Articles | Volume 12, issue 4
https://doi.org/10.5194/se-12-935-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-935-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
University of Göttingen, Geoscience Center, Department of
Sedimentology and Environmental Geology,
Goldschmidtstrasse 3, 37077 Göttingen, Germany
Jonas Kley
University of Göttingen, Geoscience Center, Department of
Structural Geology and Geodynamics,
Goldschmidtstrasse 3, 37077 Göttingen, Germany
István Dunkl
University of Göttingen, Geoscience Center, Department of
Sedimentology and Environmental Geology,
Goldschmidtstrasse 3, 37077 Göttingen, Germany
Veit-Enno Hoffmann
University of Göttingen, Geoscience Center, Department of
Sedimentology and Environmental Geology,
Goldschmidtstrasse 3, 37077 Göttingen, Germany
Annemarie Simon
University of Göttingen, Geoscience Center, Department of
Sedimentology and Environmental Geology,
Goldschmidtstrasse 3, 37077 Göttingen, Germany
Related authors
Jan Schönig, Carsten Benner, Guido Meinhold, Hilmar von Eynatten, and N. Keno Lünsdorf
Eur. J. Mineral., 35, 479–498, https://doi.org/10.5194/ejm-35-479-2023, https://doi.org/10.5194/ejm-35-479-2023, 2023
Short summary
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
Muhammad Anees, David Hindle, Ernesto Meneses Rioseco, Jonas Kley, Bernd Leiss, Mumtaz Muhammad Shah, and Javed Akhter Qureshi
EGUsphere, https://doi.org/10.5194/egusphere-2025-5252, https://doi.org/10.5194/egusphere-2025-5252, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We studied how heat is distributed underground in the western Himalaya to understand its potential for geothermal energy. Using computer models, we show that heat from radioactive rocks, uplift of mountains, and the shape of the land all influence temperatures in the crust. Deep valleys such as the Indus and Hunza may host accessible hot zones, meaning they could be good places to explore for geothermal energy.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Jan Schönig, Carsten Benner, Guido Meinhold, Hilmar von Eynatten, and N. Keno Lünsdorf
Eur. J. Mineral., 35, 479–498, https://doi.org/10.5194/ejm-35-479-2023, https://doi.org/10.5194/ejm-35-479-2023, 2023
Short summary
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Thomas Voigt, Jonas Kley, and Silke Voigt
Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, https://doi.org/10.5194/se-12-1443-2021, 2021
Short summary
Short summary
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle Turonian) and probably proceeded until the Paleogene. Data from different marginal troughs in central Europe point to an earlier start of basin inversion (in the Cenomanian). The end of inversion is overprinted by general uplift but had probably already occurred in the late Campanian to Maastrichtian. Both the start and end of inversion occurred with low rates of uplift and subsidence.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Cited articles
Agemar, T., Schellschmidt, R., and Schulz, R.: Subsurface temperature
distribution in Germany, Geothermics, 44, 65–77, 2012.
Arató, R., Dunkl, I., Takács, Á., Szebényi, G., Gerdes, A.,
and von Eynatten, H.: Thermal evolution in the exhumed basement of a
stratovolcano: case study of the Miocene Mátra Volcano, Pannonian Basin,
J. Geol. Soc. London, 175, 820–835,
https://doi.org/10.1144/jgs2017-117, 2018.
Augustsson, C., Voigt, T., Bernhart, K., Kreißler, M., Gaupp, R.,
Gärtner, A., Mofmann, M., and Linnemann, U.: Zircon size-age sorting and
source-area effect: The German Triassic Buntsandstein Group, Sediment.
Geol., 375, 218–231, 2018.
Bachmann, G. H., Müller, M., and Weggen, K.: Evolution of the Molasse
Basin (Germany, Switzerland), Tectonophysics, 137, 77–92, 1987.
Baldschuhn, R. and Kockel, F.: Das Osning-Lineament am Südrand des
Niedersachsen-Beckens, Zeitschrift der deutschen geologischen Gesellschaft,
150, 673–695, 1999.
Baldschuhn, R., Binot, F., Fleig, S., and Kockel, F.: Geotektonischer Atlas
von Nordwest-Deutschland und dem deutschen Nordsee-Sektor [Tectonic Atlas of
Northwest Germany and the German North Sea Sector], Geologisches Jahrbuch
Reihe A, Band 153, Schweizerbart, Stuttgart, Germany, 2001.
Barbarand, J., Bour, I., Pagel, M., Quesnel, F., Delcambre, B., Dupuis, C.,
and Yans, J.: Post-Paleozoic evolution of the northern Ardenne Massif
constrained by apatite fission-track thermochronology and geological data,
Earth Sci. Bull., 189, 16, https://doi.org/10.1051/bsgf/2018015, 2018.
Becker, A.: An attempt to define a “neotectonic period” for central and
northern Europe, Geol. Rundsch., 82, 67–83, 1993.
Best, G.: Floßtektonik in Norddeutschland: Erste Ergebnisse
reflexionsseismischer Untersuchungen an der Salzstruktur, Zeitschrift der
deutschen geologischen Gesellschaft, 147, 455–464, 1996.
Bogaard, P. J. F. and Wörner, G.: Petrogenesis of basanitic to tholeiitic
volcanic rocks from the Miocene Vogelsberg, Central Germany, J. Petrol., 44,
569–602, 2003.
Boigk, H. and Schöneich, H.: The Rhinegraben: geologic history and
neotectonic activity. Approaches to Taphrogenesis. Inter-Union Commission on
Geodynamics, Sci. Rep., 8, 60–71, 1974.
Bolz, J. and Kley, J.: Emplacement of “exotic” Zechstein
slivers along the inverted Sontra Graben (northern Hessen, Germany): clues
from balanced cross-sections and geometrical forward modelling, this volume, 2021.
Botor, D., Dunkl, I., Anczkiewicz, A., and Mazur, S.: Post-Variscan thermal
history of the Moravo-Silesian lower Carboniferous Culm Basin (NE Czech
Republic–SW Poland), Tectonophysics, 712/713, 643–662, 2017.
Botor, D., Anczkiewicz, A. A., Dunkl, I., Golonka, J., Paszkowski, M., and
Mazur, S.: Tectonothermal history of the Holy Cross Mountains (Poland) in
the light of lowtemperature thermochronology, Terra Nova, 30, 270–278,
https://doi.org/10.1111/ter.12336, 2018.
Braun, J., Robert, X., and Simon-Labric, T.: Eroding dynamic topography,
Geophys. Res. Lett., 40, 1494–1499, 2013.
Brodie, J. and White, N.: Sedimentary basin inversion caused by igneous
underplating: Northwest European continental shelf, Geology, 22, 147–150,
1994.
Büker, C.: Absenkungs-, Erosions- und Wärmeflußgeschichte des
Ruhr-Beckens und des nordöstlichen Rechtsrheinischen Schiefergebirges,
PhD thesis, University Bochum, Bochum, Germany, 212 pp., 1996.
Bundesanstalt für Geowissenschaften und Rohstoffe: Geologische Karte der
Bundesrepublik Deutschland 1: 1,000,000, Hannover, Germany, 1993.
Bundesanstalt für Geowissenschaften und Rohstoffe: Geowissenschaftliche Karte der Bundesrepublik Deutschland 1:2 000 000, Hannover, Germany, 2004.
Cacace, M. and Scheck-Wenderoth, M.: Why intracontinental basins subside
longer: 3-D feedback effects of lithospheric cooling and sedimentation on
the exural strength of the lithosphere, J. Geophys. Res. Sol. Ea., 121,
3742–3761, https://doi.org/10.1002/2015JB012682, 2016.
Carminati, E., Cuffaro, M., and Doglioni, C.: Cenozoic uplift of Europe,
Tectonics, 28, TC4016, https://doi.org/10.1029/2009TC002472, 2009.
Cloetingh, S. and Burov, E.: Lithospheric folding and sedimentary basin
evolution: a review and analysis of formation mechanisms, Basin Res.,
23, 257–290, 2011.
Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P.,
Garcia-Castellanos, D., De Vicente, G., and Vegas, R.: Lithospheric folding
in Iberia, Tectonics, 21, 1041, https://doi.org/10.1029/2001TC901031, 2002.
Cloetingh, S. A. P. L., Burov, E., and Poliakov, A.: Lithosphere folding:
Primary response to compression? (from central Asia to Paris basin),
Tectonics, 18, 1064–1083, 1999.
Cooper, M. A., Williams, G. D., De Graciansky, P. C., Murphy, R. W.,
Needham, T., De Paor, D., Stoneley, R., Todd, S., Turner, J.P., and Ziegler,
P. A.: Inversion tectonics – a discussion, in: Inversion tectonics, edited
by: Williams, G. D. and Cooper, M. A., Geological Society Special
Publications, London, UK, 335–347, 1989.
Danišík, M., Migoń, P., Kuhlemann, J., Evans, N. J., Dunkl, I.,
and Frisch, W.: Thermochronological constraints on the long-term erosional
history of the Karkonosze Mts., Central Europe, Geomorphology, 117, 78–89,
2010.
Danišík, M., Štěpančiková, P., and Evans, N. J.:
Constraining long-term denudation and faulting history in intraplate regions
by multi-system thermochronology – an example of the Sudetic Marginal
Fault (Bohemian Massif, Central Europe), Tectonics, 31, 1–19
https://doi.org/10.1029/2011TC003012, 2012.
Davies, G. F.: Thermomechanical erosion of the lithosphere by mantle plumes,
J. Geophys. Res.-Sol. Ea., 99, 15709–15722, 1994.
Deckers, J. and van der Voet, E.: A review on the structural styles of
deformation during Late Cretaceous and Paleocene tectonic phases in the
southern North Sea area, J. Geodyn., 115, 1–9, 2018.
De Jager, J.: Inverted basins in the Netherlands, similarities and
differences, Neth. J. Geosci., 82, 339–349, 2003.
Dielforder, A., Frasca, G., Brune, S., and Ford, M.: Formation of the
Iberian-European convergent plate boundary fault and its effect on
intraplate deformation in Central Europe, Geochem. Geophy.
Geosy., 20, 2395–2417, 2019.
Djomani, Y. H. P., O'Reilly, S. Y., Griffin, W. L., and Morgan, P.: The
density structure of subcontinental lithosphere through time, Earth Planet. Sci. Lett., 184, 605–621, 2001.
Donelick, R. A., Ketcham, R. A., and Carlson, W. D.: Variability of apatite
fission-track annealing kinetics; II, Crystallographic orientation effects,
Am. Mineral., 84, 1224–1234, 1999.
Donelick, R. A., O'Sullivan, P. B., and Ketcham, R. A.: Apatite fission-track
analysis, Rev. Mineral. Geochem., 58, 49–94, 2005.
Doornenbal, H. and Stevenson, A.: Petroleum geological atlas of the Southern Permian Basin area: European Association of Geoscientists and Engineers (EAGE), Houten, the Netherlands, 352 pp., 2010.
Dresmann, H., Keulen, N., Timar-Geng, Z., Fügenschuh, B., Wetzel, A.,
and Stünitz, H.: The south-western Black Forest and the Upper Rhine
Graben Main Border Fault: thermal history and hydrothermal fluid flow, Int.
J. Earth Sci., 99, 285–297, 2010.
Duesterhoeft, E., Bousquet, R., Wichura, H., and Oberhänsli, R.:
Anorogenic plateau formation: The importance of density changes in the
lithosphere, J. Geophys. Res.-Sol. Ea., 117, B07204, https://doi.org/10.1029/2011JB009007, 2012.
Dumitru, T. A.: A new computer-automated microscope stage system for
fission-track analysis, Nucl. Tracks Radiat. Meas., 21, 575–580, 1993.
Dunkl, I.: TRACKKEY: a Windows program for calculation and graphical
presentation of fission track data, Comput. Geosci., 28, 3–12,
2002.
Eisenstadt, G. and Withjack, M. O.: Estimating inversion: results from clay
models, Geol. Soc. London Spec. Publ., 88, 119–136,
1995.
Farley, K. A.: Helium diffusion from apatite: General behavior as
illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903–2914,
2000.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long
alpha-stopping distance on (U-Th)/He ages, Geochim. Cosmochim. Ac., 60,
4223–4229, 1996.
Fischer, C., Dunkl, I., von Eynatten, H., Wijbrans, J. R., and Gaupp, R.:
Products and timing of diagenetic processes in Upper Rotliegend sandstones
from Bebertal (North German Basin, Parchim Formation, Flechtingen High,
Germany), Geol. Mag., 149, 827–840, https://doi.org/10.1017/S0016756811001087,
2012.
Franke, D.: Geologie von Ostdeutschland – Ein Kompendium, available at: http://www.regionalgeologie-ost.de, last access: 18 December 2020.
Freudenberger, W. and Schwerd, K.: Erläuterungen zur Geologischen Karte
von Bayern 1: 500.000, Bayerisches Geologisches Landesamt,
München, Germany, 1996.
Friedrich, A. M., Bunge, H.-P., Rieger, S. M., Colli, L., Ghelichkhan, S.,
and Nerlich, R.: Stratigraphic framework for the plume mode of mantle
convection and the analysis of interregional unconformities on geological
maps, Gondwana Res., 53, 159–188, 2018.
Geluk, M.: Late Permian (Zechstein) rifting in the Netherlands; models and
implications for petroleum geology, Petrol. Geosci., 5, 189–199,
1999.
Glasmacher, U., Zentilli, M., and Grist, A. M.: Apatite fission track
thermochronology of Paleozoic sandstones and the Hill-intrusion, northern
Linksrheinisches Schiefergebirge, Germany, in: Advances in Fission-Track
Geochronology, edited by: van den Haute, P. and De Corte, F., Kluwer,
Dordrech, The Netherlands, 151–172, 1998.
Glasmacher, U. A., Mann, U., and Wagner, G. A.: Thermotectonic evolution of
the Barrandian, Czech Republic, as revealed by apatite fission-track
analysis, Tectonophysics, 359, 381–402, 2002.
Gleadow, A. J. W.: Fission-track dating methods: what are the real
alternatives?, Nuclear Tracks, 5, 3–14, 1981.
Green, P. F.: A new look at statistics in fission track dating, Nuclear
Tracks, 5, 77–86, 1981.
Green, P. F.: On the thermo-tectonic evolution of Northern England: evidence
from fission track analysis, Geol. Mag., 153, 493–506, 1986.
Hejl, E., Coyle, D., Lal, N., Van den Haute, P., and Wagner, G. A.:
Fission-track dating of the western border of the Bohemian massif:
thermochronology and tectonic implications, Geol. Rundsch., 86, 210–219,
1997.
Hejl, E., Sekyra, G., and Friedl, G.: Fission-track dating of the
south-eastern Bohemian massif (Waldviertel, Austria): thermochronology and
long-term erosion, Int. J. Earth Sci., 92, 677–690, 2003.
Holford, S. P., Green, P. F., Duddy, I. R., Turner, J. P., Hillis, R. R.,
and Stoker, M. S.: Regional intraplate exhumation episodes related to
plate-boundary deformation, Geol. Soc. Am. Bull.,
121, 1611–1628, 2009a.
Holford, S. P., Turner, J. P., Green, P. F., and Hillis, R. R.: Signature of
cryptic sedimentary basin inversion revealed by shale compaction data in the
Irish Sea, western British Isles, Tectonics, 28, TC4011,
https://doi.org/10.1029/2008TC002359, 2009b.
Hoth, K., Rusbült, J., Zagora, K., Beer, H., and Hartmann, O.: Die
tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke:
Dokumentation für den Zeitabschnitt 1962–1990, Schriftenreihe für Geowissenschaften, 2, 7–145, Verlag der Gesellschaft für Geowissenschaften, Berlin, German, 1993.
Hurford, A. J.: Zeta: the ultimate solution to fission-track analysis
calibration or just an interim measure?, in: Advances in fission-track
geochronology, edited by: Van den Haute, P. and De Corte, F., Kluwer
Academic Publishers, Dordrecht, the Netherlands, 19–32, 1998.
Hurford, A. J. and Green, P. F.: The zeta age calibration of fission-track
dating, Chem. Geol. Isot. Geosci., 41, 285–312, 1983.
Jacobs, J. and Breitkreuz, C.: Zircon and apatite fission-track
thermochronology of Late Carboniferous volcanic rocks of the NE German
Basin, Int. J. Earth Sci., 92, 165–172, 2003.
Jähne, F., Kley, J., Hoffmann, V. E., von Eynatten, H., and Dunkl, I.:
Timing and Kinematics of Cretaceous to Paleogene inversion at the SE margin
of the Central European Basin System: Part 1, Kinematics, EGU General
Assembly, Vienna, Austria, 19–24 April 2009, EGU2009-8176, 2009.
Jung, S., Pfänder, J. A.,
Brügmann, G., and Stracke, A.: Sources of primitive alkaline volcanic
rocks from the central European Volcanic province (Rhön, Germany)
inferred from Hf, Pb and Os isotopes, Contrib. Mineral.
Petr., 150, 546–559, 2005.
Jung, S., Mezger, K., Hauff, F., Pack, A., and Hoernes, S.: Petrogenesis of
rift-related tephrites, phonolites and trachytes (Central European Volcanic
Province, Rhön, FRG): Constraints from Sr, Nd, Pb and O isotopes,
Chem. Geol., 354, 203–215, 2013.
Kämmlein, M., Bauer, W., and Stollhofen, H.: The Franconian Basin
thermal anomaly, SE Germany revisited: New thermal conductivity and
uniformly corrected temperature data, J. Appl. Reg.
Geol., 171, 21–44, 2020.
Karg, H., Carter, A., Brix, M. R., and Littke, R.: Late- and post-Variscan
cooling and exhumation history of the northern Rhenish massif and the
southern Ruhr Basin: new constraints from fission-track analysis,
Int. J. Earth Sci., 94, 180–192, 2005.
Ketcham, R. A.: Forward and inverse modeling of low-temperature
thermochronometry data, Rev. Mineral. Geochem., 58,
275–314, 2005.
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., and Hurford, A.
J.: Improved modeling of fission-track annealing in apatite, Am. Mineral.,
92, 799–810, https://doi.org/10.2138/am.2007.2281, 2007.
Kley, J.: Timing and spatial patterns of Cretaceous and Cenozoic inversion
in the Southern Permian Basin, in: Mesozoic Resource Potential of the
Southern Permian Basin, edited by: Kilhams, B., Kukla, P. A., Mazur, S.,
McKie, T., Munlieff, H. F., and van Ojik, K., Geological Society, London, Special Publications, 469, 19–31,
https://doi.org/10.1144/SP469.12, 2018.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, 2008.
Kley, J., Franzke, H. J., Jähne, F., Krawczyk, C., Lohr, T., Reicherter,
K., Scheck-Wenderoth, M., Sippel, J., Tanner, D., and van Gent, H.: The
SPP Structural Geology Group: Strain and Stress (Chapter 3.3), in: Dynamics
of Complex Intercontinental Basins – the Central European Basin System,
edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S.,
Springer-Verlag, Berlin and Heidelberg, Germany, 97–124, 2008.
Kockel, F.: Inversion structures in central Europe – Expressions and
reasons, an open discussion, Neth. J. Geosci., 82, 367–382, 2003.
Kolb, M., Paulick, H., Kirchenbaur, M., and Münker, C.: Petrogenesis of
mafic to felsic lavas from the Oligocene Siebengebirge Volcanic Field
(Germany): implications for the origin of intracontinental volcanism in
Central Europe, J. Petrol., 53, 2349–2379, 2012.
Kroner, U., Mansy, J. L., Mazur, S., Aleksandrowski, P., Hann, H. P.,
Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T. C.,
Zedler, H., Zeh, A., and Zulauf, G.: The Geology of Central Europe, Vol. 1:
Precambrian and Palaeozoic, in: Variscan Tectonics, edited by: McCann, T.,
Geological Society, London, UK, 599–664, 2008.
Krzywiec, P.: Mid-Polish Trough inversion – seismic examples, main
mechanisms and its relationship to the Alpine-Carpathian collision,
Stephan Mueller Special Publication Series, 1, 151–165, https://doi.org/10.5194/smsps-1-151-2002, 2002.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments
of the Mid-Polish Trough – lateral variations in timing and structural
style, Geol. Q., 50, 151–168, 2006.
Krzywiec, P. and Stachowska, A.: Late Cretaceous inversion of the NW segment
of the Mid-Polish Trough – how marginal troughs were formed, and does it
matter at all?, Zeitschrift der deutschen geologischen Gesellschaft, 167,
107–119, 2016.
Krzywiec, P., Gutowski, J., Walaszczyk Wróbel, G., and Wybraniek, S.:
Tectonostratigraphic model of the Late Cre ta ceous in ver sion along the
Nowe Miasto–Zawichost Fault Zone, SE Mid-Polish Trough, Geol.
Q., 53, 27–48, 2009.
Lange, J.-M., Tonk, C., and Wagner, G. A.: Apatite fission track data for the
Postvariscan thermotectonic evolution of the Saxon basement – first results,
Zeitschrift der deutschen geologischen Gesellschaft, 159, 123–132, 2008.
Lenkey, L., Dövényi, P., Horváth, F., and Cloetingh, S. A. P.
L.: Geothermics of the Pannonian basin and its bearing on the neotectonics,
Stephan Mueller Special Publication Series, 3, 29–40, https://doi.org/10.5194/smsps-3-29-2002, 2002.
Link, K.: Die thermo-tektonische Entwicklung des Oberrheingraben-Gebietes
seit der Kreide, PhD Thesis, Albert-Ludwigs-Universität, Freiburg, Germany, 373 pp., 2009.
Linnemann, U., D'Lemos, R., Drost, K., Jeffries, T., Gerdes, A., Romer, R.
L., Samson, S. D., and Strachan, R. A.: Cadomian Tectonics, in: The Geology
of Central Europe, Vol. 1: Precambrian and Palaeozoic, edited by: McCann,
T., Geological Society, London, UK, 103–154, 2008.
Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S.: Dynamics of
complex intracontinental basins: the central European basin system,
Springer, Berlin, Germany, 2008.
Lorenz, V. and Nicholls, I. A.: The Permocarboniferous basin and range
province of Europe. An application of plate tectonics, in: The Continental
Permian in Central, West, and South Europe, Springer, Dordrecht, The Netherlands, 1976.
Lotze, F.: 100 Jahre Forschung in der saxonischen Tektonik,
Zeitschrift der deutschen geologischen Gesellschaft,
100, 321–337, 1948.
Lüschen, E., Nolte, B., and Fuchs, K.: Shear-wave evidence for an
anisotropic lower crust beneath the Black Forest, southwest Germany,
Tectonophysics, 173, 483–493, 1990.
Malz, A., Madritsch, H., and Kley, J.: Improving 2D seismic interpretation
in challenging settings by integration of restoration techniques: A case
study from the Jura fold-and-thrust belt (Switzerland), Interpretation,
3, 37–58, 2015.
Malz, A., Nachtweide, C., Emmerlich, S., and Schimpf, L.: Mesozoic
intraplate deformation in the southern part of the Central European
Basin-Results from large-scale 3D modelling, Tectonophysics, 776, 228315,
https://doi.org/10.1016/j.tecto.2019.228315, 2020.
Martha, S. O., Zulauf, G., Dörr, W., Nesbor, H.-D., Petschick, R.,
Prinz-Grimm, P., and Gerdes, A.: The Saxothuringian-Rhenohercynian boundary
underneath the Vogelsberg volcanic field: evidence from basement xenoliths
and U-Pb zircon data of trachyte, Zeitschrift der deutschen geologischen Gesellschaft, 165,
373–394, 2014.
Meier, T., Soomro, R. A., Viereck, L., Lebedev, S., Behrmann, J. H., Weidle,
C., Cristiano, L., and Hanemann, R.: Mesozoic and Cenozoic evolution of the
Central European lithosphere, Tectonophysics, 692, 58–73, 2016.
Meyer, H., Hetzel, R., Fügenschuh, B., and Strauss, H.: Determining the
growth rate of topographic relief using in situ-produced 10Be: a case
study in the Black Forest, Germany, Earth Planet. Sci. Lett., 290, 391–402,
2010.
Mielke, P., Bär, K., and Sass, I.: Determining the relationship of
thermal conductivity and compressional wave velocity of common rock types as
a basis for reservoir characterization, J. Appl. Geophys., 140,
135–144, 2017.
Migoń, P. and Danišík, M.: Erosional history of the Karkonosze
Granite Massif – Constraints from adjacent sedimentary basins and
thermochronology, Geol. Q., 56, 441–456, 2012.
Mohr, M., Kukla, P. A., Urai, J. L., and Bresser, G.: Multiphase salt
tectonic evolution in NW Germany: seismic interpretation and
retro-deformation, Int. J. Earth Sci., 94, 917–940,
2005.
Nielsen, S. B., Thomsen, E., Hansen, D. L., and Clausen, O. R.: Plate-wide
stress relaxation explains European Palaeocene basin inversions, Nature,
435, 195–198, 2005.
Norden, B., Förster, A., and Balling, N.: Heat Flow and lithospheric
thermal regime in the Northeast German Basin, Tectonophysics, 460,
215–229, 2008.
Oncken, O.: Transformation of a magmatic arc and an orogenic root during
oblique collision and it's consequences for the evolution of the European
Variscides (Mid-German Crystalline Rise), Geol. Rundsch., 86,
2–20, 1997.
Sass, J. H., Lachenbruch, A. H., Galanis Jr., S. P., Morgan, P., Priest, S.
S., Moses Jr., T. H., and Munroe, R. J.: Thermal regime of the southern Basin
and Range Province: 1. Heat flow data from Arizona and the Mojave Desert of
California and Nevada, J. Geophys. Res.-Sol. Ea.,
99, 22093–22119, 1994.
Schmitt, A. K., Marks, M. A., Nesbor, H. D., and Markl, G.: The onset and
origin of differentiated Rhine Graben volcanism based on U-Pb ages and
oxygen isotopic composition of zircon, Eur. J. Mineral., 19, 849–857, 2007.
Schönig, J., von Eynatten, H., Meinhold, G., Lünsdorf, N. K.,
Willner, A. P., and Schulz, B.: Deep subduction of felsic rocks hosting UHP
lenses in the central Saxonian Erzgebirge: Implications for UHP terrane
exhumation, Gondwana Res., 87, 320–329, 2020.
Seidel, G.: Geologie
von Thüringen, Schweizerbart, Stuttgart, Germany, 2003.
Self, S., Schmidt, A., and Mather, T. A.: Emplacement characteristics, time
scales, and volcanic gas release rates of continental flood basalt eruptions
on Earth, Geol. Soc. Am. Spec. Pap., 505, https://doi.org/10.1130/2014.2505(16), 2014.
Senglaub, Y., Littke, R., and Brix, M. R.: Numerical modelling of burial and
temperature history as an approach for an alternative interpretation of the
Bramsche anomaly, Lower Saxony Basin, Int. J. Earth
Sci., 95, 204–224, 2005.
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T.,
Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler,
M.: Global continental and ocean basin reconstructions since 200Ma,
Earth-Sci. Rev., 113, 212–270, 2012.
Siebel, W., Schmitt, A. K., Danišík, M., Chen, F., Meier, S.,
Weiss, S., and Eroglu, S.: Prolonged mantle residence of zircons xenocrysts
from the western Eger rift, Nat. Geosci., 2, 886–890, https://doi.org/10.1038/NGEO695, 2009.
Sissingh, W.: Syn-kinematic palaeogeographic evolution of the West European
Platform: correlation with Alpine plate collision and foreland deformation,
Neth. J. Geosci., 85, 131–180, 2006.
Sobczyk, A., Danišik, M., Aleksandrowski, P., and Anczkiewicz, A.:
Post-Variscan cooling history in the central Western Sudetes (NE Bohemian
Massif) and its implications for topographic evolution: Insights from
apatite fission-track and zircon (U-Th)/He thermochronology, Tectonophysics,
649, 47–57, 2015.
Sobczyk, A., Sobel, E. R., and Georgieva, V.: Meso-Cenozoic cooling and
exhumation history of the Orlica-Śnieżnik Dome (Sudetes, NE Bohemian
Massif, Central Europe): Insights from apatite fission-track
thermochronometry, Terra Nova, 32, 122–133, https://doi.org/10.1111/ter.12449, 2020.
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A.,
Petrunin, A. G., Arndt, N. T., Radko, V. A., and Vasiliev, Y. R.: Linking
mantle plumes, large igneous provinces and environmental catastrophes,
Nature, 477, 312–316, 2011.
Stackebrandt, W. and Franzke, H. J.: Alpidic reactivation of the Variscan
consolidated lithosphere – the activity of some fracture zones in Central
Europe, Z. Geol. Wissenschaft., 17, 699–712, 1989.
Stein, S., Stein, C. A., Elling, R., Kley, J., Keller, G. R., Wysession, M.,
Rooney, T., Frederiksen, A., and Moucha, R.: Insights from North America's
failed Midcontinent Rift into the evolution of continental rifts and passive
continental margins, Tectonophysics, 744, 403–421, 2018.
Stollhofen, H., Bachmann, G. H., Barnasch, J., Bayer, U., Beutler, G.,
Franz, M., Kästner, M., Legeler, B., Mutterlose, J., and Radies, D.:
Upper Rotliegend to Early Cretaceous basin development, in: Dynamics of
Complex Intracontinental Basins. The Central European Basin System, edited
by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer-Verlag, Berlin and Heidelberg, Germany, 181–210, 2008.
Suchý, V., Filip, J., Sýkorová, I., Pesek, J., and
Korínková, D.: Palaeo-thermal and coalification history of
Permo-Carboniferous sedimentary basins of Central and Western Bohemia, Czech
Republic: first insights from apatite fission track analysis and vitrinite
reflectance modelling, B. Geosci., 94, 201–219, 2019.
Thomson, S. N. and Zeh, A.: Fission-track thermochronology of the Ruhla
Crystalline Complex: new constraints on the post-Variscan thermal evolution
of the NW Saxo-Bohemian Massif, Tectonophysics, 324, 17–35, 2000.
Timar-Geng, Z., Fügenschuh, B., Wetzel, A., and Dresmann, H.:
Low-temperature thermochronology of the flanks of the southern Upper Rhine
Graben, Int. J. Earth Sci., 95, 685–702, 2006.
Vamvaka, A., Siebel, W., Chen, F., and Rohrmuller, J.: Apatite fission-track
dating and low-temperature history of the Bavarian Forest (southern Bohemian
Massif), Int. J. Earth Sci., 103, 103–119, 2014.
Ventura, B. and Lisker, F.: Long-term landscape evolution of the
northeastern margin of the Bohemian Massif: apatite fission-track data from
the Erzgebirge (Germany), Int. J. Earth Sci., 92, 691–700, 2003.
Ventura, B., Lisker, F., and Kopp, J.: Thermal and denudation history of the
Lusatian Block (NE Bohemian Massif, Germany) as indicated by apatite
fission-track data, Geol. Soc. Spec.
Publ., 324, 1–12, 2009.
Voigt, E.: Über Randtröge vor Schollenrändern und ihre Bedeutung im Gebiet der Mitteleuropäischen Senke und angrenzender Gebiete, Z. Dtsch. Geol. Ges., 114, 378–418, 1963.
Voigt, T., von Eynatten, H., and Franzke, H. J.: Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany), Acta Geol. Pol., 54, 765–765, 2004.
Voigt, T., Wiese, F., von Eynatten, H., Franzke, H.-J., and Gaupp, R.: Facies
evolution of syntectonic Upper Cretaceous Deposits in the Subhercynian
Cretaceous Basin and adjoining areas (Germany), Zeitschrift der deutschen
geologischen Gesellschaft, 157, 203–244, 2006.
Voigt, T., von Eynatten, H., and Kley, J.: Kommentar zu Nördliche
Harzrandstorung: Diskussionsbeitrage zu Tiefenstruktur, Zeitlichkeit und
Kinematik von Volker Wrede (ZDGG 159, 293–316), Zeitschrift der deutschen
gesellschaft für Geowissenschaften, 160, 93–99, 2009.
Voigt, T., Kley, J., and Voigt, S.: Dawn and Dusk of Late
Cretaceous Basin Inversion in Central Europe, this volume, 2021.
von Eynatten, H., Voigt, T., Meier, A., Franzke, H.-J., and Gaupp, R.:
Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to
exhumation of the Harz Mountains and the timing of inversion tectonics in
the Central European Basin, Int. J. Earth Sci., 97,
1315–1330, 2008.
von Eynatten, H., Dunkl, I., Brix, M., Hoffmann, V.-E., Raab, M., Thomson, S.
N., and Kohn, B.: Late Cretaceous exhumation and uplift of the Harz
Mountains, Germany: a multi-method thermochronological approach,
Int. J. Earth Sci., 108, 2097–2111,
https://doi.org/10.1007/s00531-019-01751-5, 2019.
Wagner, G. A.: Fission track dating of apatites, Earth Planet. Sci.
Lett., 4, 411–415, 1968.
Walter, B. F., Gerdes, A., Kleinhanns, I. C., Dunkl, I., von Eynatten, H.,
Kreissl, S., and Markl, G.: The connection between hydrothermal fluids,
mineralization, tectonics and magmatism in a continental rift setting:
Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the
Rhinegraben in SW Germany, Geochim. Cosmochim. Ac., 240, 11–42,
2018.
Ware, P. D. and Turner, J. P.: Sonic velocity analysis of the Tertiary
denudation of the Irish Sea basin, Geol. Soc. Spec.
Publ., 196, 355–370, 2002.
Warsitzka, M., Jähne-Klingberg, F., Kley, J., and Kukowski, N.: The
timing of salt structure growth in the Southern Permian Basin (Central
Europe) and implications for basin dynamics, Basin Res., 31, 337–360,
2019.
Wedepohl, K. H., Gohn, E., and Hartmann, G.: Cenozoic alkali basaltic magmas
of western Germany and their products of differentiation, Contr. Min.
Petrol., 115, 253–278, 1994.
Wetzel, A., Allenbach, R., and Allia, V.: Reactivated basement structures
affecting the sedimentary facies in a tectonically “quiescent”
epicontinental basin: an example from NW Switzerland, Sediment. Geol.,
157, 153–172, 2003.
Wilson, M. and Downes, H.: Tertiary-Quaternary extension-related alkaline
magmatism in western and central Europe, J. Petrol., 32, 811–849,
1991.
Wolff, R., Dunkl, I., Lange, J.-M., Tonk, C., Voigt, T., and von Eynatten,
H.: Superposition of burial and hydrothermal events: post-Variscan thermal
evolution of the Erzgebirge, Germany, Terra Nova, 27, 292–299, 2015.
Wörner, G., Staudigel, H., and Zindler, A.: Isotopic constraints on open
system evolution of the Laacher See magma chamber (Eifel, West Germany),
Earth Planet. Sci. Lett., 75, 37–49, 1985.
Xu, C., Mansy, J. L., van den Haute, P., Guillot, F., Zhou, Z., Chen, J.,
and de Grave, J.: Late- and post-Variscan evolution of the Ardennes in
France and Belgium: constraints from apatite fission-track data, Geol.
Soc. Spec. Publ., 324, 167–179, 2009.
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tectonophysics,
137, 389–420, 1987.
Ziegler, P. A.: Geological Atlas of Western and Central Europe,
Shell Internationale Petroleum Mij, BV and Geological Society of London, 2nd Edn., London, UK, 239 pp., 1990.
Ziegler, P. A., Cloetingh, S., and van Wees, J. D.: Dynamics of intra-plate
compressional deformation: the Alpine foreland and other examples,
Tectonophysics, 252, 7–59, 1995.
Special issue