geophys. J. Int., 189, 1536–1556,
2012b.
Boger, S. and Miller, J.: Terminal suturing of Gondwana and the onset of the
Ross Delamerian Orogeny: the cause and effect of an Early Cambrian
reconfiguration of plate motions, Earth Planet. Sci. Lett., 219, 35–48,
2004.
Calvert, C. R. and Walter, M. R.: The Late Neoproterozoic Grassy Group of
King Island, Tasmania: correlation and palaeogeographic significance,
Precam. Res., 100, 299–312, 2000.
Cawood, P. A.: Terra Australis Orogen: Rodinia breakup and development of
the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and
Palaeozoic, Earth-Sci. Rev., 69, 249–279,
https://doi.org/10.1016/j.earscirev.2004.09.001, 2005.
Cayley, R.: Exotic crustal block accretion to the eastern Gondwanaland
margin in the Late Cambrian Tasmania, the Selwyn Block, and implications for
the Cambrian–Silurian evolution of the Ross, Delamerian, and Lachlan
orogens, Gond. Res., 19, 628–649, https://doi.org/10.1016/j.gr.2010.11.013, 2011a.
Cayley, R., Korsch, R. J., Moore, D. H., Costelloe, R. D., Nakamura, A.,
Willman, C. E., Rawlin, T. J., Morand, V. J., Skladzien, P. B., and O'Shea,
P. J.: Crustal architecture of central Victoria: results from the 2006 deep
crustal reflection seismic survey, Aust. J. Earth Sci., 59, 113–156, 2011b.
Chen, Y., Niu, F., Liu, R., Huang, Z., Tkalčić, H., Sun, L., and
Chan, W.: Crustal structure beneath China from receiver function analysis,
J. Geophys. Res., 49, B033067, https://doi.org/10.1029/2009JB006386, 2010.
Chevrot, S. and van der Hilst, R. D.: The Poisson ratio of the Australian
crust: Geological and Geophysical implications, Earth Planet. Sci. Lett.,
183, 121–132, 2000.
Christensen, N. I.: Poisson's ratio and crustal seismology, J. Geophys.
Res., 101, 3139–3156, 1996.
Christensen, N. I. and Fountain, D. M.: Constitution of the lower
continental crust based on experimental studies of seismic velocities in
granulite, Geol. Soc. Am. Bull., 86, 227–236, 1975.
Clitheroe, G., Gudmundsson, O., and Kennett, B.: The crustal thickness of
Australia, J. Geophys. Res., 105, 13697–13713, 2000.
Collins, C. D. N.: The nature of crust–mantle boundary under Australia from
seismic evidence, in: The Australian lithosphere, edited by: Drummond, B. J., Geol. Soc. Aust. Spec. Pub., 17, 67–80, 1991.
Collins, C. D. N., Drummond, B. J., and Nicoll, M. G.: Crustal thickness
patterns in the Australian continent, Geol. Soc. Ame. Spec. Papers, 372,
121–128, 2003.
Collins, W. J.: Nature of extensional accretionary origins, Tectonics, 21,
1024–1036, 2002.
Collins, W. J. and Vernon, R. H.: A rift–drift–delamination model of
continental evolution: Palaeozoic tectonic development of eastern Australia,
Tectonophysics, 2, 249–275, 1994.
Coney, P. J.: Plate tectonics and the Precambrian Phanerozoic evolution of
Australia, Proceedings of the PACRIM '95 Congress, Auckland, 19–22 November, Aust. Inst. Mining and Metallurgy, pages 145–150,
1995.
Coney, P. J., Edwards, A., Hine, R., Morrison, F., and Windrim, D.: The
regional tectonics of the Tasman orogenic system, eastern Australia, J.
Struct. Geol., 12, 519–543, 1990.
Cornwell, D. G., Maguire, P. K. H., England, R. W., and Stuart, G. W.: Imaging detailed crustal structure and magmatic intrusion
across the Ethiopian Rift using a dense linear broadband array, Geochem. Geophys. Geosys., 11, Q0AB03, https://doi.org/10.1029/2009GC002637, 2010.
Crowder, E., Rawlinson, N., Pilia, S., Cornwell, D. G., and Reading, A. M.:
Transdimensional ambient noise tomography of Bass Strait, southeast
Australia, reveals the sedimentary basin and deep crustal structure beneath
a failed continental rift, Geophys. J. Int., 217, 970–987, 2019.
Davies, D. R., Rawlinson, N., Iaffaldano, N., and Campbell, I. H.:
Lithospheric controls on magma composition along Earth's longest continental
hotspot track, Nature, 525, 511–514, 2015.
Drummond, B. J. and Collins, C. D. N.: Seismic evidence for underplating of
the lower continental crust of Australia, Earth Planet. Sci. Lett., 79,
361–372, 1986.
Drummond, B. J., Lyons, P., Goleby, B., and Jones, L.: Constraining models
of the tectonic setting of the giant Olympic Dam iron-oxide-copper-gold
deposit, south Australia, using deep seismic reflection data,
Tectonophysics, 420, 91–103, 2006.
Eagar, K. C. and Fouch, M. J.: FuncLab: A MATLAB interactive toolbox for
handling receiver function datasets, Seismo. Res. Lett., 83, 596–603, https://doi.org/10.1785/gssrl.83.3.596, 2012.
Finlayson, D. M., Collins, C. D. N., and Denham, D.: Crustal structure under
the Lachlan Fold Belt, southeastern Australia, Phys. Earth Planet. Int., 21,
321–342, 1980.
Finlayson, D. M., Korsch, R. J., Glen, R. A., Leven, J. H., and Johnstone,
D. W.: Seismic imaging and crustal architecture across the Lachlan
transverse zone, a crosscutting feature of eastern Australia, Aust. J. Earth
Sci., 49, 311–321, 2002.
Fishwick, S. and Rawlinson, N.: 3–D structure of the Australian lithosphere
from evolving seismic datasets, Aust. J. Earth Sci., 59, 809–826, 2012.
Foden, J., Elburg, M. A., Dougherty-Page, J., and Burtt, A.: The timing and
duration of the Delamerian Orogeny: correlation with the Ross Orogen and
implications for Gondwana assembly, J. Geology, 114, 189–210, 2006.
Fontaine, F. R., Tkalčić, H., and Kennett, B. L. N.: Crustal
complexity in the Lachlan Orogen revealed from teleseismic receiver
functions, Aust. J. Earth Sci., 60, 413–430, 2013a.
Fontaine, F. R., Tkalčić, H., and Kennett, B. L. N.: Imaging crustal
structure variation across southeastern Australia, Tectonophysics, 582,
112–125, 2013b.
Foster, D. A. and Gray, D. R.: Evolution and structure of the Lachlan Fold
Belt (Orogen) of eastern Australia, Annu. Rev. Earth Planet. Sci., 28,
47–80, 2000.
Gaina, C., Müller, D., Royer, J. Y., Stock, J., Hardebeck, J., and
Symonds, P.: The tectonic history of the Tasman Sea, a puzzle with 13
pieces, J. Geophys. Res., 103, 12413–12433, 1998.
Gibson, G. M., Morse, M. P., Ireland, T. R., and Nayak, G. K.: Arc-continent
collision and orogenesis in western Tasmanides: insights from reactivated
basement structures and formation of an ocean-continent transform boundary
off western Tasmania, Gondwana Res., 19, 608–627, 2011.
Glen, R. A.: The Tasmanides of Eastern Australia, in: Terrane Processes at the Margins of Gondwana, edited by: Vaughan, A. P. M.,
Leat, P. T., and Pankhurst, R. J., Geological Society, London, 23–96, 2005.
Glen, R. A.: Refining accretionary orogen models for the Tasmanides of
eastern Australia, Aust. J. Earth Sci., 60, 315–370, 2013.
Glen, R. A., Korsch, R. J., Direen, N. G., Jones, L. E. A., Johnstone, D.
W., Lawrie, K. C., Finlayson, D. M., and Shaw, R. D.: Crustal structure of
the Ordovician Macquarie Arc, eastern Lachlan Orogen, based on
seismic–reflection profiling, Aust. J. Earth Sci., 49, 323–348, 2002.
Glen, R. A., Percival, I. G., and Quinn, C. D.: Ordovician continental
margin terranes in the Lachlan Orogen, Australia: implications for tectonics
in an accretionary orogen along the east Gondwana margin, Tectonics, 28, TC6012,
https://doi.org/10.1029/2009TC002446, 2009.
Goldstein, P., Dodge, D., Firpo, M., and Minner, L.: SAC2000: Signal
processing and analysis tools for seismologists and engineers, in: IASPEI
International Handbook of Earthquake and Engineering Seismology, edited by: Lee, W. H. K., Kanamori, H., Jennings, P. C., and Kisslinger, C., Academic
Press, London, 2003.
Gouveia, W. P. and Scales, J. A.: Bayesian seismic waveform inversion:
Parameter estimation and uncertainty analysis, J. Geophys. Res., 103,
2759–2779, 1998.
Gray, D. R. and Foster, D. A.: Tectonic evolution of the Lachlan Orogen,
southeastern Australia: historical review, data synthesis and modern
perspectives, Aust. J. Earth Sci., 51, 773–817, 2004.
Gunn, P. J., Maidment, D. W., and Milligan, P.: Interpreting aeromagnetic
data in areas of limited outcrop, J. Aust. Geol. Geophys., 17,
175–185, 1997.
Haskell, N. A.: The dispersion of surface waves in multilayered media,
B. Seismol. Soc. Am., 43, 1734, https://doi.org/10.1038/physci245109a0, 1953.
He, C. S., Santosh, M., Dong, S. W., and Wang, S. C.: Crustal thickning and
uplift of the Tibetan Plateau inferred from receiver function analysis, J.
Asian Earth Sci., 99, 112–124, 2015.
Kennett, B. L. N, Engdhal, E. R., and Buland, R.: Constraints on seismic
velocities in the earth from travel times, Geophys. J. Int., 125, 228–248,
1995.
Kennett, B. L. N. and Furumura, T.: Stochastic waveguide in the lithosphere:
Indonesian subduction zone to Australian craton, Geophys. J. Int., 172,
363–382, 2008.
Kennett, B. L. N., Salmon, M., Saygin, E., and Group, A.: AusMoho: the
variation of Moho depth in Australia, Geophys. J. Int., 187, 946–958, 2011.
Korsch, R. J., Barton, T. J., Gray, D. R., Owen, A. J., and Foster, D. A.:
Geological interpretation of a deep seismic reflection transect across the
boundary between the Delamerian and Lachlan Orogens, in the vicinity of the
Grampians, western Victoria, Aust. J. Earth Sci., 49, 1057–1075,
https://doi.org/10.1046/j.1440-0952.2002.00963.x, 2002.
Langston, C. A.: Structure under Mount Rainier, Washington, inferred from
teleseismic body waves, J. Geophys. Res., 84, 4749–4762,
https://doi.org/10.1071/EG994019, 1979.
Li, Z. X., Baillie, P. W., and Powell, C. M.: Relationship between
northwestern Tasmania and East Gondwanaland in the Late Cambrian/Early
Ordovician Paleomagnetic evidence, Tectonics, 16, 161–171, https://doi.org/10.1029/96TC02729, 1997.
Ligorria, J. P. and Ammon, C. J.: Iterative deconvolution and receiver
function estimation, B. Seismol. Soc. Am., 89, 1395–1400, 1999.
Moore, D., Betts, P. G., and Hall, M.: Fragmented Tasmania: the transition
from Rodinia to Gondwana, Aust. J. Earth Sci., 62, 1–35, 2015.
Moore, D. H., Betts, P. G., and Hall, M.: Constraining the VanDieland
microcontinent at the edge of East Gondwana, Australia, Tectonophysics, 687,
158–179, 2016.
Moresi, L., Betts, P. G., Miller, M. S., and Cayley, R. A.: Dynamics of
continental accretion, Nature, 508, 245–248, 2014.
Morse, M., Gibson, G., and Mitchell, C.: Basement constraints on offshore
basin architecture as determined by new aeromagnetic data acquired over Bass
Strait and western margin of Tasmania, ASEG Extended Abstracts 2009, 1,
1–9, https://doi.org/10.1071/ASEG2009ab042, 2009.
Owens, T. J., Taylor, S. R., and Zandt, G.: Crustal structure at regional
seismic test network stations determined from inversion of broadband
teleseismic P waveforms, B. Seismol. Soc. Am., 77, 631–632, 1987.
Owens, T. J. and Zandt, G.: Implications of crustal property with variations
for models of Tibetan Plateau evolution, Nature, 387, 37–43, 1997.
Pan, S. Z. and Niu, F. L.: Large contrasts in crustal structure and
composition between the Ordos plateau and the NE Tibetan plateau from
receiver function analysis, Earth Planet. Sci. Lett., 303, 291–298, 2011.
Pilia, S., Arroucau, P., Rawlinson, N., Reading, A. M., and Cayley, R. A.:
Inherited crustal deformation along the East Gondwana margin revealed by
seismic anisotropy tomography, Geophys. Res. Lett., 43, 12082–12090,
https://doi.org/10.1002/2016GL071201, 2016.
Pilia, S., Rawlinson, N., Cayley, R. A., Musgrave, R., Reading, A. M.,
Direen, N. G., and Young, M. K.: Evidence of micro–continent entrainment
during crustal accretion, Sci. Rep.-UK, 5, https://doi.org/10.1038/srep08218, 8218,
2015a.
Pilia, S., Rawlinson, N., Green, N. G., Reading, A. M., Cayley, R., Pryer,
L., Arroucau, P., and Duffet, M.: Linking mainland Australia and Tasmania
using ambient seismic noise tomography: Implications for the tectonic
evolution of the east Gondwana margin, Gond. Res., 28, 1212–1227, 2015b.
Porritt, S. W. and Miller, M. S.: Updates to FuncLab, a Matlab based GUI for
handling receiver functions, Comput. Geosci., 111, 260–271,
https://doi.org/10.1016/j.cageo.2017.11.022, 2018.
Rawlinson, N., Davies, D. R., and Pilia, S.: The mechanisms underpinning
Cenozoic intraplate volcanism in eastern Australia, Insights from seismic
tomography and geodynamic modeling, Geophys. Res. Lett., 44,
9681–9690, 2017.
Rawlinson, N., Housman, G. A., Collins, C. D. N., and Drummond, B. J.: New
evidence of Tasmania's tectonic history from a novel seismic experiment,
Geophys. Res. Lett., 28, 3337–3340, 2001.
Rawlinson, N. and Kennett, B.: Teleseismic tomography of the upper mantle
beneath the southern Lachlan Orogen, Australia, Phys. Earth Planet. Inter.,
167, 84–97, 2008.
Rawlinson, N., Kennett, B., Vanacore, E., Glen, R., and Fishwick, S.: The
structure of the upper mantle beneath the Delamerian and Lachlan orogens
from simultaneous inversion of multiple teleseismic datasets, Gond. Res.,
19, 788–799, 2011.
Rawlinson, N., Kennett, B. L. N., Salmon, M., and Glen, R. A.: Origin of
lateral heterogeneities in the upper mantle beneath Southeast Australia from
seismic tomography, in: The Earth's Heterogeneous Mantle: A Geophysical, Geodynamical and Geochemical Perspective, edited by: Khan, A. and Deschamps, F., Springer Geophysics, Springer, 47–78, 2015.
Rawlinson, N., Pilia, S., Young, M., Salmon, M., and Yang, Y.: Crust and
upper mantle structure beneath southeast Australia from ambient noise and
teleseismic tomography, Tectonophysics, 689, 143–156, https://doi.org/10.1016/j.tecto.2015.11.034, 2016.
Rawlinson, N., Pozgay, S., and Fishwick, S.: Seismic tomography: a window
into deep Earth, Phys. Earth Planet. Inter., 178, 101–135, 2010.
Rawlinson, N. and Urvoy, M.: Simultaneous inversion of active and passive
source datasets for 3-D seismic structure with application to Tasmania,
Geophys. Res. Lett., 33, L24313, https://doi.org/10.1029/2006GL028105, 2006.
Sambridge, M. S.: Geophysical inversion with a neighbourhood algorithm – I.
Searching a parameter space, Geophys. J. Int., 138, 479–494, 1999a.
Sambridge, M. S.: Geophysical inversion with a neighbourhood algorithm – II.
Appraising the ensemble, Geophys. J. Int., 138, 479–494, 1999b.
Saygin, E. and Kennett, B. L. N.: Ambient seismic noise tomography of
Australian continent, Tectonophysics, 481, 116–125,
https://doi.org/10.1016/j.tecto.2008.11.013, 2010.
Shibutani, T., Sambridge, M. S., and Kennett, B. L. N.: Genetic algorithm
inversion for receiver functions with application to crust and uppermost
mantle structure beneath Eastern Australia, Geophys. Res. Lett.,
23, 1826–1832, 1996.
Spaggiari, C. V., Gray, D. R., and Foster, D. A.: Lachlan Orogen
subduction–accretion systematics revisited, Aust. J. of Earth Sci., 51,
549–553, 2004.
Spaggiari, C. V., Gray, D. R., Foster, D. A., and McKnight, S.: Evolution of
the boundary between the western and central Lachlan Orogen: implications
for Tasmanide tectonics, Aust. J. Earth Sci., 50, 725–749, 2003.
Teasdale, J., Pryer, L., Stuart-Smith, P., Romine, K., Etheridge, M.,
Loutit, T., and Kyan, D.: Structural framework and basin evolution of
Australia's Southern Margin, J. Austr. Petr. Prod. Expl. Ass., 43, 13–38, https://doi.org/10.1785/0120030123, 2003.
The Inkscape Project: Inkscape 1.02, available at:
http://www.inkscape.org/, 2020.
Thomson, W. T.: Transmission of elastic waves through a stratified solid, J.
of Appl. Phys., 21, 89–93, 1950.
Tkalčić, H., Chen, Y., Liu, R., Huang, H., Sun, L., and Chan, W.:
Multi-step modelling of teleseismic receiver functions combined with
constraints from seismic tomography: Crustal structure beneath southeast
China, Geophys. J. Int., 187, 303–326, 2011.
Tkalčić, H., Rawlinson, N., Arroucau, P., and Kumar, A.: Multistep
modelling of receiver-based seismic and ambient noise data from WOMBAT
array: crustal structure beneath southeast Australia, Geophys. J. Int., 189,
1681–1700, 2012.
Wessel, P., Smith, W. H., Scharroo, R., Louis, J., and Wobbe, F.: Generic
mapping tools: improved version released, EOS T. Am. Geophys. Un., 94,
409–420, 2013.
Young, M. K., Cayley, R. A., McLean, M. A., Rawlinson, N., Arroucau, P., and
Salmon, M.: Crustal structure of the east Gondwana margin in southeast
Australia revealed by transdimensional ambient seismic noise tomography,
Geophys. Res. Lett., 40, 4266–4271, 2013.
Young, M. K., Rawlinson, N., Arroucau, P., Reading, A., and Tkalčić,
H.: High–frequency ambient noise tomography of southeast Australia: new
constraints on Tasmania's tectonic past, Geophys. Res. Lett., 38, L13313, https://doi.org/10.1029/2011GL047971, 2011.
Young, N., Tkalčić, H., Rawlinson, N., and Reading, A. M.: Full
waveform moment tensor inversion in a low seismicity region using multiple
teleseismic datasets and ambient noise: application to the 2007 Shark Bay,
Western Australia, Earthquake, Geophys. J. Int., 188, 1303–1321, 2012.
Zhu, L. and Kanamori, H.: Moho depth variation in southern California from
teleseismic receiver functions, J. Geophys. Res., 105, 2969–2980, 2000.
Short summary
In this study, ground motion caused by distant earthquakes recorded in southeast Australia is used to image the structure of the crust and underlying mantle. This part of the Australian continent was assembled over the last 500 million years, but it remains poorly understood. By studying variations in crustal properties and thickness, we find evidence for the presence of an old microcontinent that is embedded in the younger terrane and forms a connection between Victoria and Tasmania.
In this study, ground motion caused by distant earthquakes recorded in southeast Australia is...