Articles | Volume 13, issue 1
https://doi.org/10.5194/se-13-161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamic motion monitoring of a 3.6 km long steel rod in a borehole during cold-water injection with distributed fiber-optic sensing
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Felix Schölderle
Hydrogeology and Geothermal Energy, Technical University Munich,
Arcisstr. 21, 80333 Munich, Germany
Thomas Reinsch
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
present address: Fraunhofer IEG, Fraunhofer Research Institution
for Energy Infrastructures and Geothermal Systems IEG, Am Hochschulcampus 1
IEG, 44801 Bochum, Germany
Christopher Wollin
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Charlotte Krawczyk
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Institute for Applied Geosciences, Technical University (TU) Berlin,
Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Daniela Pfrang
Hydrogeology and Geothermal Energy, Technical University Munich,
Arcisstr. 21, 80333 Munich, Germany
Kai Zosseder
Hydrogeology and Geothermal Energy, Technical University Munich,
Arcisstr. 21, 80333 Munich, Germany
Related authors
No articles found.
Mikhail Tsypin, Viet Dung Nguyen, Mauro Cacace, Guido Blöcher, Magdalena Scheck-Wenderoth, Elco Luijendijk, and Charlotte Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4335, https://doi.org/10.5194/egusphere-2025-4335, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Shallow groundwater temperatures are increasing as a consequence of global warming. At the same time, climate models project substantial changes in future groundwater recharge, with impacts on groundwater levels. We investigated the combined effects of these two processes. Our modeling results suggest that decreased annual recharge or increased cold recharge in winter can locally slow groundwater warming, but not sufficiently to stop or reverse the overall warming trend.
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 29, 1359–1378, https://doi.org/10.5194/hess-29-1359-2025, https://doi.org/10.5194/hess-29-1359-2025, 2025
Short summary
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.
Kalliopi Tzoufka, Guido Blöcher, Mauro Cacace, Daniela Pfrang, and Kai Zosseder
Adv. Geosci., 65, 103–111, https://doi.org/10.5194/adgeo-65-103-2024, https://doi.org/10.5194/adgeo-65-103-2024, 2024
Short summary
Short summary
Concepts of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) are investigated for system application in the German Molasse Basin. We quantify via physics-based numerical modelling the system performance with respect to HT-ATES concept development and provide a predictive analysis of HT-ATES application in the Upper Jurassic reservoir. Results demonstrate a non-uniform layer-specific distribution of the thermal front propagation, while promising heat recovery efficiencies are predicted.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Smajil Halilovic, Fabian Böttcher, Kai Zosseder, and Thomas Hamacher
Adv. Geosci., 62, 57–66, https://doi.org/10.5194/adgeo-62-57-2023, https://doi.org/10.5194/adgeo-62-57-2023, 2023
Short summary
Short summary
This study focuses on the optimization of open-loop shallow geothermal systems to improve their efficiency and sustainability. Different approaches to solve optimization problems in this field are explored, their strengths and limitations are highlighted, and recommendations are given for their use and future developments. The study can be a valuable basis for researchers and practitioners involved in the management and optimization of shallow geothermal systems.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Felix Schölderle, Daniela Pfrang, and Kai Zosseder
Adv. Geosci., 58, 101–108, https://doi.org/10.5194/adgeo-58-101-2023, https://doi.org/10.5194/adgeo-58-101-2023, 2023
Short summary
Short summary
In 2019, a fiber optic cable was installed in the middle of a deep geothermal production well to the reservoir in Munich, Germany. This cable hangs freely below the pump and allows continuous measurements of the temperature at every meter of the cable. The well was put into operation for the first time in the summer of 2021. We used the fiber optic cable to monitor the temperature profile during production in the reservoir and to quantitatively interpret the flow zones using an inverse model.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Benjamin Schwarz and Charlotte M. Krawczyk
Solid Earth, 11, 1891–1907, https://doi.org/10.5194/se-11-1891-2020, https://doi.org/10.5194/se-11-1891-2020, 2020
Short summary
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Cited articles
Allen, R. V.: Automatic earthquake recognition and timing from single
traces, B. Seismol. Soc. Am., 68, 1521–1532, https://doi.org/10.1785/BSSA0680051521, 1978.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J., ObsPy: A Python Toolbox for Seismology SRL, 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010.
Becker, M. W., Ciervo, C., Cole, M., Coleman, T., and Mondanos, M.: Fracture
hydromechanical response measured by fiber optic distributed acoustic
sensing at milliHertz frequencies, Geophys. Res. Lett., 44, 7295–7302, https://doi.org/10.1002/2017GL073931, 2017.
Becker, M. W., Coleman, T. I., and Ciervo, C. C.: Distributed Acoustic
Sensing as a Distributed Hydraulic Sensor in Fractured Bedrock, Water Resour. Res., 56, e2020WR028140,
https://doi.org/10.1029/2020WR028140, 2020.
Berman, A. D., Ducker, W. A., and Israelachvili, J. N.: Origin and
Charactrization of Different Stick-Slip Friction Mechnanisms, Langmuir, 12, 4559–4563,
https://doi.org/10.1021/la950896z, 1996.
Bruno, M. S., Lao, K., Nicky, O., and Becker, M.: Use of Fiber Optic Distributed Acoustic Sensing for Measuring Hydraulic Connectivity for Geothermal Applications, United States: N. p., Web. https://doi.org/10.2172/1434494, 2018.
Bücker, C. and Grosswig, S.: Distributed temperature sensing in the oil
and gas industry – insights and perspectives, Oil Gas European Magazine, 43, 209–215, https://doi.org/10.19225/171207, 2017.
Cardarelli, F.: Ferrous Metals and Their Alloys, in: Materials Handbook, Springer, Cham.,
https://doi.org/10.1007/978-3-319-38925-7_2, 2018.
Chang, H. and Nakata, N.: Investigation of the time-lapse changes with the
DAS borehole data at the Brady geothermalfield using deconvolution
interferometry, SEG Technical Program Expanded Abstracts, 3417–3421, https://doi.org/10.1190/segam2020-3426023.1, 2020.
Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar, S., Miller, D. E., Goetz, J., Henninges, J., and Lueth, S.: Field testing of fiber-optic distributed acoustic
sensing (DAS) for subsurface seismic monitoring, The Leading Edge, 32, 699,
https://doi.org/10.1190/tle32060699.1, 2013.
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., and Freifeld, B. M.: Field
testing of modular borehole monitoring with simultaneous distributed
acoustic sensing and geophone vertical seismic profiles at Citronelle,
Alabama, Geophys. Prospect., 64, 1318–1334 https://doi.org/10.1111/1365-2478.12324, 2016.
Engineering ToolBox, Metals and Alloys – Young's Modulus of Elasticity, available at: https://www.engineeringtoolbox.com/young-modulus-d_773.html (last access: June 2020), 2004.
Finfer, D. C., Mahue, V., Shatalin, S., Parker, T., and Farhadiroushan, M.:
Borehole Flow Monitoring using a Non-intrusive Passive Distributed Acoustic
Sensing (DAS), Society of Petroleum Engineers, SPE Annual Technical Conference and Exhibition
27–29 October 2014,
Amsterdam, the Netherlands, https://doi.org/10.2118/170844-MS, 2014.
Förster, A., Schrötter, J., Merriam, D. F., and Blackwell, D. D.:
Application of optical-fiber temperature logging – an example in a
sedimentary environment, Geophysics, 62, 1107, https://doi.org/10.1190/1.1444211, 1997.
Ghahfarokhi, P. K., Carr, T., Song, L., Shukla, P., and Pankaj, P.: Seismic
Attributes Application for the Distributed Acoustic Sensing Data for the
Marcellus Shale: New Insights to Cross-Stage Flow Communication, Society of Petroleum Engineers, SPE Hydraulic Fracturing Technology Conference and Exhibition
23–25 January 2018
The Woodlands, Texas, USA,
https://doi.org/10.2118/189888-MS, 2018.
Götz, J., Lüth, S., Henninges, J., and Reinsch, T.: Vertical seismic
profiling using a daisy-chained deployment of fibre-optic cables in four
wells simultaneously – Case study at the Ketzin carbon dioxide storage
site, Geophys. Prospect., 66, 1201–1214, https://doi.org/10.1111/1365-2478.12638, 2018.
Harris, K., White, D., Melanson, D., Samson, C., and Daley, T. M.: Feasibility
of time-lapse VSP monitoring at the Aquistore CO2 storage site using a
distributed acoustic sensing system, Int. J. Greenh. Gas Con., 50, 248–260, https://doi.org/10.1016/j.ijggc.2016.04.016, 2016.
Hartog, A. H.: A Distributed Temperature Sensor Based on Liquid-Core Optical
Fibers, J. Lightwave Technol., 1, 498–509, https://doi.org/10.1109/JLT.1983.1072146, 1983.
Hartog, A. H. and Gamble, G.: Photonic distributed sensing, Phys. World, 4, 45,
https://doi.org/10.1088/2058-7058/4/3/30, 1991.
Henninges, J., Huenges, E., and Burkhardt, H.: In situ thermal conductivity
of gas-hydrate-bearing sediments of the Mallik 5L-38 well, J. Geophys. Res., 110, B11206,
https://doi.org/10.1029/2005JB003734, 2005.
Henninges, J., Martuganova, E., Stiller, M., Norden, B., and Krawczyk, C. M.: Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profiling of the Rotliegend 150 ∘C geothermal reservoir in the North German Basin, Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, 2021.
Hidnert, P.: Thermal Expansion of Heat Resisting Alloys (nickel-chromium,
Iron-chromium and Nickel Chromium-iron Alloys), Bur. Stand. J. Res., 1031–1066, 1931.
Hurtig, E., Grosswig, S., Jobmann, M., Kühn, K., and Marschall, P.:
Fibre-optic temperature measurements in shallow boreholes: experimental
application for fluid logging, Geothermics, 23, 355–364, https://doi.org/10.1016/0375-6505(94)90030-2, 1994.
Johannessen, K., Drakeley, B. K., and Farhadiroushan, M.: Distributed
Acoustic Sensing – A New Way of Listening to Your Well/Reservoir, Society of Petroleum Engineers, SPE Intelligent Energy International
27–29 March 2012,
Utrecht, the Netherlands, https://doi.org/10.2118/149602-MS, 2012.
Lee, C. H. and Polycarpou, A. A.: Static Friction Experiments and
Verification of an Improved Elastic-Plastic Model Including Roughness
Effects, J. Tribology T.-ASME, 129, 754–760, https://doi.org/10.1115/1.2768074, 2007.
Lipus, M., Reinsch, T., Schmidt-Hattenberger, C., Henninges, J., and Reich, M.:
Gravel Pack Monitoring With a Strain Sensing Fiber Optic Cable, Oil Gas European Magazine, 44, 179–185,
https://doi.org/10.19225/181202, 2018.
Lipus, M. P., Reinsch, T., Weisenberger, T. B., Kragset, S., Stefánson, A.,
and Bogason, S. G.: Monitoring of a reverse cement job in a high temperature
geothermal environment, Geothermal Energy, 9, 5, https://doi.org/10.1186/s40517-021-00187-y, 2021.
Martuganova, E., Stiller, M., Bauer, K., Henninges, J., and Krawczyk, C. M.:
Cable reverberations during wireline distributed acoustic sensing
measurements: their nature and methods for elimination, Geophys. Prospect., 69, 1034–1054,
https://doi.org/10.1111/1365-2478.13090, 2021.
Masoudi, A., Balal, M., and Newson, T. P.: A distributed optical fibre
dynamic strain sensor based on phase-OTDR, Meas. Sci. Technol., 24, 085204,
https://doi.org/10.1088/0957-0233/24/8/085204, 2013.
Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K. Kuvshinov, B., Berling, W., Yang, Z., and Detomo, R: Distributed acoustic sensing for reservoir monitoring
with vertical seismic profiling, Geophys. Prospect., 62, 679–692, https://doi.org/10.1111/1365-2478.12116, 2014.
Miller, D. E., Coleman, T., Zeng, X., Patterson, J. R., Reinisch, E. C., Cardiff, M. A., Wang, H. F., Fratta, D., Trainor-Guitton, Thurber, C. H., Robertson, M., and Feigl, K.: DAS and DTS at Brady Hot Springs: Observations about
Coupling and Coupled Interpretations, PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, 12–14 February 2018, Stanford, California, 2018.
Munn, J. D., Coleman, T. J., Parker, B. I., Mondanos, M. J., and Chalari, A.:
Novel cable coupling technique for improved shallow distributed acoustic
sensor VSPs, J. Appl. Geophys., 138, 72–79, https://doi.org/10.1016/j.jappgeo.2017.01.007, 2017.
Muraki, M., Kinbara, E., and Konishi, T.: A laboratory simulation for
stick-slip phenomena on the hydraulic cylinder of a construction machine,
Tribol. Int., 36, 739–744, https://doi.org/10.1016/S0301-679X(03)00054-9, 2003.
Naldrett, G., Cerrahoglu, C., and Mahue, V.: Production Monitoring Using
Next-Generation Distributed Sensing Systems, Society of Petrophysicists and Well-Log Analysts, 59, 496–510, https://doi.org/10.30632/PJV59V4-2018a5, 2018.
Pearce, J. G., Rambow, F. H. K., Shroyer, W. W., Huckabee, P. T., De Jongh, H., Dria, D. E., Childers, B. A., Hall, T., and Dominique, T.: High Resolution, Real-Time Casing Strain Imaging for
Reservoir and Well Integrity Monitoring: Demonstration of Monitoring
Capability in a Field Installation, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 2009, https://doi.org/10.2118/124932-MS, 2009.
Raab, T., Reinsch, T., Aldaz Cifuentes, S. R., and Henninges, J.: Real-Time
Well-Integrity Monitoring Using Fiber-Optic Distributed Acoustic Sensing,
Soc. Petrol. Eng. J., 24, 1997–2009, https://doi.org/10.2118/195678-PA, 2019.
Reinsch, T., Henninges, J., and Ásmundsson, R.: Thermal, mechanical and
chemical influences on the performance of optical fibres for distributed
temperature sensing in a hot geothermal well, Environ. Earth Science, 70, 3465–3480,
https://doi.org/10.1007/s12665-013-2248-8, 2013.
Reinsch, T., Thurley, T., and Jousset, P.: On the mechanical coupling of a
fiber optic cable used for distributed acoustic/vibration sensing
applications – a theoretical consideration, Meas. Sci. Technol., 28, 127003,
https://doi.org/10.1088/1361-6501/aa8ba4, 2017.
Schölderle, F., Lipus, M. P., Pfrang, D., Reinsch, T., Haberer, S., Einsiedl, F., and Zosseder, K.: Monitoring Cold Water Injections for Reservoir
Characterization using a Permanent Fibre Optic Installation in a Geothermal
Production Well in the Southern German Molasse Basin, Geothermal Energy, 9, 21,
https://doi.org/10.1186/s40517-021-00204-0, 2021.
Storch, T., Grab, T., Gross, U., and Wagner, S.: VISUAL OBSERVATIONS INSIDE A
GEOTHERMAL THERMOSYPHON, Heat Pipe Science and Technology, An International Journal, 4, 217–226,
https://doi.org/10.1615/HeatPipeScieTech.2014011210, 2013.
Sun, Y., Xue, Z., Park, H., Hashimoto, T., and Zhang, Y.: Optical Sensing of
CO2 Geological Storage Using Distributed Fiber-Optic Sensor: From Laboratory
to Field-Scale Demostrations, Energy Fuels, 35, 659–669, https://doi.org/10.1021/acs.energyfuels.0c03925, 2020.
Vaezi, Y. and van der Baan, M.: Comparison of the STA/LTA and power
spectral density methods for microseismic event detection, Geophys. J. Int., 203, 1896–1908,
https://doi.org/10.1093/gji/ggv419, 2015.
Zhang, Y., Lei, X., Hashimoto, T., and Xue, Z.: Towards retrieving distributed
aquifer hydraulic parameters from distributed strain sensing, J. Geophys. Res.-Sol. Ea., 126, e2020JB020056, https://doi.org/10.1029/2020JB020056, 2020.
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in...
Special issue