Articles | Volume 13, issue 8
https://doi.org/10.5194/se-13-1219-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-1219-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
Andrzej Głuszyński
CORRESPONDING AUTHOR
Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland
Paweł Aleksandrowski
University of Wrocław, Institute of Geological Sciences, Cybulskiego
32, 50-205 Wrocław, Poland
Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Along-strike variation of volcanic addition controlling post breakup sedimentary infill: Pelotas margin, Austral South Atlantic
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Effects of basal drag on subduction dynamics from 2D numerical models
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
The enigmatic curvature of Central Iberia and its puzzling kinematics
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Gonzalo Yanez, Jose Piquer, and Orlando Rivera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1338, https://doi.org/10.5194/egusphere-2024-1338, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organized in segments where large events are repeated every 100–300 years, depends on large scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coast line morphology).
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Marlise Colling Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
EGUsphere, https://doi.org/10.5194/egusphere-2023-2584, https://doi.org/10.5194/egusphere-2023-2584, 2023
Short summary
Short summary
The Atlantic Ocean results from the break-up of the palaeocontinent Gondwana. Since then, the Brazilian and African margins record a thick volcanic layers and received a large contribution of sediments recording this process. We show the influence of early volcanics on the sediments deposited later by analysing the Pelotas Margin, south of Brazil. The volume of volcanic layers is not homogeneous along this sector, promoting variation in the space available to accommodate later sediments.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Torsten Hundebøl Hansen, Ole Rønø Clausen, and Katrine Juul Andresen
Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, https://doi.org/10.5194/se-12-1719-2021, 2021
Short summary
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Short summary
Many of the world's hydrocarbon resources are found in rifted sedimentary basins. Some rifts experience multiple phases of extension and inversion. This results in complicated oil and gas generation, migration, and entrapment histories. We present examples of basins in the Western Desert of Egypt and the western Black Sea that were inverted multiple times, sometimes separated by additional phases of extension. We then discuss how these complex deformation histories impact exploration campaigns.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020, https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary
Short summary
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and winding orogeny that today transects Europe, northwestern Africa, and eastern North America. This orogen is characterized by an
Sshape corrugated geometry in Iberia. This paper presents the advances and milestones in our understanding of the geometry and kinematics of the Central Iberian curve from the last decade with particular attention paid to structural and paleomagnetic studies.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Manfred Lafosse, Elia d'Acremont, Alain Rabaute, Ferran Estrada, Martin Jollivet-Castelot, Juan Tomas Vazquez, Jesus Galindo-Zaldivar, Gemma Ercilla, Belen Alonso, Jeroen Smit, Abdellah Ammar, and Christian Gorini
Solid Earth, 11, 741–765, https://doi.org/10.5194/se-11-741-2020, https://doi.org/10.5194/se-11-741-2020, 2020
Short summary
Short summary
The Alboran Sea is one of the most active region of the Mediterranean Sea. There, the basin architecture records the effect of the Africa–Eurasia plates convergence. We evidence a Pliocene transpression and a more recent Pleistocene tectonic reorganization. We propose that main driving force of the deformation is the Africa–Eurasia convergence, rather than other geodynamical processes. It highlights the evolution and the geometry of the present-day Africa–Eurasia plate boundary.
Cited articles
Aleksandrowski, P.: Geological mapping survey of the Karkonosze main range
between Mt. Śnieżka and Mt. Skalny Stół, Unpubl. MSc thesis,
University of Wrocław Archive no. WV-5200/8148, 1976 (in Polish).
Aleksandrowski, P. and Mazur, S.: Collage tectonics in the northeasternmost
part of the Variscan Belt: the Sudetes, Bohemian Massif, in: Palaeozoic Amalgamation of
Central Europe, vol. 201, edited by: Winchester,
J. A., Pharaoh, T. C., and Verniers, J., Geological Society, Special Publications, London,
237–277, https://doi.org/10.1144/GSL.SP.2002.201.01.12, 2002.
Aleksandrowski, P. and Wojewoda, J.: Low-angle detachment related to
strike-slip faulting in Late Cretaceous mudstones of the Table Mountains (SW
Poland), in: 11th Czech-Polish Workshop On Recent Geodynamics of the Sudetes
and Adjacent Areas, Třešť, Academy of
Sciences of the Czech Republic (Institute of Rock Mechanics) and Wrocław
University of Environmental Sciences (Institute of Geodesy and
Geoinformatics), 4–6 November 2010, Abstracts, 30–31, https://doi.org/10.13140/2.1.2513.8882, 2010.
Aleksandrowski, P., Kryza, R., Mazur, S., and Żaba J.: Kinematic data on
major Variscan fault and shear zones in the Polish Sudetes, NE Bohemian
Massif, Geol. Mag., 134, 727–739, 1997.
Atkinson, B. K.: Subcritical crack growth in geological materials, J. Geophys. Res., 89, 4077–4114, 1982.
Atkinson, B. K. and Meredith, P. G: The theory of subcritical crack growth with
applications to minerals and rocks, in: Fracture Mechanics of Rocks, edited
by: Atkinson, B. K., Academic Press, London, 111–166, https://doi.org/10.1016/B978-0-12-066266-1.50009-0, 1987.
Aydin, A. and Johnson, A. M.: Analysis of faulting in porous sandstones, J. Struct. Geol., 5, 19–31, 1983.
Badura, J. and Rauch, M.: Tectonics of the Upper Nysa Kłodzka Graben,
Geologia Sudetica, 42, 137–148, 2014.
Bałazińska, J. and Bossowski, A.: Wgłębna budowa geologiczna
środkowej i zachodniej części synklinorium północnosudeckiego w świetle nowych danych [Deep geological structure of
central and western parts of the North-Sudetic Synclinorium; some new data],
Kwartalnik Geologiczny, 23, 309–321, 1979 (in Polish with English abstract).
Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., and Muszynski, A.:
Outline of the geology of the Góry Kaczawskie (Sudetes, Poland), Neues
Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179, 223–257,
1990.
Beyer, K.: Die nordsudetische Rahmenfaltung, Abh. Naturforsch. Ges.
Görlitz, 32, 121–172, 1939.
Bossowski, A. and Bałazińska, J.: Ewolucja tektoniczno-strukturalna
synklinorium północnosudeckiego [Tectonic-structural evolution of the
North-Sudetic Synclinorium], Biuletyn Instytutu Geologicznego, 341, 163–167,
1982 (in Polish).
Bossowski, A. and Ihnatowicz, A.: Atlas geologiczny Dolnośląskiego
Zagłębia Węglowego [Geological atlas of the Lower Silesian coal
Basin], 1:100 000, Państwowy Instytut Geologiczny, Warszawa, ISBN 83-7372-895-3, 2006.
Bossowski, A., Ihnatowicz, A., Mastalerz, K., Kurowski, L., and Nowak, G.:
Lithostratigraphy and sedimentologic-paleogeographic development,
Intra-Sudetic Depression, in: The Carboniferous system in Poland, edited by:
Zdanowski, A. and Żakowa, H., Prace Państwowego Instytutu
Geologicznego, 148, 142–147, 1995.
Brada, Z., Fejfar, M., Ibrmajer, I., Jihlavcová, R., and Petřík, A.: Study of coal-bearing formations in the Bohemian Massif – Partial report on seismic reflection survey of the Broumov promontory, Geofyzika Brno, unpublished report, Archive, Czech Geological Survey, 1982 (in Czech).
Chrząstek, A. and Wojewoda, J.: Mezozoik południowo-zachodniej Polski
– synklinorium północnosudeckie [Mesozoic of SW Poland, the North
Sudetic Synclinorium], in: Mezozoik i kenozoik Dolnego Śląska,
edited by: Żelaźniewicz, A., Wojewoda, J., and Ciężkowski, W., Polskie Towarzystwo Geologiczne, Wrocław, 1–10, ISBN 978-83-924869-8-5, 2011 (in Polish with English abstract).
Cloos, H.: Der Gebirgsbau Schlesiens und die Stellung seiner
Bodenschätze, Gebrüder Borntraeger, Berlin, 1–107, 1922.
Coubal, M., Adamovič, J., Málek, J., and Prouza, V.: Architecture of
thrust faults with alongstrike variations in fault-plane dip: anatomy of the
Lusatian Fault, Bohemian Massif, Journal of Geosciences, 59, 183–208, https://doi.org/10.3190/jgeosci.174, 2014.
Coubal, M., Malek, J., Adamovič, J., and
Štěpančíková, P.: Late Cretaceous and Cenozoic dynamics
of the Bohemian Massif inferred from the paleostress history of the Lusatian
Fault Belt, J. Geodyn., 87, 26–49, https://doi.org/10.1016/j.jog.2015.02.006, 2015.
Cwojdziński, S. and Żelaźniewicz, A.: Podłoże krystaliczne
bloku przedsudeckiego [Crystalline basement of the Fore-Sudetic block], in:
Annales Societatis Geologorum Poloniae, Special Volume: Przewodnik 66 Zjazdu
Polskiego Towarzystwa Geologicznego [Guide to excursions, 66th Annual
Meeting of the Polish Geological Society], Wrocław, 21–24 September 1995,
11–28, 1995 (in Polish with English summary).
Cymerman, Z.: Młodoalpejskie nasuniecie Zieleńca w Górach
Orlickich [Late-Alpine Zieleniec overthrust in the Orlickie Mts],
Przegląd Geologiczny, 10, 422–427, 1990 (in Polish with English abstract).
Cymerman, Z.: Młodoalpejskie fałdy w depresji północnosudeckiej:
przykłady z wapienia muszlowego z Raciborowic [Late-Alpine folds in the North-Sudetic Depression: examples from Muschelkalk at Raciborowice], Przegląd Geologiczny,
4, 348–354, 1998 (in Polish).
Cymerman, Z.: Tectonic map of the Sudetes and the Fore-Sudetic Block 1:
200 000, 2nd edn., Państwowy Instytut Geologiczny, Warszawa, ISBN 978-83-7538-653-0, 2010.
Dadlez, R., Marek, S., and Pokorski, J.: Geological map of Poland without Cainozoic deposits, 1 : 1 000 000, Państwowy Instytut Geologiczny, Warszawa, Poland, 2000.
Don, B. and Don, J.: Geneza rowu Nysy na tle badań wykonanych w
okolicach Idzikowa [Notes on the origin of the Nysa Graben], Acta Geol.
Pol., 10, 71–106, 1960 (in Polish).
Don, J.: The Late Cretaceous Nysa Graben: implications for Mesozoic –
Cenozoic fault – block tectonics of the Sudetes, Z. Geol. Wissenschaft., 24, 317–424, 1996.
Don, J. and Gotowała, R.: Tectonic evolution of the late Cretaceous Nysa
Kłodzka Graben, Sudetes, SW Poland, Geologia Sudetica, 40, 51–63, 2008.
Dowgiałło, J.: The Sudetic geothermal region of Poland,
Geothermics, 31, 343–359, 2002.
Dumicz, M. and Don, J.: Analiza strukturalna monokliny przedsudeckiej w
rejonie Polkowic [Structural analysis of the Fore-Sudetic Homocline in
vicinities of Polkowice], Acta Universitatis Wratislaviensis 378, Prace
Geologiczno-Mineralogiczne, 6, 279–297, 1977 (in Polish).
Dumicz, M. and Don, J., Próba odtworzenia następstwa zjawisk
tektonicznych w osadach cechsztynu obszaru Polkowic na podstawie obserwacji
drobnych struktur tektonicznych [An attempt at reconstruction of the
sequence of tectonic phenomena in the Zechstein sediments at the Polkowice
area on the basis of study on minor tectonic structures], in: Materiały
konferencji komisji tektoniki Komitetu Nauk Geologicznych PAN: Problemy
tektoniki Legnicko-Głogowskiego Okręgu Miedziowego, część
II – wycieczki geologiczne, Lubin, Wydawnictwo CUPRUM, Wrocław, 22-23 March 1990, 39–45, 1990 (in Polish).
Dziedzic, K. and Teisseyre, A. K.,: The Hercynian molasse and younger
deposits in the Intra-Sudetic Depression, SW Poland, Neues Jahrb. Geol.
Paläont. ABH, 179, 285–305, 1990.
Engelder, T.: Loading paths to joint propagation during a tectonic cycle: an
example of the Appalachian Plateau, USA, J. Struct. Geol., 7, 459–476, 1985.
Engelder, T.: Joints and shear fractures in rocks, in: Fracture Mechanics of
Rocks, edited by: Atkinson, B. K., Academic Press, London, 27–69, https://doi.org/10.1016/B978-0-12-066266-1.50007-7, 1987.
Engelder, T.: Stress regimes in the lithosphere, Princeton University Press,
Princeton, New Jersey, 457 pp., ISBN 0691085552, 1993.
Feist-Burkhardt, S., Götz, A., Szulc, J., Borkhataria, R., Geluk, M.,
Haas, J., Hornung, J., Jordan, P., Kempf, O., Michalík, J., Nawrocki,
J., Reinhardt, L., Ricken, W., Röhling, H-G., Rüffer, T.,
Török, Á., and Zühlke, R.: Triassic, in: The Geology of
Central Europe, Volume 2, Mesozoic and Cenozoic, edited by: McCann, T.,
Geological Society, London, 749–821, https://doi.org/10.1144/CEV2P, 2008.
Fossen, H., Schultz, R. A., Shipton, Z. K., and Mair, K.: Deformation bands in
sandstone: a review, J. Geol. Soc. London, 164,
755–769, 2007.
Głuszyński, A. and Smajdor, Ł.: Analiza archiwalnych danych głębokiej sejsmiki poszukiwawczej na obszarze synklinoriów sudeckich
[Analysis of legacy prospecting seismic data from the Sudetic synclinoria],
in: Unpubl. report of Polish Geological Survey project: Młode strefy
tektoniczne a warunki geotermalne w Sudetach w świetle badań
geochronologicznych, strukturalnych i termometrycznych – etap II, edited by:
Aleksandrowski, P., National Geological Archive, Inw.
9548/2021, Warszawa, 259–269, 2020 (in Polish).
Gorczyca-Skała, J.: Budowa geologiczna rowu Wlenia [Geological structure
of the Wleń Graben], Geologia Sudetica, 12, 71–100, 1977 (in Polish with English summary).
Grocholski, A. and Augustyniak, K.: Atlas geologiczny Dolnośląskiego
Zagłębia Węglowego [Geological atlas of the Lower Silesian Coal
Basin], 1:50 000. Pt. I, Instytut Geologiczny, Warszawa, 1971.
Jarosiński, M., Poprawa, P., and Ziegler, P. A.: Cenozoic dynamic
evolution of the Polish Platform, Geol. Q., 53, 3–26, 2009.
Jaroszewski, W.: Fault and fold tectonics, Polskie Wydawnictwo Naukowe,
Warszawa, 565 pp., ISBN 83-01-04090-4, 1984.
Jerzykiewicz, T.: The Upper Cretaceous turbidite sequence in the Sudetes
(South-western Poland), Bulletin de l'Academie Polonaise des Sciences,
Série des scis géol. et géogr., 18, 149–159, 1970.
Jerzykiewicz, T.: A flysch/lithoral succession in the Sudetic Upper
Cretaceous, Acta Geologia Polonica, 21, 165–199, 1971.
Jerzykiewicz, T., Mierzejewski, M., and Żelaźniewicz, A.: Joint and
fracture patterns in basement and sedimentary rocks in the Sudetes
Mountains, in: Proceedings of the First International Conference on the New
Basement Tectonics (Utah Geol. Assoc. Publication no. 5), Salt Lake City, Utah, 3–7 June 1974, 295–306,
https://archives.datapages.com/data/uga/data/091/091001/295_ugs0910295.htm (last access: 25 July 2022), 1974.
Kłapciński, J., Konstantynowicz, E., Salski, W., Kienig, E., Preidl, M., Dubiński, K., and Drozdowski, S.: Atlas obszaru miedzionośnego (monoklina przedsudecka) [The atlas of the copper-bearing region], Wydawnictwo “Śląsk”, Katowice, Poland, 1984 (in Polish).
Klein, V. and Soukup, J.: The Bohemian Cretaceous Basin, in: Regional
Geology of Czechoslovakia, Pt. 1, The Bohemian Massif, edited by: Svoboda, J., Zoubek, V., Zárubová, H., Petránek, J., and Ložek, V., Geological Survey of Czechoslovakia, Prague, 487–512, 1966.
Kley, J.: Saxonische Tektonik im 21. Jahrhundert, Z. Dt. Ges. Geowiss., 164, 295–311, 2013.
Kley, J.: Timing and spatial patterns of Cretaceous and Cenozoic inversion
in the Southern Permian Basin, in: Mesozoic Resource Potential of the
Southern Permian Basin, edited by: Kilhams, B., Kukla, P. A., Mazur, S.,
McKie, T., Munlieff, H. F., and van Ojik, K., Geological Society, London,
Special Publications, 469, 19–31, https://doi.org/10.1144/SP469.12, 2018.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, 2008.
Kotański, Z. (Ed.): Geological Atlas of Poland, Geological maps of
horizontal section, 1:750 000, Państwowy Instytut Geologiczny, Warszawa, 1997.
Kowalski, A.: Multistage structural evolution of the
end-Cretaceous–Cenozoic Wleń Graben (the Sudetes, NE Bohemian Massif)
– a contribution to the post-Variscan tectonic history of SW Poland,
Ann. Soc. Geol. Pol., 91, 37–66, 2021.
Kozdrój, W.: Results of shallow scientific drillings in the Upper Nysa
Kłodzka Graben and the Zieleniec area, Sudetes, Geologia Sudetica, Wrocław, 42, 149–159, 2014.
Krentz, O., Walter, H., Brause, H., Hoth, K., Kozdrój, W., Cymerman, Z., Opletal, M., and Mrázová, Š.: Geological map Lausitz – Jizera – Karkonosze 1 : 100 000 (without Cenozoic sediments), Sächsisches Landesamt für Umwelt und Geologie & Państwowy Instytut Geologiczny & Český geologický ústav – Freiberg, Warszawa, Praha, 2000.
Kroner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Hann, H. P.,
Huckriede, F., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T. C.,
Zedler, H., Zeh, A., and Zulauf, G.: Variscan Tectonics, in: The Geology of
Central Europe, edited by: McCann, T., The Geological Society, London,
599–664, https://doi.org/10.1144/CEV1P.11, 2008.
Krzywiec, P.: Mid-Polish Trough inversion – seismic examples, main
mechanisms and its relationship to the Alpine-Carpathian collision, Stephan
Mueller Special Publication Series, 1, 151–165,
https://doi.org/10.5194/smsps-1-151-2002, 2002.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments
of the Mid-Polish Trough – lateral variations in timing and structural
style, Geol. Q., 51, 151–168, 2006.
Krzywiec, P. and Stachowska, A.: Late Cretaceous inversion of the NW segment
of the Mid-Polish Trough – how marginal troughs were formed, and does it
matter at all?, Zeitschrift der deutschen geologischen Gesellschaft, 167,
107–119, 2016.
Leśniak, T.: Tektonika obszaru między Raciborowicami a Łaziskami w
północno-wschodniej części depresji północnosudeckiej [The structure of the area between Raciborowice and Łaziska in the north-east part of the North Sudetic Depression],
Zeszyty Naukowe AGH, Kraków, Geologia, 5, 87–107, 1979 (in Polish).
Malkovský, M.: Saxonische Tektonik der Böhmischen Masse, Geol. Rundsch., 65, 127–143, https://doi.org/10.1007/BF01808459, 1976.
Malkovský, M.: Important faults of the platform cover of the northern
part of the Bohemian Massif, Výzk Práce Ústř Úst Geol.,
14, 1–32, 1977.
Malkovský, M.: The Mesozoic and Tertiary basins of the Bohemian Massif
and their evolution, Tectonophysics, 137, 31–42,
https://doi.org/10.1016/0040-1951(87)90311-8, 1987.
Malz, A., Nachtweide, C., Emmerlich, S., and Schimpf, L.: Mesozoic
intraplate deformation in the southern part of the Central European Basin –
Results from large-scale 3D modelling, Tectonophysics, 776, 228315, https://doi.org/10.1016/j.tecto.2019.228315, 2020.
Markiewicz, A.: Tektonika obszaru złoża [The tectonics of the
ore-deposit area], chap. 2.11, in: Monografia KGHM Polska Miedź S. A.,
edited by: Piestrzyński, A., KGHM CUPRUM, Wrocław, 115–132, ISBN 9788392206576, 2007 (in Polish).
Markiewicz, A. and Szarowski, W.: Zjawiska tektoniczne w południowej
części kopalni Lubin [Tectonic phenomena in the southern part of the Lubin Mine], in: Materiały konferencji komisji tektoniki
Komitetu Nauk Geologicznych PAN: Problemy tektoniki Legnicko-Głogowskiego
Okręgu Miedziowego, część II – wycieczki geologiczne,
Lubin, Wydawnictwo CUPRUM, Wrocław, 22–23 March 1990, 4–8, 1990 (in Polish).
Martínez-Catalán, J. R., Hatcher Jr., R. D., Arenas, R., and Díaz
García, F. (Eds.): Variscan-Appalachian dynamics: the building of the Late Paleozoic Basement, Geol. Soc. Am. Spec. Pap., Denver, 364,
305 pp., https://doi.org/10.1130/SPE364, 2002.
Martínez-Catalán, J. R., Collett, S., Schulmann, K.,
Aleksandrowski, P., and Mazur, S.: Correlation of allochthonous
terranes and major tectonostratigraphic domains between NW Iberia and the
Bohemian Massif, European Variscan belt, Int. J. Earth
Sci., 109, 1105–1131,
https://doi.org/10.1007/s00531-019-01800-z, 2020.
Matte, P.: The Variscan collage and orogeny (480–290 Ma) and the tectonic
definition of the Armorica microplate: a review, Terra Nova, 13, 122–128,
2001.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of the
Late Cretaceous-Early Tertiary inversion in the North German and Polish
basins, Int. J. Earth Sci., 94,
782–798, 2005.
Mazur, S., Aleksandrowski, P., Kryza, R., and Oberc-Dziedzic, T.: The
Variscan orogen in Poland, Geol. Q., 50, 89–118, 2006.
Mazur, S., Aleksandrowski, P., Turniak, K., and Awdankiewicz, M.: Geology,
tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview,
in: Granitoids in Poland, edited by: Kozłowski, A. and Wiszniewska, J., AM
(Archivum Mineralogiae) Monograph No. 1, Komitet Nauk Mineralogicznych PAN
and WydziałGeologii Uniwersytetu Warszawskiego, 59–87, ISBN 9788391631096, 2007.
Mazur, S., Aleksandrowski, P., Turniak, K., Krzemiński, L., Mastalerz,
K., Górecka-Nowak, A., Kurowski, L., Krzywiec, P., Żelaźniewicz,
A., and Fanning, M. C.: Uplift and late orogenic deformation of the Central
European Variscan belt as revealed by sediment provenance and structural
record in the Carboniferous foreland basin of western Poland, Int.
J. Earth Sci., 99, 47–64, 2010.
Mazur, S., Aleksandrowski, P., Gągała, Ł., Krzywiec, P., Żaba, J.,
Gaidzik, K., and Sikora, R.: Late Palaeozoic strike-slip tectonics versus
oroclinal bending at the SW outskirts of Baltica: case of the Variscan
belt's eastern end in Poland, Int. J. Earth Sci., 109,
1133–1160, 2020.
McCann, T., Kiersnowski, H., Krainer, K., Vozárová, A., Peryt, T. M.,
Oplustil, S., Stollhofen, H., Schneider, J., Wetzel, A., Boulvain, F.,
Dusar, M., Török, Á., Haas, J., Tait, J., and Körner, F.:
Permian, in: The Geology of Central Europe, edited by: McCann, T., The
Geological Society, London, 531–597, https://doi.org/10.1144/CEV1P.10, 2008a.
McCann, T., Skompski, S., Poty, E., Dusar, M., Vozárová, A.,
Schneider, J., Wetzel, A., Krainer, K., Kornpihl, K., Schäfer, A.,
Krings, M., Oplustil, S., and Tait, J.: Carboniferous, in: The Geology of
Central Europe, edited by: McCann, T., The Geological Society, London,
411–529, https://doi.org/10.1144/CEV1P.9, 2008b.
Migoń, P. and Danišík, M.: Erosional history of the Karkonosze
Granite Massif – constraints from adjacent sedimentary basins and
thermochronology, Geol. Q., 56, 440–454, https://doi.org/10.7306/gq.1032, 2012.
Milewicz, J.: The geological structure of the North-Sudetic Depression,
Biuletyn Instytutu Geologicznego, 227, 5–27, 1968.
Milewicz, J.: Górna kreda depresji północnosudeckiej [Upper Cretaceous of the North-Sudetic Depression], Acta
Universitatis Wratislaviensis, Prace Geologiczno-Mineralogiczne, 61, 1–58,
1997 (in Polish).
Nádaskay, R., Žák, J., Sláma, J., Sidorinová, T., and
Valečka, J.: Deciphering the Late Paleozoic to Mesozoic
tectonosedimentary evolution of the northern Bohemian Massif from detrital
zircon geochronology and heavy mineral provenance, Int. J.
Earth Sci., 108, 2653–2681, https://doi.org/10.1007/s00531-019-01781-z, 2019.
Navabpour, P., Malz, A., Kley, J, Siegburg, M., Kasch, N., and Ustaszewski,
K.: Intraplate brittle deformation and states of paleostress constrained by
fault kinematics in the central German platform, Tectonophysics, 694,
146–163, https://doi.org/10.1016/j.tecto.2016.11.033, 2017.
Nemec, W., Porębski, S. J., and Teisseyre, A. K.: Explanatory notes to
the lithotectonic molasse profile of the Intra-Sudetic Basin, Polish part
(Sudety Mts, Carboniferous-Permian), Veröffentlichungen Zentralinstituts
für Physik der Erde, Akad. der Wissenschaften der DDR, 66, 267–278,
1982.
Nováková, L.: Evolution of paleostress fields and brittle
deformation in Hronov-Poříčí Fault Zone, Bohemian Massif,
Stud. Geophys. Geodet., 58, 269–288, 2014.
Oberc, J.: Sudety i obszary przyległe [The Sudetes and adjacent areas], in: Budowa geologiczna Polski. T.
4, Tektonika, cz. 2, Wydawnictwa Geologiczne, Warszawa, 1972 (in Polish).
Oberc, J.: The Early Alpine epoch in South-West Poland: The North Sudetic
Synclinorium, in: Geology of Poland, Vol. 4, Tectonics, edited by:
Pożaryski, W., Wydawnictwa Geologiczne, Warszawa, 419–424, 1977.
Oberc, J. and Salski, W.: Fałdy i spękania w skałach
dolnocechsztyńskich na obszarze szybu wschodniego kopalni Lubin [Fold
and joints in lower Zechstein rocks around the eastern shaft of the Lubin
mine], Kwartalnik Geologiczny, 3, 519–536, 1968 (in Polish).
Petrascheck, W.: Der böhmische Anteil der Mittelsudeten und sein
Vorland, Mitteilungen der Geol. Gesellschaft in Wien, 24, 1–136, 1933.
Pożaryski, W.: Mapa geologiczna Polski i krajów ościennych bez
utworów kenozoicznych 1:1 000 000 [Geological map of Poland and
adjacent countries without Cenozoic deposits], Instytut Geologiczny,
Warszawa, 1979 (in Polish).
Price, N. J.: Fault and joint development in brittle and semibrittle rock,
Pergamon Press, 1–176, 1966.
Price, N. J. and Cosgrove, J. W.: Analysis of Geological Structures, Cambridge
University Press, Cambridge, 502 pp., ISBN 0 521 26581 9, 1990.
Prouza, V., Coubal, M., and Adamovič, J.: Specifika architektury
hronovsko-poříčského zlomu [Specific architecture fo the
Hronov–Poříčí Fault], Zprávy o geologických
výzkumech v roce 2014/A – Regionální geologie a
stratígrafie, Česká geologická služba, Praha, 48, 13–18, https://doi.org/10.3140/zpravy.geol.2014.26, 2014 (in Czech).
Radwański, S.: Kreda Sudetów Środkowych w świetle
wyników nowych otworów wiertniczych [Upper Cretaceous of the central
part of the Sudetes in the light of new borehole materials], Biuletyn
Instytutu Geologicznego, 287, 5–59, 1975 (in Polish with English abstract).
Salski, W.: Problemy małej tektoniki w rejonie Lubina [Problems of minor
tectonics in vicinities of Lubin], Rudy i Metale Nieżelazne, 4, 485–489, 1965 (in Polish).
Salski, W.: Charakterystyka litologiczna i drobne struktury łupków
miedzionośnych monokliny przedsudeckiej [Lithological characteristics
and minor structures of copper-bearing shales in Fore-Sudetic Homocline],
Kwartalnik Geologiczny, 12, 855–873, 1968 (in Polish).
Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D., and Pharaoh, T.:
The Elbe Fault System in North Central Europe – a basement controlled zone
of crustal weakness, Tectonophysics, 360, 281–299, 2002.
Selerowicz, T., Głuszyński, A., and Niedbał, M.: Zechstein limestone
(Ca1) joint orientation analysis in mining shafts of
“Polkowice-Sieroszowice” copper and silver mine (SE Poland): field study
results, Geologia Sudetica, 42, 84–84, 2014.
Śliwiński, W., Raczyński, P., and Wojewoda, J.: Sedymentacja
utworów epiwaryscyjskiej pokrywy osadowej w basenie północnosudeckim [Sedimentation of the epi-Variscan cover in the North Sudetic
Basin], in: Sudety Zachodnie: od wendu do czwartorzędu, edited by:
Ciężkowski, W., Wojewoda, J., and Żelaźniewicz, A., Polskie
Towarzystwo Geologiczne, Wrocław, 119–126, ISBN 83-908127-8-9,
2003 (in Polish with English abstract).
Sobczyk, A, Danišík, M., Aleksandrowski, P., and Anczkiewicz, A.:
Post-Variscan cooling history of the central Western Sudetes (NE Bohemian
Massif, Poland) constrained by apatite fission-track and zircon (U-Th) He
thermochronology, Tectonophysics 649, 47–57,
https://doi.org/10.1016/j.tecto.2015.02.021, 2015.
Sobczyk, A., Sobel, E. R., and Georgieva, V.: Meso–Cenozoic cooling and
exhumation history of the Orlica–Śnieżnik Dome (Sudetes, NE
Bohemian Massif, Central Europe): Insights from apatite fission–track
thermochronometry, Terra Nova, 32, 122–133, 2020.
Solecki, A. T.: Tektonika dysjunktywna i jej wpływ na warunki wystepowania
kopalin w synklinorium północnosudeckim [Brittle tectonics and its control on the modes of occurrence of mineral resources in the North-Sudetic Synclinorium], PhD thesis, University of
Wrocław, 1–152, 1986 (in Polish).
Solecki, A. T.: Conjugate cataclastic zones in the sandstones of the
North-Sudetic Synclinorium, Przegląd Geologiczny, 36, 577–581, 1988 (in
Polish with English summary).
Solecki, A. T.: Tectonics of the North Sudetic Synclinorium, Acta Universitatis
Wratislaviensis No 1618, University of Wroclaw, Prace Geologiczno-Mineralogiczne, 45, 1–60, 1994.
Solecki, A. T.: Joints and shears of the North-Sudetic Synclinorium, in:
Mechanics of jointed and faulted rocks, edited by: Rossmanith, H-P., Balkema,
341–346, ISBN 978-9054105411, 1995.
Solecki, A. T.: Rozwój strukturalny epiwaryscyjskiej pokrywy platformowej w
obszarze synklinorium północnosudeckiego [Structural development of
the epi-variscan cover in the North Sudetic Synclinorium area], in: Mezozoik
i kenozoik Dolnego Śląska, Polskie Towarzystwo Geologiczne, edited
by: Żelaźniewicz, A., Wojewoda, J., and Ciężkowski, W., Wrocław, 19–36, ISBN 978-83-924869-8-5, 2011 (in Polish).
Suppe, J.: Principles of Structural Geology, Prentice-Hall, 537 pp., ISBN 9780137105007, 1985.
Teisseyre, H.: Ważniejsze dyslokacje ramowe Sudetów [Major boundary
faults of the Sudetes], in: Regionalna geologia Polski, T. III: Sudety, Z.1:
Utwory przedtrzeciorzędowe, edited by: Teissyere, H., Polskie Towarzystwo
Geologiczne, Kraków, 25–29, 1957 (in Polish).
Uličný, D., Špičáková, L., Grygar, R.,
Svobodová, M., Čech, S., and Laurin, J.: Palaeodrainage systems at
the basal unconformity of the Bohemian Cretaceous Basin: roles of inherited
fault systems and basement lithology during the onset of basin filling,
B. Geosci., 84, 577–610, 2009.
Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličny, D.,
Čech, S., Voigt, T., Wiese, F., Wilmsen, M., Niebuhr, B., Reich, M.,
Funk,. H., Michalík, J., Jagt, J. W. M., Felder, P. J., and Schulp, A. S.:
Cretaceous, in: The Geology of Central Europe, edited by: McCann, T., The
Geological Society, London, 923–997, ISBN 978-1-86239-265-6, 2008.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
Wagenbreth, O.: Die Lausitzer Überschiebung und die Geschichte ihrer geologischen Erforschung. II, Abh. Staatl. Mus. Mineral. Geol. (Dresden), 12, 279–368, 1967.
Wilmsen, M., Uličný, D., and Košťák, M.: Cretaceous
basins of Central Europe: deciphering effects of global and regional
processes – a short introduction, Z. Dtsch. Ges. Geowiss., 165, 495–499, 2014.
Wojewoda, J.: Sukcesja litoralno-szelfowa górnej kredy na obszarze
niecki śródsudeckiej i rowu górnej Nysy w Sudetach [Upper Cretaceous littoral-to-shelf succession in the Intra-Sudetic Basin and the Upper Nysa Graben], in: Obszary
źródłowe: Zapis w osadach I, edited by: Wojewoda, J., WIND,
Wrocław, 81–96, ISBN 83-908127-1-1, 1997 (in Polish).
Wojewoda, J.: Neotectonic aspect of the Intrasudetic Shear Zone, Acta
Geodyn. Geomater., 4, 31–41, 2007.
Wojewoda, J.: Žďarky-Pstrążna Dome: a strike-slip
fault-related structure at the eastern termination of the
Poříčí-Hronov Fault Zone (Sudetes), Acta Geodyn.
Geomater., 6, 273–290, 2009.
Wojewoda, J. and Kowalski, A.: Rola południowosudeckiej strefy
ścinania w ewolucji Sudetów [The role of the South-Sudetic Shear
Zone in the evolution of the Sudetes], in: Wyzwania Polskiej Geologii, 3.
Polski Kongres Geologiczny, Przewodnik do wycieczek kongresowych, Wycieczka
2.2., edited by: Wojewoda, J. and Kowalski, A., Polskie Towarzystwo
Geologiczne, Wrocław, 28–43, ISBN 978-83-942304-3-2, 2016 (in Polish).
Wojewoda, J., Koszela, S., and Aleksandrowski, P.: A kilometre-scale
low-angle detachment related to strike-slip faulting in Late Cretaceous
mudstones of the Table Mountains (Central Sudetes, SW Poland), in: Central
European Tectonic Studies Group (CETEG) 8th Meeting, Conference Proceedings, Mąchocice Kapitulne, Poland, 22–25 April 2010, edited by: Ludwiniak, M.,
Konon, A. and Żylińska, A., University of Warsaw and Polish
Geological Institute – National Research Institute, 127–128, 2010.
Żelaźniewicz, A. and Aleksandrowski, P.: Regionalizacja tektoniczna
Polski: Polska południowo-zachodnia [Tectonic subdivision of Poland:
southwestern Poland], Przegląd Geologiczny, 56, 904–911, 2008 (in Polish with English abstract).
Żelaźniewicz, A. and Markiewicz, A.: Struktury ekstensyjne w
cechsztyńskich ewaporatach monokliny przedsudeckiej a strefa tektoniczna
Odry [Extensional structures in Zechstein evaporites of the Fore-Sudetic Homocline and their relation to the Odra Fault Zone], Przegląd Geologiczny, 10, 463–471, 1991 (in Polish).
Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P. H.,
Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., and Żytko,
K.: Regionalizacja tektoniczna Polski [Tectonic subdivision of Poland], Komitet Nauk Geologicznych PAN,
Wrocław, 60, ISBN 978-83-63377-01-4, 2011 (in Polish).
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland-a geodynamic model, Tectonophysics, 137,
389–420, https://doi.org/10.1016/0040-1951(87)90330-1, 1987.
Ziegler, P. A., Cloetingh, S., and van Wees, J. D.: Dynamics of intra-plate
compressional deformation: the Alpine foreland and other examples,
Tectonophysics, 252, 7–59, 1995.
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late...
Special issue