Articles | Volume 13, issue 12
https://doi.org/10.5194/se-13-1859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-1859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analogue modelling of basin inversion: a review and future perspectives
Institute of Geological Sciences, University of Bern, Bern,
Switzerland
Helmholtz Centre Potsdam, German Research Centre for Geosciences
(GFZ), Potsdam, Germany
Guido Schreurs
Institute of Geological Sciences, University of Bern, Bern,
Switzerland
Susanne J. H. Buiter
Helmholtz Centre Potsdam, German Research Centre for Geosciences
(GFZ), Potsdam, Germany
Tectonics and Geodynamics, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, Aachen, Germany
Oriol Ferrer
Geomodels Research
Institute, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
Riccardo Reitano
Department of Geological
Sciences, Università Degli Studi Roma Tre, Rome, Italy
Michael Rudolf
Helmholtz Centre Potsdam, German Research Centre for Geosciences
(GFZ), Potsdam, Germany
Engineering Geology Research Group, Institute for Applied Geosciences,
Technical University Darmstadt, Darmstadt, Germany
Ernst Willingshofer
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Related authors
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
This article is included in the Encyclopedia of Geosciences
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
This article is included in the Encyclopedia of Geosciences
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
This article is included in the Encyclopedia of Geosciences
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
This article is included in the Encyclopedia of Geosciences
Zoltán Erdős, Susanne J. H. Buiter, and Joya L. Tetreault
Solid Earth, 16, 841–863, https://doi.org/10.5194/se-16-841-2025, https://doi.org/10.5194/se-16-841-2025, 2025
Short summary
Short summary
We used computer models to study how mountains formed by the collision of tectonic plates can later affect the breakup of these same plates. Our results show that in large, warm mountain belts, new faults form due to the orogen being weak overall, while in smaller, colder belts, breakup follows old fault zones. Microcontinents that were accreted during collision can create new continental fragments during extension. These findings help explain how past geological events shape continent margins.
This article is included in the Encyclopedia of Geosciences
Sandra González-Muñoz, Guido Schreurs, Timothy C. Schmid, and Fidel Martín-González
Solid Earth, 15, 1509–1523, https://doi.org/10.5194/se-15-1509-2024, https://doi.org/10.5194/se-15-1509-2024, 2024
Short summary
Short summary
This work investigates how strike-slip faults propagate across domains with lateral contrasting brittle strength using analogue models. The introduction of brittle vertical domains was achieved using quartz microbead sand. The reference vertical domains influence synthetic fault propagation, segmentation, and linkage, as well as the antithetic faults which rotate about a vertical axis due to the applied simple shear. The results aligned with the faults in the NW of the Iberian Peninsula.
This article is included in the Encyclopedia of Geosciences
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
This article is included in the Encyclopedia of Geosciences
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024, https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Short summary
Simulations of subducting tectonic plates often use material properties extrapolated from the behavior of small rock samples in a laboratory to conditions found in the Earth. We explore several typical approaches to simulating these extrapolated material properties and show that they produce very rigid subducting plates with unrealistic dynamics. Our findings imply that subducting plates deform by additional mechanisms that are less commonly implemented in simulations.
This article is included in the Encyclopedia of Geosciences
Willemijn Sarah Maria Theresia van Kooten, Hugo Ortner, Ernst Willingshofer, Dimitrios Sokoutis, Alfred Gruber, and Thomas Sausgruber
Solid Earth, 15, 91–120, https://doi.org/10.5194/se-15-91-2024, https://doi.org/10.5194/se-15-91-2024, 2024
Short summary
Short summary
Extensional deformation creates structures that may be reactivated during subsequent shortening. The Achental structure within the Northern Calcareous Alps fold-and-thrust belt is a natural example of a basin margin that was inverted during Alpine orogeny. We have studied the influence of such inherited inhomogeneities in the field and as an analogue model. We find that oblique shortening can create structures outlining pre-existing faults within a single deformation event.
This article is included in the Encyclopedia of Geosciences
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
This article is included in the Encyclopedia of Geosciences
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
This article is included in the Encyclopedia of Geosciences
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
This article is included in the Encyclopedia of Geosciences
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
This article is included in the Encyclopedia of Geosciences
Riccardo Reitano, Romano Clementucci, Ethan M. Conrad, Fabio Corbi, Riccardo Lanari, Claudio Faccenna, and Chiara Bazzucchi
Earth Surf. Dynam., 11, 731–740, https://doi.org/10.5194/esurf-11-731-2023, https://doi.org/10.5194/esurf-11-731-2023, 2023
Short summary
Short summary
Tectonics and surface processes work together in shaping orogens through their evolution. Laboratory models are used to overcome some limitations of direct observations since they allow for continuous and detailed analysis of analog orogens. We use a rectangular box filled with an analog material made of granular materials to study how erosional laws apply and how erosion affects the analog landscape as a function of the applied boundary conditions (regional slope and rainfall rate).
This article is included in the Encyclopedia of Geosciences
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
This article is included in the Encyclopedia of Geosciences
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
This article is included in the Encyclopedia of Geosciences
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
This article is included in the Encyclopedia of Geosciences
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
This article is included in the Encyclopedia of Geosciences
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
This article is included in the Encyclopedia of Geosciences
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
This article is included in the Encyclopedia of Geosciences
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
This article is included in the Encyclopedia of Geosciences
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
This article is included in the Encyclopedia of Geosciences
Hazel Gibson, Sam Illingworth, and Susanne Buiter
Geosci. Commun., 4, 437–451, https://doi.org/10.5194/gc-4-437-2021, https://doi.org/10.5194/gc-4-437-2021, 2021
Short summary
Short summary
In the spring of 2020, in response to the escalating global COVID-19 Coronavirus pandemic, the European Geosciences Union (EGU) moved its annual General Assembly online in a matter of weeks. This paper explores the feedback provided by participants who attended this experimental conference and identifies four key themes that emerged from analysis of the survey (connection, engagement, environment, and accessibility). The responses raise important questions about the format of future conferences.
This article is included in the Encyclopedia of Geosciences
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
This article is included in the Encyclopedia of Geosciences
Øystein T. Haug, Matthias Rosenau, Michael Rudolf, Karen Leever, and Onno Oncken
Earth Surf. Dynam., 9, 665–672, https://doi.org/10.5194/esurf-9-665-2021, https://doi.org/10.5194/esurf-9-665-2021, 2021
Short summary
Short summary
The runout of rock avalanches scales with their volume but also shows a considerable variation for avalanches with similar volumes. Here we show that besides size-dependent weakening mechanisms, fragmentation can account for the observed variability in runout. We use laboratory-scale experimental avalanches to simulate and analyse the role of fragmentation. We find that fragmentation consumes energy but also increases avalanche mobility. It does so systematically and predictably.
This article is included in the Encyclopedia of Geosciences
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, https://doi.org/10.5194/esurf-8-973-2020, 2020
Short summary
Short summary
Looking into processes that occur on different timescales that span over thousands or millions of years is difficult to achieve. This is the case when we try to understand the interaction between tectonics and surface processes. Analog modeling is an investigating technique that can overcome this limitation. We study the erosional response of an analog landscape by varying the concentration of components of analog materials that strongly affect the evolution of experimental landscapes.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abdelmalak, M. M., Dubois, C., Mourgues, R., Galland, O., Legland, J.-B.,
and Gruber, C.: Description of new dry granular materials of variable
cohesion and friction coefficient: Implications for laboratory modeling of
the brittle crust, Tectonophysics 684, 39–51,
https://doi.org/10.1016/j.tecto.2016.03.003, 2016.
Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N.,
and Lohrmann, J.: Shear localisation and strain distribution during tectonic
faulting – new insights from granular-flow experiments and high-resolution
optical image correlation techniques, J. Struct. Geol., 27, 283–301,
https://doi.org/10.1016/j.jsg.2004.08.008, 2005.
Adam, J., Klinkmüller, M., Schreurs, G., and Wieneke, B.: Quantitative
3D strain analysis in analogue experiments simulating tectonic deformation:
Integration of X-ray computed tomography and digital volume correlation
techniques, J. Struct. Geol., 55, 127–149,
https://doi.org/10.1016/j.jsg.2013.07.011, 2013.
Agostini, A., Corti, G., Zeoli, A., and Mulugeta, G.: Evolution, pattern,
and partitioning of deformation during oblique continental rifting:
Inferences from lithospheric-scale centrifuge models, Geochem. Geophy.
Geosy., 10, Q11015, https://doi.org/10.1029/2009GC002676, 2009.
Allemand, P. and Brun, J.-P.: Width of continental rifts and rheological
layering of the lithosphere, Tectonophysics, 188, 63–69,
https://doi.org/10.1016/0040-1951(91)90314-I, 1991.
Allemand, P., Brun, J.-P., Davy P., and Van den Driessche, J.: Symétrie
et asymétrie des rifts et mécanismes d'amincissement de la
lithospère, Bull. Soc. géol. France, 8, 445–451,
https://doi.org/10.2113/gssgfbull.V.3.445, 1989.
Almqvist, B. S. G. and Koyi, H.: Bulk strain in orogenic wedges based on
insights from magnetic fabrics in sandbox models, Geology, 46, 483–486,
https://doi.org/10.1130/G39998.1, 2018.
Amilibia, A., McClay, K. R., Sàbat, F, Muñoz, J. A., and Roca, E.:
Analogue modelling of inverted oblique rift systems, Geol. Acta, 3, 251–271,
https://revistes.ub.edu/index.php/GEOACTA/article/view/105.000001395/4178 (last access: 22 October 2022), 2005.
Angrand, P., Mouthereau, F., Masini, E., and Asti, R.: A reconstruction of
Iberia accounting for Western Tethys–North Atlantic kinematics since the
late-Permian–Triassic, Solid Earth, 11, 1313–1332,
https://doi.org/10.5194/se-11-1313-2020, 2020.
ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A.,
Ergintav, S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab,
B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., and Kogan,
L.: Geodetic constraints on present-day motion of the Arabian Plate:
Implications for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011,
https://doi.org/10.1029/2009TC002482, 2010.
Arch, J., Maltman, A. J., and Knipe, R. J.: Shear zone geometries in
experimentally deformed clays: the influence of water content, strain rate
and primary fabric, J. Struct. Geol., 10, 91–99,
https://doi.org/10.1016/0191-8141(88)90131-9, 1988.
Arthur, J. R. F., Dunstan, T., Al-Ani, Q. A. J., and Assadi, A.: Plastic
deformation and failure of granular media, Geìotechnique, 27, 53–74,
https://doi.org/10.1680/geot.1977.27.1.53, 1977.
Badley, M. E., Price, J. D., and Backshall, L. C.: Inversion, reactivated
faults and related structures: seismic examples from the southern North Sea,
Geol. Soc. Spec. Publ., 44, 201–219,
https://doi.org/10.1144/GSL.SP.1989.044.01.12, 1989.
Bahroudi, A., Koyi, H., and Talbot, C. J.: Effect of ductile and frictional
décollements on style of extension, J. Struct. Geol., 25, 1401–1423,
https://doi.org/10.1016/S0191-8141(02)00201-8, 2003.
Barrientos, B., Cerca, M., Carcía-Márquez, J., and
Hernández-Bernal, C.: Three-dimensional displacement fields measured in
a deforming granular-media surface by combined fringe projection and speckle
photography, J. Opt. A-Pure. Appl. Opt., 10, 104027,
https://doi.org/10.1088/1464-4258/10/10/104027, 2008.
Békési, E., Struijk, M., Bonté, D., Veldkamp, H., Limberger, J.,
Fokker, P. A., Vrijlandt, M., and Van Wees, J.-D.: An updated geothermal
model of the Dutch subsurface based on inversion of temperature data,
Geothermics, 88, 101880,
https://doi.org/10.1016/j.geothermics.2020.101880, 2020.
Bellahsen, N. and Daniel, J.-M.: Fault reactivation control on normal fault
growth: An experimental study, J. Struct. Geol., 27, 769–780,
https://doi.prg/10.1016/j.jsg.2004.12.003, 2005.
Bellahsen, N., Daniel, J., Bollinger, L., and Burov, E. B. E.: Influence of
viscous layers on the growth of normal faults: insights from experimental
and numerical models, J. Struct. Geol., 25, 1471–1485,
https://doi.org/10.1016/s0191-8141(02)00185-2, 2003.
Benes, V. and Scott, S. D.: Oblique rifting in the Havre Trough and its
propagation into the continental margin of New Zealand: Comparison with
analogue experiments, Mar. Geophys. Res., 18, 189–201,
https://doi.org/10.1007/BF00286077, 1996.
Beniest, A., Willingshofer, E., Sokoutis, D., and Sassi, W.: Extending
continental lithosphere with lateral strength variations: effects on
deformation localization and margin geometries, Front. Earth Sci., 6, 148,
https://doi.org/10.3389/feart.2018.00148, 2018.
Bonini, M.: Chronology of deformation and analogue modelling of the
Plio-Pleistocene “Tiber Basin” implications for the evolution of the
Northern Apennines (Italy), Tectonophysics, 285, 147–165,
https://doi.org/10.1016/S0040-1951(97)00189-3, 1998.
Bonini, M., Souriot, T., Boccaletti, M., and Brun, J.-P.: Successive
orthogonal and oblique extension episodes in a rift zone: Laboratory
experiments with application to the Ethiopian Rift, Tectonics, 16, 347–362,
https://doi.org/10.1029/96TC03935, 1997.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522/523, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Borderie, S., Graveleau, F., Witt, C., and Vendeville, B. C.: Impact of an
interbedded viscous décollement on the structural and kinematic coupling
in fold-and-thrust belts: Insights from analogue modeling, Tectonophysics,
722, 118–137, https://doi.org/10.1016/j.tecto.2017.10.019, 2018.
Borderie, S., Vendeville, B. C., Graveleau, F., Witt, C., Dubois, P., Baby,
P., and Calderon, Y.: Analogue modeling of large-transport thrust faults in
evaporites-floored basins: Example of the Chazuta Thrust in the Huallaga
Basin, Peru, J. Struct. Geol., 123, 1–17,
https://doi.org/10.1016/j.jsg.2019.03.002, 2019.
Bosworth, W. and Tari, G.: Hydrocarbon accumulation in basins with multiple
phases of extension and inversion: Examples from the Western Desert (Egypt)
and the western Black Sea, Solid Earth, 12, 59–77,
https://doi.org/10.5194/se-12-59-2021, 2021.
Boutelier, D. and Oncken, O.: 3-D thermo-mechanical laboratory modeling of
plate-tectonics: Modeling scheme, technique and first experiments, Solid
Earth, 2, 35–51, https://doi.org/10.5194/se-2-35-2011, 2011.
Boutelier, D., Oncken, O., and Cruden, S.: Fore-arc deformation at the
transition between collision and subduction: Insights from 3-D
thermomechanical laboratory experiments, Tectonics, 31, TC2015,
https://doi.org/10.1029/2011TC003060, 2012.
Boutelier, D., Schrank, C., and Regenauer-Lieb, K.: 2-D finite displacements
and finite strain from PIV analysis of plane-strain tectonic analogue
models, Solid Earth, 10, 1123–1139,
https://doi.org/10.5194/se-10-1123-2019, 2019.
Boutoux, A., Biraud, A., Facenna, C., Ballato, P., Rossetti, F., and Blanc,
F.: Slab folding and surface deformation of the Iran mobile belt, Tectonics,
40, e2020TC006300, https://doi.org/10.1029/2020TC006300, 2021.
Broerse, T., Krstekanić, N., Kasbergen, C., and Willingshofer, E.:
Mapping and classifying large deformation from digital imagery: application
to analogue models of lithosphere deformation, Geophys. J. Int., 226,
984–1017, https://doi.org/10.1093/gji/ggab120, 2021.
Brun, J.-P.: Narrow rifts versus wide rifts: inferences for the mechanics of
rifting from laboratory experiments, Philos. T. R. Soc. Lond. A, 357,
695–712, https://doi.org/10.1098/rsta.1999.0349, 1999.
Brun, J.-P.: Deformation of the continental lithosphere: Insights from
brittle-ductile models, Geol. Soc. Spec. Publ., 200, 355–370,
https://doi.org/10.1144/GSL.SP.2001.200.01.20, 2002.
Brun, J.-P. and Beslier, M. O.: Mantle exhumation at passive margins, Earth
Planet. Sci. Lett., 142, 161–173.
https://doi.org/10.1016/0012-821x(96)00080-5, 1996.
Brun, J.-P. and Nalpas, T.: Graben inversion in nature and experiments,
Tectonics, 15, 677–687, https://doi.org/10.1029/95TC03853, 1996.
Brun, J.-P. and Tron, V.: Development of the North Viking Graben: inferences
from laboratory modelling, Sediment. Geol., 86, 31–51,
https://doi.org/10.1016/0037-0738(93)90132-O, 1993.
Brune, S., Williams, S. E., Butterworth, N. P., and Müller, R. D.:
Abrupt plate accelerations shape rifted continental margins, Nature, 536,
201–204, https://doi.org/10.1038/nature18319, 2016.
Brune, S., Corti, G., and Ranalli, G.: Controls of inherited lithospheric
heterogeneity on rift linkage: Numerical and analogue models of interaction
between the Kenyan and Ethiopian rifts across the Turkana depression,
Tectonics, 36, 1767–1786,
https://doi.org/10.1002/2017TC004739, 2017.
Brune, S., Williams, S. E., and Müller, R. D.: Oblique rifting: the
rule, not the exception, Solid Earth, 9, 1187–1206,
https://doi.org/10.5194/se-9-1187-2018, 2018.
Buchanan, P. G. and McClay, K. R.: Sandbox experiments of inverted listric
and planar fault systems, Tectonophysics, 188, 97–115,
https://doi.org/10.1016/0040-1951(91)90317-L, 1991.
Buchanan, J. G. and Buchanan, P. G. (Eds.): Basin Inversion, Geol. Soc. Spec.
Publ., 88, Geological Society, London, UK, 596 pp.,
https://doi.org/10.1144/GSL.SP.1995.088.01.30, 1995.
Buchanan, P. G. and McClay, K. R.: Experiments on basin inversion above
reactivated domino faults, Mar. Pet. Geol., 9, 486–500,
https://doi.org/10.1016/0264-8172(92)90061-I, 1992.
Buck, W. R.: Modes of continental lithospheric extension, J. Geophys. Res.,
96, 20161, https://doi.org/10.1029/91JB01485, 1991.
Buiter, S. J. H.: A review of brittle compressional wedge models,
Tectonophysics, 530/531, 1–17,
https://doi.org/10.1016/j.tecto.2011.12.018, 2012.
Buiter, S. J. H. and Pfiffner, O. A.: Numerical models of the inversion of
half-graben basins, Tectonics, 22, 1057,
https://doi.org/10.1029/2002TC001417, 2003.
Buiter, S. J. H., Babeyko, A. Y., Ellis, S., Gerya, T. V., Kaus, B. J. P.,
Kellner, A., Schreurs, G., and Yamada, Y.: The numerical sandbox: Comparison
of model results for a shortening and an extension experiment, Geol. Soc.
Spec. Publ., 253, 29–64,
https://doi.org/10.1144/GSL.SP.2006.253.01.02, 2006.
Buiter, S. J. H., Huismans, R. S., and Beaumont, C.: Dissipation analysis as
a guide to mode selection during crustal extension and implications for the
styles of sedimentary basins, J. Geophys. Res., 113, B06406,
https://doi.org/10.1029/2007JB005272, 2008.
Buiter, S. J. H., Pfiffner, O. A., and Beaumont, C.: Inversion of
extensional sedimentary basins: A numerical evaluation of the localisation
of shortening, Earth Planet. Sc. Lett., 288, 492–504,
https://doi.org/10.1016/j.epsl.2009.10.011, 2009.
Buiter, S. J. H., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry,
W., le Pourhiet, L., Mishin, Y., Egholm, D. L., Cooke, M., Maillot, B.,
Thiuelot, C., Crook, T., May, D., Souloumiac, P., and Beaumont, C.:
Benchmarking numerical models of brittle thrust wedges, J. Struct. Geol.,
92, 140–177, https://doi.org/10.1016/j.jsg.2016.03.003, 2016.
Burliga, S., Koyi, H. A., and Chemia, Z.: Analogue and numerical modelling
of salt supply to a diapiric structure rising above an active basement
fault, Geol. Soc. Spec. Publ., 363, 395–408,
https://doi.org/10.1144/SP363.18, 2012a.
Burliga, S., Koyi, H. A., and Krzywiec, P.: Modelling cover deformation and
decoupling during inversion, using the Mid-Polish Trough as a case study, J.
Struct. Geol., 42, 62–73,
https://doi.org/10.1016/j.jsg.2012.06.013, 2012b.
Burov, E. B. E. and Cloetingh, S.: Post-Rift Evolution of Extensional
Basins, Earth Planet. Sc. Lett., 150, 7–26,
https://doi.org/10.1016/S0012-821X(97)00069-1, 1997.
Byerlee, J.: Friction of Rocks, Pure Appl. Geophys., 116, 615–626,
https://doi.org/10.1007/BF00876528, 1978.
Cadell, H. M.: Experimental researches in mountain building, T.
R. Soc. Edinburgh, 35, 337–357,
https://doi.org/10.1017/S0080456800017658, 1889.
Caër, T., Maillot, B., Souloumiac, P., Leturmy, P., Frizon de Lamotte,
D., and Nussbaum, C.: Mechanical validation of balanced cross-sections: The
case of the Mont Terri anticline at the Jura front (NW Switzerland), J.
Struct. Geol., 75, 32–48,
https://doi.org/10.1016/j.jsg.2015.03.009, 2015.
Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., and Cloetingh,
S.: Asymmetric vs. symmetric deep lithospheric architecture of intra-plate
continental orogens, Earth Planet. Sc. Lett., 424, 38–50,
https://doi.org/10.1016/j.epsl.2015.05.022, 2015.
Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F.,
and Cloetingh, S.: Oblique contractional reactivation of inherited
heterogeneities: Cause for arcuate orogens, Tectonics, 36, 542–558,
https://doi.org/10.1002/2016TC004424, 2017.
Cerca, M., Ferrari, L., Corti, G., Bonini, M., and Manetti, P.: Analogue
model of inversion tectonics explaining the structural diversity of Late
Cretaceous shortening in southwestern Mexico, Lithosphere, 2, 172–187,
https://doi.org/10.1130/L48.1, 2010.
Chauvin, B. P., Lovely, P. J., Stockmeyer, J. M., Plesch, A., Caumon, G.,
and Shaw, J. H.: Validating novel boundary conditions for three-dimensional
mechanics-based restoration: An extensional sandbox model example, AAPG
Bull., 102, 245–256, https://doi.org/10.1306/0504171620817154, 2018.
Chemenda, A., DeìvercheÌre, J., and Calais, E.: Three-dimensional
laboratory modelling of rifting: Application to the Baikal Rift, Russia,
Tectonophysics, 356, 253–273,
https://doi.org/10.1016/S0040-1951(02)00389-X, 2002.
Cobbold, P. R., Durand, S., and Mourgues, R.: Sandbox modelling of thrust wedges
with fluid-assisted detachments, Tectonophysics, 334, 245–258,
https://doi.org/10.1016/S0040-1951(01)00070-1, 2001.
Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., and Bale, P.:
Computerized X-ray tomography analysis of sandbox models: examples of
thin-skinned thrust systems, Geology, 19, 1063–1067,
https://doi.org/10.1130/0091-7613(1991)019<1063:CXRTAO>2.3.CO;2, 1991.
Cooper, M. A. and Williams, G. D. (Eds.): Inversion tectonics, Geol. Soc.
Spec. Publ., 44, Geological Society, London, UK, 375 pp.,
https://doi.org/10.1144/GSL.SP.1989.044.01.25, 1989.
Cooper, M. and Warren, M. J.: The geometric characteristics, genesis and
petroleum significance of inversion structures, Geol. Soc. Spec. Publ., 335,
827–846, https://doi.org/10.1144/SP335.33, 2010.
Cooper, M. and Warren, M. J.: Inverted fault systems and inversion tectonic
settings, in: Regional Geology and Tectonics, edited by: Scarselli, N.,
Adam, J., Chiarella, D., Roberts, D. G., and Bally, A. W., Elsevier,
169–204, https://doi.org/10.1016/B978-0-444-64134-2.00009-2, 2020.
Cooper, M. A., Williams, G. D., De Graciansky, P. C., Murphy, R. W.,
Needham, T., De Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., and
Ziegler, P. A.: Inversion tectonics – a discussion, Geol. Soc. Spec. Publ.,
44, 335–347, https://doi.org/10.1144/GSL.SP.1989.044.01.18, 1989.
Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M.,
and Lallemand, S.: Machine learning can predict the timing and size of
analog earthquakes, Geophys. Res. Lett., 46, 1303–1311,
https://doi.org/10.1029/2018GL081251, 2019.
Corti, G.: Evolution and characteristics of continental rifting: Analog modeling-inspired view and
comparison with examples from the East African Rift System, Tectonophysics, 522/523, 1–33,
https://doi.org/10.1016/j.tecto.2011.06.010, 2012.
Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., and
Sokoutis, D.: Analogue modelling of continental extension: A review focused
on the relations between the patterns of deformation and the presence of
magma, Earth-Sci. Rev., 63, 169–247,
https://doi.org/10.1016/S0012-8252(03)00035-7, 2003.
Corti, G., Bonini, M., Sokoutis, D., Innocenti, F., Manetti, P., Cloetingh,
S., and Mulugeta, G.: Continental rift architecture and patterns of magma
migration: A dynamic analysis based on centrifuge models, Tectonics, 23,
TC2012, https://doi.org/10.1029/2003TC001561, 2004.
Corti, G., van Wijk, J. W., Cloetingh, S., and Morley, C. K.: Tectonic
inheritance and continental rift architecture: Numerical and analogue models
of the East African Rift system, Tectonics, 26, 1–13,
https://doi.org/10.1029/2006TC002086, 2007.
Cotton, J. T. and Koyi, H. A.: Modeling of thrust fronts above ductile and
frictional detachments: Application to structures in the Salt Range and
Potwar Plateau, Pakistan, GSA Bull., 112, 351–363,
https://doi.org/10.1130/0016-7606(2000)112<351:MOTFAD>2.0.CO;2, 2000.
Coulomb, C. A.: L'application des règles de maximis et minimis à
quelques problèmes de statique, relatifs à l'architecture,
Mémoires de Mathématique et de Physique, Academie Royale des
Sciences, 7, 343–382, 1773.
Crook, A. J. L, Willson, S. M., Yu, J. G., and Owen, D. R. J: Predictive
modelling of structure evolution in sandbox experiments, J. Struct. Geol.,
28, 729–744, https://doi.org/10.1016/j.jsg.2006.02.002, 2006.
Cruz, L., Malinski, A., Tae, W. A., and Hilley, G.: Erosional control of the
kinematics and geometry of fold-and-thrust belts imaged in a physical and
numerical sandbox, J. Geophys. Res., 115, B09404,
https://doi.org/10.1029/2010JB007472, 2010.
Dai, L., Li, S., Lou, D., Liu, X., Suo, Y., and Yu, S.: Numerical modeling
of Late Miocene tectonic inversion in the Xihu Sag, East China Sea Shelf
Basin, China, J. Asian Earth Sci., 86, 25–37,
https://doi.org/10.1016/j.jseaes.2013.09.033, 2014.
Daniels, K. E., Kollmer, J. E., and Puckett, J. G.: Photoelastic force
measurements in granular materials, Rev. Sci. Instrum., 88, 051808,
https://doi.org/10.1063/1.4983049, 2017.
Deckers, J., Rombaut, B., Van Noten, K., and Vanneste, K.: Influence of
inherited structural domains and their particular strain distributions on
the Roer Valley graben evolution?from inversion to extension, Solid Earth,
12, 345–361, https://doi.org/10.5194/se-12-345-2021, 2021.
De Jager, J.: Inverted basins in the Netherlands, similarities and
differences, Neth. J. Geosci., 82, 355–366,
https://doi.org/10.1017/S0016774600020175, 2003.
De Jager, J. and Geluk, M. C.: Petroleum Geology, in: Geology of the
Netherlands, edited by: Wong, T. E., Batjes, D. A. J., and De Jager, J., Royal
Netherlands Academy of Arts and Sciences, 241–264, ISBN: 9789069844817,
https://www.researchgate.net/publication/312604683 (last access: 22 October 2022), 2007.
Del Ventisette, C., Montanari, D., Bonini, M., and Sani F.: Positive fault
inversion triggering “intrusive diapirism”: an analogue modelling
perspective, Terra Nova, 17, 478–485,
https://doi.org/10.1111/j.1365-3121.2005.00637.x, 2005.
Del Ventisette, C., Montanari, D., Sani, F., and Bonini, M.: Basin inversion
and fault reactivation in laboratory experiments, J. Struct. Geol., 28,
2067–2083, https://doi.org/10.1016/j.jsg.2006.07.012, 2006.
Deng, H., Kyi, H. A., and Zhang, J.: Modelling oblique inversion of
pre-existing grabens, Geol. Soc. Spec. Publ., 487, 263–290,
https://doi.org/10.1144/SP487.5, 2019.
Di Domenica, A., Bonini, L., Calamita, G., Toscani, G., Galuppo, C., and
Seno, S.: Analogue modeling of positive inversion tectonics along
differently oriented pre-thrusting normal faults: An application to the
Central-Northern Apennines of Italy, GSA Bull., 126, 943–955,
https://doi.org/10.1130/B31001.1, 2014.
Di Giuseppe, E., Funiciello, F., Corbi, F., Ranalli, G., and Mojoli, G.:
Gelatins as rock analogs: A systematic study of their rheological and
physical properties, Tectonophysics, 473, 391–403,
https://doi.org/10.1016/j.tecto.2009.03.012, 2009.
Di Giuseppe, E.: Analogue Materials in Experimental Tectonics, Reference
Module in Earth Systems and Environmental Sciences, Elsevier, 1–32,
https://doi.org/10.1016/B978-0-12-409548-9.10909-1, 2018.
Dilek, Y. and Furnes, H.: Ophiolite genesis and global tectonics:
Geochemical and tectonic fingerprinting of ancient oceanic lithosphere, GSA
Bull., 123, 387–411, https://doi.org/10.1130/B30446.1, 2011.
Dooley, T., McClay, K. R., and Pascoe, R.: 3D analogue models of variable
displacement extensional faults: applications to the Revfallet Fault system,
offshore mid-Norway, Geol. Soc. Spec. Publ., 212, 151–167,
https://doi.org/10.1144/GSL.SP.2003.212.01.10, 2003.
Dooley, T. P. and Hudec, M. R.: Extension and inversion of salt-bearing rift
systems, Solid Earth, 11, 1187–1204,
https://doi.org/10.5194/se-11-1187-2020, 2020.
Doornenbal, H. and Stevenson, A. (Eds.): Petroleum Geological Atlas of the
Southern Permian Basin Area, EAGE Publications b.v., Houten,
https://www.nlog.nl/southern-permian-basin-atlas (last access: 22 October 2022), 2010.
Doornenbal, J. C., Kombrink, H., Bouroullec, R., Dalman, R. A. F., De Bruin,
G., Geel, C. R., Houben, A. J. P., Jaarsma, B., Juez-Larré, J.,
Kortekaas, M., Mijnlieff, H. F., Nelskamp, S., Pharaoh, T. C., Ten Veen, J.
H., Ter Borgh, M., Van Ojik, K., Verreussel, R. M. C. H., Verweij, J. M.,
and Vis, G.-J.: New insights on subsurface energy resources in the Southern
North Sea Basin area, Geol. Soc. Spec. Publ., 494, 233–268,
https://doi.org/10.1144/SP494-2018-178, 2019.
Dubois, A., Odonne, F., Massonnat, G., Lebourg, T., and Fabre, R.: Analogue
modelling of fault reactivation: tectonic inversion and oblique
remobilisation of grabens, J. Struct. Geol., 24, 1741–1752,
https://doi.org/10.1016/S0191-8141(01)00129-8, 2002.
Dumagin, E., Truche, L., and Donzeì, F. V.: Natural Hydrogen
Exploration Guide, Geonum Ed.: ISRN GEONUM-NST–2019-01–ENG, 16 pp.,
https://www.researchgate.net/publication/330728855 (last access: 22 October 2022), 2019.
Edwards, B., Kraft, T., Cauzzi, C., Kästli, P., and Wiener, S.: Seismic
monitoring and analysis of deep geothermal projects in St Gallen and Basel,
Switzerland, Geophys. J. Int., 201, 1022–1039,
https://doi.org/10.1093/gji/ggv059, 2015.
Eisenstadt, G. and Sims, D.: Evaluating sand and clay models: do rheological
differences matter?, J. Struct. Geol., 27, 1399–1412,
https://doi.org/10.1016/j.jsg.2005.04.010, 2005.
Eisenstadt, G. and Withjack, M. O.: Estimating inversion: results from clay
models, Geol. Soc. Lond. Spec. Publ., 88, 119–136,
https://doi.org/10.1144/GSL.SP.1995.088.01.08, 1995.
Eisermann, J. O., Göllner, P. L., and Riller, U.: Orogen-scale
transpression accounts for GPS velocities and kinematic partitioning in the
Southern Andes, Commun. Earth Environ., 2, 167,
https://doi.org/10.1038/s43247-021-00241-4, 2021.
Ellis, S., Schreurs, G., and Panien, M.: Comparisons between analogue and
numerical models of thrust wedge development, J. Struct. Geol., 26,
1659–1675, https://doi.org/10.1016/j.jsg.2004.02.012, 2004.
Erratt, D., Thomas, G. M., and Wall, G. R. T.: The evolution of the Central
North Sea Rift, Geol. Soc. Petrol. Conf. Ser., 5, 63–82,
https://doi.org/10.1144/0050063, 1999.
Evans, D., Graham, C., Armour, A., and Bathurst, P. (Eds.): The Millennium
Atlas: Petroleum geology of the central and northern North Sea, Geological
Society of London, UK, https://doi.org/10.1017/S0016756803218124, 2003.
Faul, U. U., Garapicì, G., and Lugovicì, B.: Subcontinental rift
initiation and ocean-continent transitional setting of the Dinarides and
Vardar zone: Evidence from the Krivaja–Konjuh Massif, Bosnia and
Herzegovina, Lithos, 202/203, 283–299,
https://doi.org/10.1016/j.lithos.2014.05.026, 2014.
Fedorik, J., Zwaan, F., Schreurs, G., Toscani, G., Bonini, L., and Seno, S.:
The interaction between strike-slip dominated fault zones and thrust belt
structures: Insights from 4D analogue models, J. Struct. Geol., 122, 89–105,
https://doi.org/10.1016/j.jsg.2019.02.010, 2019.
Ferrer, O., McClay, K., and Sellier, N. C.: Influence of fault geometries
and mechanical anisotropies on the growth and inversion of hanging-wall
synclinal basins: insights from sandbox models and natural examples, Geol.
Soc. Spec. Publ., 439, 487–509, https://doi.org/10.1144/SP439.8, 2016.
Ferrer, O., Carola, E., and McClay, K.: Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1183, 2022a.
Ferrer, O., Santolaria, P., Muñoz, J. A., Granado, P., Roca, E.,
Gratacós, O., and Snidero, M.: Analogue modeling as a tool to assist
seismic structural interpretation in the Andean fold-and-thrust belt, in:
Andean Structural Styles, edited by: Zomora, G. and Mora, A., Elsevier,
43–61, https://doi.org/10.1016/B978-0-323-85175-6.00003-1, 2022b.
Frasca, G., Gueydan, F., Brun, J.-P., and Monieì, P.: Deformation
mechanisms in a continental rift up to mantle exhumation. Field evidence
from the western Betics, Spain, Mar. Petrol. Geol., 76, 310–328,
https://doi.org/10.1016/j.marpetgeo.2016.04.020, 2016.
Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., and Faleide, J. I.:
Fault linkage across weak layers during extension: an experimental approach
with reference to the Hoop Fault Complex of the SW Barents Sea, Petrol.
Geosci., 22, 123–135, https://doi.org/10.1144/petgeo2015-029, 2016.
Gartrell, A., Hudson, C., and Evans, B.: The influence of basement faults
during extension and oblique inversion of the Makassar Straits rift system:
Insights from analog models, AAPG Bull., 89, 495–506,
https://doi.org/10.1306/12010404018, 2005.
Gaucher, E. C.: New Perspectives in the Industrial Exploration for Native
Hydrogen, Elements, 16, 8–9,
https://doi.org/10.2138/gselements.16.1.8, 2020.
Gibson, G. M. and Edwards, S.: Basin inversion and structural architecture
as constraints on fluid flow and Pb–Zn mineralization in the
Paleo–Mesoproterozoic sedimentary sequences of northern Australia, Solid
Earth, 11, 1205–1226, https://doi.org/10.5194/se-11-1205-2020, 2020.
Gibson, G. M., Hutton, L. J., and Holzschuh, J.: Basin inversion and
supercontinent assembly as drivers of sediment-hosted Pb–Zn mineralization
in the Mount Isa region, northern Australia, J. Geol. Soc., 174, 773–786,
https://doi.org/10.1144/jgs2016-105, 2017.
Glennie, K. W. and Boegner, P. L. E.: Sole Pit inversion tectonics, in:
Petroleum Geology of the Continental Shelf of North-West Europe, edited by:
Illing, L. V. and Hobson, G. D., Institute of Petroleum, London, UK,
110–120, ISBN: 9780855016562, 1981.
Gomes, C. J. S., Filho, A. D., Posada, A. M. A., and Da Silva, A. C.: The
role of backstop shape during inversion tectonics physical models, Anais da
Academia Brasileira de Ciéncias, 82, 997–1012,
https://doi.org/10.1590/S0001-37652010000400021, 2010.
Gomes, C. J. S., Martins-Neto, M. A., and Ribeiro, V. A.: Positive inversion
of extensional footwalls in the southern Serra do Espinhaço, Brazil –
insights from sandbox laboratory experiments, Anais da Academia Brasileira
de Ciéncias, 78, 331–334,
https://doi.org/10.1590/S0001-37652006000200012, 2006.
Goudswaard, W. and Jenyon, M. K.: Seismic atlas of structural and
stratigraphic features, European Association of Exploration Geophysicists, 396 pp.,
1988.
Gowers, M. B., Holtar, E., and Swensson, E.: The structure of the Norwegian
Central Trough (Central Graben area), Geol. Soc. Petrol. Conf. Ser., 4,
1245–1254, https://doi.org/10.1144/0041245, 1993.
Granado, P. and Ruh, J. B.: Numerical modelling of inversion tectonics in
fold-and-thrust belts, Tectonophysics, 763, 14–29,
https://doi.org/10.1016/j.tecto.2019.04.033, 2019.
Granado, P., Ferrer, O., Muñoz, J. A., Thöny, W., and Strauss, P.:
Basin inversion in tectonic wedges: Insights from analogue modelling and the
Alpine-Carpathian fold-and-thrust belt, Tectonophysics, 703/704, 50–68,
https://doi.org/10.1016/j.tecto.2017.02.022, 2017.
Graveleau, F. and Dominguez, S.: Analogue modelling of the interaction
between tectonics, erosion and sedimentation in foreland thrust belts, C. R.
Geosci., 340, 324–333,
https://doi.org/10.1016/j.crte.2008.01.005, 2008.
Graveleau, F., Hurtrez, J., Dominguez, S., and Malavieille, J.: A new
experimental material for modeling relief dynamics and interactions between
tectonics and surface processes, Tectonophysics, 513, 68–87,
https://doi.org/10.1016/j.tecto.2011.09.029, 2011.
Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of
orogenic wedges: A review, Tectonophysics, 538–540, 1–66,
https://doi.org/10.1016/j.tecto.2012.01.027, 2012.
Graveleau, F., Strak, V., Dominguez, S., Malavieille, J., Chatton, M.,
Manighetti, I., and Petit, C.: Experimental modelling of
tectonics-erosion-sedimentation interactions in compressional, extensional,
and strike-slip settings, Geomorphology, 244, 146–168,
https://doi.org/10.1016/j.geomorph.2015.02.011, 2015.
Groves, D. I. and Bierlein, F. P.: Geodynamic settings of mineral deposits,
J. Geol. Soc. London, 164, 19–30,
https://doi.org/10.1144/0016-76492006-065, 2007.
Guillaume, B., Gianni, G. M., Kermarrec, J.-J., and Bock, K.: Control of
crustal strength, tectonic inheritance, and stretching/shortening rates on
crustal deformation and basin reactivation: insights from laboratory models,
Solid Earth, 13, 1393–1414,
https://doi.org/10.5194/se-13-1393-2022, 2022.
Hagemann, S. G., Lisitsin, V. A., and Huston, D. L.: Mineral system
analysis: Quo vadis, Ore Geol. Rev., 76, 504–522,
https://doi.org/10.1016/j.oregeorev.2015.12.012, 2016.
Hall, J. S.: On the vertical position and convolutions of certain strata
and their relation with granite, T. R. Soc.
Edinburgh, 7, 79–108,
https://doi.org/10.1017/S0080456800019268, 1815.
Hansen, D. L. and Nielsen S. B.: Why rifts invert in compression,
Tectonophysics, 373, 5–24,
https://doi.org/10.1016/S0040-1951(03)00280-4, 2003.
Hansen, T. H., Clausen, O. R., and Andersen, K. J.: Thick- and thin-skinned
basin inversion in the Danish Central Graben, North Sea – The role of deep
evaporites and basement kinematics, Solid Earth, 12, 1719–1747,
https://doi.org/10.5194/se-12-1719-2021, 2021.
Herbert, J. W., Cooke, M. L., Souloumiac, P., Madden, E. H., Mary, B. C. L.,
and Maillot, B.: The work of fault growth in laboratory sandbox experiments,
Earth Planet. Sc. Lett., 432, 95–102,
https://doi.org/10.1016/j.epsl.2015.09.046, 2015.
Henza, A. A., Withjack, M. O., and Schlische, R. W.: Normal-fault
development during two phases of non-coaxial extension: An experimental
study, J. Struct. Geol., 32, 1656–1667,
https://doi.org/10.1016/j.jsg.2009.07.007, 2010.
Henza, A. A., Withjack, M. O., and Schlische, R. W.: How do the properties
of a pre-existing normal-fault population influence fault development during
a subsequent phase of extension?, J. Struct. Geol., 33, 1312–1324,
https://doi.org/10.1016/j.jsg.2011.06.010, 2011.
Hubbert, M. K.: Theory of scaled models as applied to the study of
geological structures, Geol. Soc. Am. Bull., 48, 1459–1520,
https://doi.org/10.1130/GSAB-48-1459, 1937.
Hubbert, M. K.: Mechanical basis for certain familiar geologic structures,
GSA Bull., 62, 355–372,
https://doi.org/10.1130/0016-7606(1951)62[355:MBFCFG]2.0.CO;2, 1951.
Hunfeld, L. B., Chen, J., Hol., S., Niemeijer, A. R., and Spiers, C. J.: Healing
Behavior of Simulated Fault Gouges From
the Groningen Gas Field and Implications for Induced Fault Reactivation, J.
Geophys. Res.-Sol. Ea., 123, e2019JB018790,
https://doi.org/10.1029/2019JB018790, 2020.
Iaffa, D. N., Sàbat, F., Bello, D., Ferrer, O., Mon, R., and Gutierrez,
A. A.: Tectonic inversion in a segmented foreland basin from extensional to
piggy back settings: The Tucumán Basin in NW Argentina, J. S. Am. Earth
Sci., 31, 457–474,
https://doi.org/10.1016/j.jsames.2011.02.009, 2011.
Jagger, L. J. and McClay, K.: Analogue modelling of inverted domino-style
basement fault systems, Basin Res., 30, 363–381,
https://doi.org/10.1111/bre.12224, 2016.
Jara, P., Likerman, J., Winocur, D., Ghiglione, M. C., Cristallini, E. O.,
Pinto, L., and Charrier, R.: Role of basin width variation in tectonic
inversion: insight from analogue modelling and implications for the tectonic
inversion of the Abanico Basin, 32∘–34∘ S, Central
Andes, Geol. Soc. Spec. Publ., 399, 83–107,
https://doi.org/10.1144/SP399.7, 2015.
Jara, P., Likerman, J., Charrier R., Herrera, S., Pinto L., Villarroel, M.,
and Winocur, D.: Closure type effects on the structural pattern of an
inverted extensional basin of variable width: Results from analogue models,
J. S. Am. Earth Sci., 87, 157–173,
https://doi.org/10.1016/j.jsames.2017.10.018, 2018.
Katz, R. F., Ragnarsson, R., and Bodenschatz, E.: Tectonic microplates in a
wax model of sea-floor spreading, New J. Phys., 7, 37,
https://doi.org/10.1088/1367-2630/7/1/037, 2005.
Keep, M. and McClay, K.: Analogue modelling of multiphase rift systems,
Tectonophysics, 273, 239–270,
https://doi.org/10.1016/S0040-1951(96)00272-7, 1997.
Keller, J. V. A. and McClay, K. R.: 3D sandbox models of positive inversion,
Geol. Soc. Spec. Publ., 88, 137–146,
https://doi.org/10.1144/GSL.SP.1995.088.01.09, 1995.
Kiss, D., Duretz, T., and Schmalholz, S. M.: Tectonic inheritance controls
nappe detachment, transport and stacking in the Helvetic nappe system,
Switzerland: insights from thermomechanical simulations, Solid Earth, 11,
287–305, https://doi.org/10.5194/se-11-287-2020, 2020.
Klinkmüller, M., Schreurs, G., Rosenau, M., and Kemnitz, H.: Properties
of granular analogue model materials: A community wide survey,
Tectonophysics, 684, 23–38,
https://doi.org/10.1016/j.tecto.2016.01.017, 2016.
Konstantinovskaya, E. A., Harris, L. B., Poulin, J., and Ivanov, G. M.:
Transfer zones and fault reactivation in inverted rift basins: Insights from
physical modelling, Tectonophysics 441, 1–26,
https://doi.org/10.1016/j.tecto.2007.06.002, 2007.
Koons, P. O.: Two-sided orogen: Collision and erosion from the sandbox to
the Southern Alps, New Zealand, Geology, 18, 670–682,
https://doi.org/10.1130/0091-7613(1990)018<0679:TSOCAE>2.3.CO;2, 1990.
Koopman, A., Speksnijder, A., and Horsfield, W. T.: Sandbox model studies of
inversion tectonics, Tectonophysics, 137, 379–388,
https://doi.org/10.1016/0040-1951(87)90329-5, 1987.
Koyi, H. A.: Analogue Modelling: From a Qualitative To a Quantitative
Technique – a Historical Outline, J. Pet. Geol., 20, 223–238,
https://doi.org/10.1111/j.1747-5457.1997.tb00774.x, 1997.
Krantz, R. W.: Normal fault geometry and fault reactivation in tectonic
inversion experiments, Geol. Soc. Spec. Publ., 56, 219–229,
https://doi.org/10.1144/GSL.SP.1991.056.01.15, 1991a.
Krantz, R. W.: Measurements of friction coefficients and cohesion for
faulting and fault reactivation in laboratory models using sand and sand
mixtures, Tectonophysics, 188, 203–207,
https://doi.org/10.1016/0040-1951(91)90323-K, 1991b.
Krstekanicì, N., Willingshofer, E., Broerse, T., Matenco, L.,
Toljicì, and Stojadinovic, U.: Analogue modelling of strain
partitioning along a curved strike-slip fault system during backarc-convex
orocline formation: Implications for the Cerna-Timok fault system of the
Carpatho-Balkanides, J. Struct. Geol., 149, 104386,
https://doi.org/10.1016/j.jsg.2021.104386, 2021
Krýza, O., Zádava, P., and Lexa, O.: Advanced strain and mass
transfer analysis in crustal-scale oroclinal buckling and detachment folding
analogue models, Tectonophysics, 764, 88–109,
https://doi.org/10.1016/j.tecto.2019.05.001, 2019.
Ladd, C. R. and Reber, J. E.: The effect of a liquid phase on force
distribution during deformation in a granular system, J. Geophys. Res.-Solid
Ea., 125, e2020JB019771, https://doi.org/10.1029/2020JB019771, 2020.
Lamplugh, G. W.: Structure of the Weald and analogous tracts, Q. J. Geol.
Soc. Lond., 75, 73–95, 1919.
Lavier, L. L. and Manatschal, G.: A mechanism to thin the continental
lithosphere at magma-poor margins, Nature, 440, 324–328,
https://doi.org/10.1038/nature04608, 2006.
Lebinson, F., Turienzo, M., Sánchez, N., Cristallini, E., Arauja, V.,
and Dimieri, L.: Kinematics of a backthrust system in the Agrio fold and
thrust belt, T Argentina: Insights from structural analysis and analogue
models, J. S. Am. Earth Sci., 100, 102594,
https://doi.org/10.1016/j.jsames.2020.102594, 2020.
Lefeuvre, N., Truche, L., Donzeì, F.-V., Ducoux, M., Barreì, G.,
Fakoury, R.-A., Calassou, S., and Gaucher, E. C.: Native H2 Exploration in
the Western Pyrenean Foothills, Geochem. Geophy. Geosy., 22, e2021GC009917,
https://doi.org/10.1029/2021GC009917, 2021.
Lescoutre, R. and Manatschal, G.: Role of rift-inheritance and segmentation
for orogenic evolution: example from the Pyrenean-Cantabrian system, Bull.
Soc. Geol. Fr., 191, 18, https://doi.org/10.1051/bsgf/2020021, 2020.
Letouzey, J.: Fault reactivation, inversion and fold-thrust belt, in:
Petroleum and Tectonics in Mobile Belts, edited by Letouzey, J., Editions
Technip, Paris, France, 101–128, ISBN: 9782710805793, 1990.
Letouzey, J., Colletta, B., Vialy, R., and Chermetter, J. C.: Evolution of
salt-related structures in compressional settings, in: Salt tectonics, a
global perspective, edited by: Jackson, M. P. A., Roberts, D. G., and
Snelson, S., AAPG Memoir, 65, 41–60,
https://doi.org/10.1306/M65604C3, 1995.
Li, Z., Dong, M., Li, S., and Huang, S.: CO2 sequestration in depleted
oil and gas reservoirs – caprock characterization and storage capacity,
Energ. Convers. Manage., 47, 1372–1382,
https://doi.org/10.1016/j.enconman.2005.08.023, 2006.
Liang, P., Zhong, R., Zhao, L., and Xie, Y.: Formation of Fe-Cu-Au deposit
in basin inversion setting in NW China: A perspective from ore-fluid halogen
and noble gas geochemistry, Ore Geol. Rev., 131, 104011,
https://doi.org/10.1016/j.oregeorev.2021.104011, 2021.
Likerman, J., Burlando, J. F., Cristallini, E. O., and Ghiglione, M. C.:
Along-strike structural variations in the Southern Patagonian Andes:
Insights from physical modelling, Tectonophysics, 590, 106–120,
https://doi.org/10.1016/j.tecto.2013.01.018, 2013.
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue
material properties on the geometry, kinematics, and dynamics of convergent
sand wedges, J. Struct. Geol., 25, 1691–1711,
https://doi.org/10.1016/S0191-8141(03)00005-1, 2003.
Lowell, J. D.: Plate Tectonics and Foreland Basement Deformation, Geology,
2, 275–278, https://doi.org/10.1130/0091-7613(1974)2<275:PTAFBD>2.0.CO;2, 1974.
Lowell, J. D.: Mechanics of basin inversion from worldwide examples, Geol.
Soc. Spec. Publ., 88, 39–57,
https://doi.org/10.1144/GSL.SP.1995.088.01.04, 1995.
Luth, S., Willingshofer, E., Sokoutis, D., and Cloetingh, S.: Analogue
modelling of continental collision: Influence of plate coupling on mantle
lithosphere subduction, crustal deformation and surface topography,
Tectonophysics, 484, 87–102,
https://doi.org/10.1016/j.tecto.2009.08.043, 2010.
Madritsch, H., Naef, H., Meier, B., Franzke, H. J., and Schreurs, G.:
Architecture and Kinematics of the Constance-Frick Trough (Northern
Switzerland): Implications for the Formation of Post-Variscan Basins in the
Foreland of the Alps and Scenarios of Their Neogene Reactivation, Tectonics,
37, 2197–2220, https://doi.org/10.1029/2017TC004945, 2018.
Maestrelli, D., Bonini, M., Corti, G., Del Ventisette, C., Moratti, G., and
Montanari, D.: Exploring fault propagation and the role of inherited
structures during caldera collapse through laboratory experiments, J.
Volcan. Geoth. Res., 414, 107232,
https://doi.org/10.1016/j.jvolgeores.2021.107232, 2021.
Maestrelli, D., Montanari, D., Corti, G., Del Ventisette, C., Moratti, G.,
and Bonini, M.: Exploring the Interactions Between Rift Propagation and
Inherited Crustal Fabrics Through Experimental Modeling, Tectonics, 39,
e2020TC006211, https://doi.org/10.1029/2020TC006211, 2020.
Maillot, B.: A sedimentation device to produce uniform sand packs,
Tectonophysics, 593, 85–94,
https://doi.org/10.1016/j.tecto.2013.02.028, 2013.
Mandal, N. and Chattopadhyay, A.: Modes of reverse reactivation of
domino-type normal faults: experimental and theoretical approach, J. Struct.
Geol., 17, 1151–1163,
https://doi.org/10.1016/0191-8141(95)00015-6, 1995.
Marques, F. O. and Nogueira, C. R.: Normal fault inversion by orthogonal
compression: Sandbox experiments with weak faults, J. Struct. Geol., 30,
761–766, https://doi.org/10.1016/j.jsg.2008.02.015, 2008.
Marques, F. O., Nogueira, F. C. C., Bezerra, F. H. R., and de Castro, D. L.:
The Araripe Basin in NE Brazil: An intracontinental graben inverted to a
high-standing horst, Tectonophysics, 630, 251–264,
https://doi.org/10.1016/j.tecto.2014.05.029, 2014.
Martínez, F. and Cristallini, E.: The doubly vergent inverted
structures in the Mesozoic basins of northern Chile (28∘ S): A
comparative analysis from field data and analogue modeling, J. S. Am. Earth
Sci., 77, 327–340,
https://doi.org/10.1016/j.jsames.2017.02.002, 2017.
Martínez, F., Bonini, M., Montanari, D., and Corti. G.: Tectonic
inversion and magmatism in the Lautaro Basin, northern Chile, Central Andes:
A comparative approach from field data and analog models, J. Geodyn., 94/95,
68–83, https://doi.org/10.1016/j.jog.2016.02.003, 2016.
Martínez, F., Montanari, D., Del Ventisette, C., and Bonini, M.: Basin
inversion and magma migration and emplacement: Insights from basins of
northern Chile, J. Struct. Geol., 114, 310–319,
https://doi.org/10.1016/j.jsg.2017.12.008, 2018.
Massaro, L., Adam, J., Jonade, E., and Yamada, Y.: New granular
rock-analogue materials for simulation of multi-scale fault and fracture
processes, Geol. Mag., 1–24,
https://doi.org/10.1017/S0016756821001321, 2021.
Mattioni, L., Sassi, W., and Callot, J.-P.: Analogue models of basin
inversion by transpression: role of structural heterogeneity, Geol. Soc.
London, Spec. Publ., 272, 397–417,
https://doi.org/10.1144/GSL.SP.2007.272.01.20, 2007.
Mayolle, S., Soliva, R., Dominguez, S., Wibberley, C., and Caniven, Y.:
Nonlinear fault damage zone scaling revealed through analog modelling,
Geology, 49, 968–972, https://doi.org/10.1130/G48760.1, 2021.
McClay, K. R.: Analogue models of inversion tectonics, Geol. Soc. Spec.
Publ., 44, 41–59,
https://doi.org/10.1144/GSL.SP.1989.044.01.04, 1989.
McClay, K. R.: Extensional fault systems in sedimentary basins: a review of
analogue model studies, Mar. Petrol. Geol., 7, 206–233,
https://doi.org/10.1016/0264-8172(90)90001-W, 1990.
McClay, K. R.: The geometries and kinematics of inverted fault systems: a
review of analogue modelling studies, Geol. Soc. Spec. Publ., 88, 97–118,
https://doi.org/10.1144/GSL.SP.1995.088.01.07, 1995.
McClay, K. R.: Recent advances in analogue modelling: uses in section
interpretation and validation, Geol. Soc. Spec. Publ., 99, 201–225,
https://doi.org/10.1144/GSL.SP.1996.099.01.16, 1996.
McClay, K. R. and Buchanan, P. G.: Thrust faults in inverted extensional
basin, in: Thrust Tectonics, edited by: McClay, K. R., Springer, Dordrecht, 93–104,
https://doi.org/10.1007/978-94-011-3066-0_8, 1992.
McClay, K. R., Dooley, T., Ferguson, A., and Poblet, J.: Tectonic Evolution
of the Sanga Sanga Block, Mahakam Delta, Kalimantan, Indonesia, AAPG Bull.,
84, 765–786,
https://doi.org/10.1306/A96733EC-1738-11D7-8645000102C1865D, 2000.
McClay, K., Dooley, T. P., Whitehouse, P., and Mills, M.: 4-D evolution of
rift systems: Insights from scaled physical models, Am. Assoc. Pet. Geol.
Bull., 86, 935–959,
https://doi.org/10.1306/61EEDBF2-173E-11D7-8645000102C1865D, 2002.
Mencos, J., Carrera, N., and Muñoz, J. A.: Influence of rift basin
geometry on the subsequent postrift sedimentation and basin inversion: The
Organyà Basin and the Bóixols thrust sheet (south central Pyrenees),
Tectonics, 35, 1452–1474, https://doi.org/10.1002/2014TC003692, 2015.
Michon, L. and Merle, O.: Crustal structures of the Rhinegraben and the
Massif Central grabens: An experimental approach, Tectonics, 19, 896–904,
https://doi.org/10.1029/2000TC900015, 2000.
Michon, L. and Merle, O.: Mode of lithospheric extension: Conceptual models
from analogue modeling, Tectonics, 22, 1028,
https://doi.org/10.1029/2002TC001435, 2003.
Miró, J., Ferrer, O., Muñoz, J. A., and Manastchal, G.: Role of inheritance during tectonic inversion of a rift system in a thick- to thin-skin transition: Analogue modelling and application to the Pyrenean – Biscay System, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1175, 2022.
Mitra, S.: Geometry and kinematic evolution of inversion structures, AAPG
Bull., 77, 1159–1191,
https://doi.org/10.1306/BDFF8E2A-1718-11D7-8645000102C1865D, 1993.
Mitra, S. and Islam, Q. T.: Experimental (clay) models of inversion
structures, Tectonophysics, 230, 211–222,
https://doi.org/10.1016/0040-1951(94)90136-8, 1994.
Mock, S. and Herwegh, M.: Tectonics of the central Swiss Molasse Basin:
Post-Miocene transition to incipient thick-skinned tectonics?, Tectonics,
36, 1699–1723, https://doi.org/10.1002/2017TC004584, 2017.
Molnar, N. E., Cruden, A. R., and Betts, P. G.: Interactions between
propagating rotational rifts and linear rheological heterogeneities:
Insights from three-dimensional laboratory experiments, Tectonics, 36,
420–443, https://doi.org/10.1002/2016TC004447, 2017.
Montanari, D., Agostini, A., Bonini, M., Corti, G., and Ventisette, C.: The
Use of Empirical Methods for Testing Granular Materials in Analogue
Modelling, Materials (Basel), 10, 635,
https://doi.org/10.3390/ma10060635, 2017.
Moretti, I. and Webber, M. E.: Natural hydrogen: a geological curiosity or
the primary energy source for a low-carbon future?, Renewable Matter,
https://www.renewablematter.eu/articles/article/ (last access: 20 October 2022), 2021.
Mourgues, R. and Cobbold, P. R.: Some tectonic consequences of fluid
overpressures and seepage forces as demonstrated by sandbox modelling,
Tectonophysics, 376, 75–97,
https://doi.org/10.1016/S0040-1951(03)00348-2, 2003.
Moragas, M., Vergés, J., Nalpas, T., Saura, E., Martín-Martín,
J. D., Message, G., and Hunt, D. W.: The impact of syn- and post-extension
prograding sedimentation on the development of salt-related rift basins and
their inversion: Clues from analogue modelling, Mar. Petrol. Geol., 88,
985–1003, https://doi.org/10.1016/j.marpetgeo.2017.10.001, 2017.
Morley, C. K.: Stress re-orientation along zones of weak fabrics in rifts:
An explanation for pure extension in “oblique” rift segments?, Earth Planet
Sc. Lett., 297, 667–673,
https://doi.org/10.1016/j.epsl.2010.07.022, 2010.
Moulas, E., Sokoutis, D., and Willingshofer, E.: Pressure build-up and
stress variations within the Earth's crust in the light of analogue models,
Sci. Rep., 9, 2310, https://doi.org/10.1038/s41598-018-38256-1, 2019.
Muñoz-Sáez, C., Pinto, L., Charrier, R., and Nalpas, T.: Influence
of depositional load on the development of a shortcut fault system during
the inversion of an extensional basin: The Eocene-Oligocene Abanico Basin
case, central Chile Andes (33∘–35∘ S), Andean Geol.,
41, 1–28, https://doi.org/10.5027/andgeoV41n1-a01, 2014.
Munteanu, I., Willingshofer, E., Sokoutis, D., Matenco, L., Dinu, C., and
Cloetingh, S.: Transfer of deformation in back-arc basins with a laterally
variable rheology: Constraints from analogue modelling of the
Balkanides–Western Black Sea inversion, Tectonophysics, 602, 223–236,
https://doi.org/10.1016/j.tecto.2013.03.009, 2013.
Munteanu, I., Willingshofer, E., Matenco, L., and Sokoutis, D.: Far-field
contractional polarity changes in models and nature, Earth Planet. Sc.
Lett., 395, 101–115,
https://doi.org/10.1016/j.epsl.2014.03.036, 2014.
Musso Piantelli, F., Mair, D., Berger, A., Schlunegger, F., Wiederkehr, M., Kurmann, E.,
Baumberger, R., Möri, A., and Herwegh, M.: 4D reconstruction of the Doldenhorn nappebasement
system in the Aar massif: Insights into late-stage continent-continent collision in the
Swiss Alps, Tectonophysics, 843, 229586, https://doi.org/10.1016/j.tecto.2022.229586, 2022.
Nalpas, T., Le Douaran, S., Brun, J.-P., Unternehr, P., and Richert, J.-P.:
Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale
model investigation, Sediment. Geol., 95, 237–250,
https://doi.org/10.1016/0037-0738(94)00113-9, 1995.
Naylor, M. A., Laroque, J. M., and Gauthier. B. D. M.: Understanding
extensional tectonics: Insights from sandbox models, in: Geodynamic
Evolution of Sedimentary Basins, edited by: Roure, F., Ellouz, N., and Shein,
V. S., Skvortsov, International Symposium, Moscow, Editions Technip, Paris, France, 69–83, ISBN: 9782710806929, 1994.
Nestola, Y., Storti, F., Bedogni, E., and Cavozzi, C.: Shape evolution and
finite deformation pattern in analog experiments of lithosphere necking,
Geophys. Res. Lett., 40, 5025–5057,
https://doi.org/10.1002/grl.50978, 2013.
Nestola, Y., Storti, F., and Cavozzi, C.: Strain rate-dependent lithosphere
rifting and necking architectures in analog experiments, J. Geophys. Res.,
120, 584–594, https://doi.org/10.1002/2014JB011623, 2015.
Nieuwland, D. A., Urai, J. L., and Knoop, M.: In-situ stress measurements in
model experiments of tectonic faulting, in: Aspects of Tectonic Faulting,
edited by: Lehner, F. K., Urai, J. L., and Van der Zee, W., Springer-Verlag,
Berlin Heidelberg, https://doi.org/10.1007/978-3-642-59617-9_8, 2000.
Oertel, G.: The mechanism of faulting in clay experiments, Tectonophysics,
2, 343–393, https://doi.org/10.1016/0040-1951(65)90032-6, 1965.
Oriolo, S., Cristallini, E. O., Japas, M. S., and Yagupsky, D. L.: Neogene
structure of the Andean Precordillera, Argentina: insights from analogue
models, Andean Geol., 42, 20–35,
https://doi.org/10.5027/andgeoV42n1-a02, 2015.
Osagiede, E. E., Rosenau, M., Rotevatn, A., Gawthorpe, R., Jackson, C. A-L.,
and Rudolf, M.: Influence of zones of pre-existing crustal weakness on
strain localization and partitioning during rifting: Insights from analog
modeling using high-resolution 3D digital image correlation, Tectonics, 40,
e2021TC006970, https://doi.org/10.1029/2021TC006970, 2021.
Panien, M., Schreurs, G., and Pfiffner, A.: Sandbox experiments on basin
inversion: testing the influence of basin orientation and basin fill, J.
Struct. Geol., 27, 433–445,
https://doi.org/10.1016/j.jsg.2004.11.001, 2005.
Panien, M., Buiter, S. J. H., Schreurs, G., and Pfiffner, O. A.: Inversion
of a symmetric basin: insights from a comparison between analogue and
numerical experiments, Geol. Soc. Spec. Publ., 253, 253–270,
https://doi.org/10.1144/GSL.SP.2006.253.01.13, 2006a.
Panien, M., Schreurs, G., and Pfiffner, O. A.: Mechanical behaviour of
granular materials used in analogue modelling: insights from grain
characterisation, ring-shear tests and analogue experiments, J. Struct.
Geol., 28, 1710–1724,
https://doi.org/10.1016/j.jsg.2006.05.004, 2006b.
Park, Y., Kang, N., Yi, B., Lee, G., and Yoo, D.: Tectonostratigraphic
framework in the eastern Korean continental margin, East Sea: Implication
for evolution of the Hupo Basin, Basin Res., 34, 1–27,
https://doi.org/10.1111/bre.12641, 2021.
Payrola, P. A., Hongn, F., Cristallini, E., Carcía, V., and Del Papa,
C.: Andean oblique folds in the Cordillera Oriental – Northwestern
Argentina: Insights from analogue models, J. Struct. Geol., 42, 194–211,
https://doi.org/10.1016/j.jsg.2012.05.003, 2012.
Pfiffner, O. A.: The structure of the Helvetic nappes and its relation to
the mechanical stratigraphy, J. Struct, Geol., 15, 511–521,
https://doi.org/10.1016/0191-8141(93)90145-Z, 1993.
Philippe, Y.: Rampes Latérales et zones de transfert dans les
chaînes plissées: géométrie, conditions de formations et
pièges structuraux associés, Ph.D. Theses, Université de Savoie,
France, 351 pp., https://hal.archives-ouvertes.fr/tel-00755680/ (last access: 20 October 2022),
1995.
Philippon, M. and Corti, G.: Obliquity along plate boundaries,
Tectonophysics, 693, 171–182,
https://doi.org/10.1016/j.tecto.2016.05.033, 2016.
Pinto, L., Muñoz, C., Nalpas, T., and Charrier, R.: Role of
sedimentation during basin inversion in analogue modelling, J. Struct.
Geol., 32, 554–565, https://doi.org/10.1016/j.jsg.2010.03.001, 2010.
Plenefisch, T. and Bonjer, K.-P.: The stress field in the Rhine Graben area
inferred from earthquake focal mechanisms and estimation of frictional
parameters, Tectonophysics, 275, 71–97,
https://doi.org/10.1016/S0040-1951(97)00016-4, 1997.
Poppe, S., Holohan, E. P., Galland, O., Buls, N., Van Gompel, G., Keelson,
B., Tournigand, P.-Y., Brancart, J., Hollis, D., Nila, A., and Kervyn, M.:
An Inside Perspective on Magma Intrusion: Quantifying 3D Displacement and
Strain in Laboratory Experiments by Dynamic X-Ray Computed Tomography,
Front. Earth Sci., 7, 62,
https://doi.org/10.3389/feart.2019.00062, 2019.
Ramberg, H.: Gravity, Deformation and the Earth's Crust, Academic Press,
London, ISBN: 9780125768603, 1981.
Ranalli, G.: Experimental tectonics: from Sir James Hall to the present, J.
Geodyn., 32, 65–76,
https://doi.org/10.1016/S0264-3707(01)00023-0, 2001.
Reber, J. E., Cooke, M. L., and Dooley, T. P.: What model material to use? A
Review on rock analogs for structural geology and tectonics, Earth-Sci.
Rev., 202, 103107,
https://doi.org/10.1016/j.earscirev.2020.103107, 2020.
Reitano, R., Faccenna, C., Funiciello, F., Corbi, F., and Willett, S. D.:
Erosional response of granular material in landscape models, Earth Surf.
Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, 2020.
Reitano, R., Faccenna, C., Funiciello, F., Corbi, F., Sternai P., Willett,
S. D., Sembroni A., and Lanari R.: Sediment recycling and the evolution of
analogue orogenic wedges, Tectonics, 42, e2021TC006951,
https://doi.org/10.1029/2021TC006951, 2022.
Richard, P.: Champs de failles au dessus d'un décrochement de socle:
modélisation expérimentale, Memoires et documents du Centre
Armoricain d'Etude Structurale des Socles, 34, PhD Thesis, Université
Rennes 1, https://tel.archives-ouvertes.fr/tel-00675425
(last access: 20 October 2022), 1989.
Richetti, P. C., Zwaan, F., Schreurs, G., Schmitt, R. S., and Schmid, T. C.: Analogue modelling of basin inversion: the role of oblique kinematics and implications for the Araripe Basin (Brazil), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1251, 2022.
Rincón, M., Márquez, A., Herrera, R., Galland, O., Sánchez-Oro,
J., Concha, D., and Monemayor, A. S.: Monitoring volcanic and tectonic
sandbox analogue models using the Kinect v2 sensor, Earth Space Sci., 9,
e2020EA001368, https://doi.org/10.1029/2020EA001368, 2020.
Ritter, M. C., Leever, K. A., Rosenau, M., and Oncken, O.: Scaling the
sandbox – Mechanical (dis) similarities of granular materials and brittle
rock, J. Geophys. Res.-Sol. Ea, 121, 6863–6879,
https://doi.org/10.1002/2016JB012915, 2016.
Ritter, M. C., Leever, K. A., Rosenau, M., and Oncken, O.: Growing Faults in
the Lab: Insights Into the Scale Dependence of the Fault Zone Evolution
Process, Tectonics, 37, 140–153,
https://doi.org/10.1002/2017TC004787, 2018a.
Ritter, M. C., Santimano, T., Rosenau, M., Leever, K. A., and Oncken, O.:
Sandbox rheometry: Co-evolution of stress and strain in Riedel – and
Critical Wedge–experiments, Tectonophysics, 722, 400–409,
https://doi.org/10.1016/j.tecto.2017.11.018, 2018b.
Roma, M., Ferrer, O., McClay, K. R., Muñoz, J. A., Roca, E.,
Gratacós, O., and Cabello, P.: Weld kinematics of syn-rift salt during
basement-involved extension and subsequent inversion: Results from analog
models, Geol. Acta, 16, 391–410,
https://doi.org/10.1344/GeologicaActa2018.16.4.4, 2018a.
Roma. M., Vidal-Royo, O., McClay, K., Ferrer, O., and Muñoz, J. A.:
Tectonic inversion of salt-detachment ramp-syncline basins as illustrated by
analog modeling and kinematic restoration, Interpretation, 6, 1F-T229,
https://doi.org/10.1190/INT-2017-0073.1, 2018b.
Roscoe, K. H.: The influence of strains in soil mechanics, 10th Rankine
Lecture, Geotechnique, 20, 129–170,
https://doi.org/10.1680/geot.1970.20.2.129, 1970.
Rosenau, M., Lohrmann, J., and Oncken, O.: Shocks in a box: An analogue
model of subduction earthquake cycles with application to seismotectonic
forearc evolution, J. Geophys. Res., 114, 1–20,
https://doi.org/10.1029/2008JB005665, 2009.
Roure, F. and Colletta, B.: Cenozoic inversion structures in the foreland of
the Pyrenees and Alps, in: Peri-Tethys Memoir 2: Structure and Prospects of
Alpine Basins and Forelands, edited by: Ziegler, P. A. and Horvàth, F.,
Mémoires du Muséum national d'histoire naturelle, Muséum national d’histoire naturelle, 170, 173–209, ISBN: 2-85653-507-0,
https://www.biodiversitylibrary.org/page/58832613 (last access: 20 October 2022), 1996.
Rudolf, M., Boutelier, D., Rosenau, M., Schreurs, G., and Oncken, O.:
Rheological benchmark of silicone oils used for analog modeling of short-
and long-term lithospheric deformation, Tectonophysics, 684, 12–22,
https://doi.org/10.1016/j.tecto.2015.11.028, 2016.
Rudolf, M., Rosenau, M., and Oncken, O.: Time dependent properties of
granular media – The GeoMod Benchmark 2021, GeoMod 2021, Doorn,
Netherlands, 19–23 September 2021,
https://geomod2021.uu.nl/wp-content/uploads/sites/512/2021/09/Abstract-volume-GeoMod-2021-2.pdf (last access: 20 October 2022), 2021.
Ruh, J. B.: Effects of fault-weakening processes on oblique intracontinental
rifting and subsequent tectonic inversion, Am. J. Sci., 319, 315–338,
https://doi.org/10.2475/04.2019.03, 2019.
Ruh, J. B. and Vergés, J.: Effects of reactivated extensional basement
faults on structural evolution of fold-and-thrust belts: Insights from
numerical modelling applied to the Kopet Dagh Mountains, Tectonophysics,
746, 493–511, https://doi.org/10.1016/j.tecto.2017.05.020, 2018.
Sandiford, M.: Mechanics of basin inversion, Tectonophysics, 305, 109–120,
https://doi.org/10.1016/S0040-1951(99)00023-2, 1999.
Sanford, A. R.: Analytical and experimental study of simple geological
studies, GSA Bull., 70, 19–52,
https://doi.org/10.1130/0016-7606(1959)70[19:AAESOS]2.0.CO;2, 1959.
Sani, F., Del Ventisette, C., Montanari, D., Bendkik, A., and Chenakeb, M.:
Structural evolution of the Rides Prerifaines (Morocco): structural and
seismic interpretation and analogue modelling experiments, Int. J. Earth.
Sci., 96, 685–706, https://doi.org/10.1007/s00531-006-0118-2, 2007.
Santimano, T. and Pyskluwec, R.: The influence of lithospheric mantle scars
and rheology on intraplate deformation and orogenesis: Insights from
tectonic analog models, Tectonics, 39, e2019TC005841,
https://doi.org/10.1029/2019TC005841, 2020.
Saria, E., Calais, E., Stamps, D. S., Delvaux, D., and Hartnady, C. J. H.:
Present-day kinematics of the East African Rift, J. Geophys. Res.-Sol. Ea.,
119, 3584–3600, https://doi.org/10.1002/2013JB010901, 2014.
Sassi, W., Colletta, B., Balé, P., and Paquereau, T.: Modelling of
structural complexity in sedimentary basins: the role of pre-existing faults
in thrust tectonics, Tectonophysics, 226, 97–112,
https://doi.org/10.1016/0040-1951(93)90113-X, 1993.
Schellart, W. P.: Shear test results for cohesion and friction coefficients
for different granular materials: scaling implications for their usage in
analogue modelling, Tectonophysics, 324, 1–16,
https://doi.org/10.1016/S0040-1951(00)00111-6, 2000.
Schellart, W. P. and Strak, V.: A review of analogue modelling of geodynamic
processes: Approaches, scaling, materials and quantification, with an
application to subduction experiments, J. Geodyn., 100, 7–32,
https://doi.org/10.1016/j.jog.2016.03.009, 2016.
Schmid, S., Kissling, E., Diehl, T., Van Hindsbergen, D., and Molli, G.:
Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the
Alps–Apennines orogenic system, Swiss, J. Geosci., 110, 581–612,
https://doi.org/10.1007/s00015-016-0237-0, 2017.
Schmid, T., Schreurs, G., Warsitzka, M., and Rosenau, M.: Effect of sieving
height on density and friction of brittle analogue material: Ring-shear test
data of quarz sand used for analogue experiments in the Tectonic Modelling
Lab of the University of Bern, GFZ Data Services [data set],
https://doi.org/10.5880/fidgeo.2020.006, 2020.
Schmid, T. C., Schreurs, G., and Adam, J.: Characteristics of continental
rifting in rotational systems: New findings from spatiotemporal high
resolution quantified crustal scale analogue models, Tectonophysics, 822,
229174, https://doi.org/10.1016/j.tecto.2021.229174, 2022.
Schöfisch, T., Koyi, H., and Almqvist, B.: Infuence of décollement
friction on anisotropy of magnetic susceptibility in a fold-and-thrust belt
model, J. Struct. Geol., 144, 104274,
https://doi.org/10.1016/j.jsg.2020.104274, 2021.
Schori, M., Zwaan, F., Schreurs, G., and Mosar, J.: Pre-existing Basement
Faults Controlling Deformation in the Jura Mountains Fold-and-Thrust Belt:
Insights from Analogue Models, Tectonophysics, 814, 228980,
https://doi.org/10.1016/j.tecto.2021.228980, 2021.
Schreurs, G. and Colletta, B.: Analogue modelling of faulting in zones of
continental transpression and transtension, Geol. Soc. Spec. Publ., 135,
59–79, https://doi.org/10.1144/GSL.SP.1998.135.01.05, 1998.
Schreurs, G., Hänni, R., Panien, M., and Vock, P.: Analysis of analogue
models by helical X-ray computed tomography, Geol Soc. Spec. Publ., 2015,
213–223, https://doi.org/10.1144/GSL.SP.2003.215.01.20, 2003.
Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden,
A. R., Daniel, J.-M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J.,
Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C.,
Del Ventisette, C., Brady, J. A. E., Hoffmann-Rothe, A., Mengus, J.-M.,
Montanari, D., and Nilfouroushan, F.: Analogue benchmarks of shortening and
extension experiments, Geol. Soc. Lond. Spec. Publ., 253, 1–27,
https://doi.org/10.1144/GSL.SP.2006.253.01.01, 2006.
Schreurs, G., Buiter, S. J. H., Boutelier, J., Burberry, C., Callot, J.-P.,
Cavozzi, C., Cerca, M., Chen, J.-H., Cristallini, E., Cruden, A. R., Cruz,
L., Daniel, J.-M., Da Poian, G., Garcia, V. H., Gomes, C. J. S., Grall, C.,
Guillot, Y., Guzmán, C., Hidayah, T. N., Hilley, G. E., Klinkmüller,
M., Koyi, H. A., Lu, C.-Y., Maillot, B., Meriaux, C., Nilfouroushan, F.,
Pan, C.-C., Pillot, D., Portillo, R., Rosenau, M., Schellart, W. P.,
Schlische, R. W., Take, A., Vendeville, B., Vergnaud, M., Vettori, M., Wang,
S.-H., Withjack, M. O., Yagupsky, D., and Yamada, Y.: Benchmarking analogue
models of brittle thrust wedges, J. Struct. Geol., 92, 116–139.
https://doi.org/10.1016/j.jsg.2016.03.005, 2016.
Scott, E.: Exploring for native hydrogen, Nature Rev. Earth Environ., 2,
589, https://doi.org/10.1038/s43017-021-00215-2, 2021.
Sibuet, J.-C., Srivastava, S. P., and Spakman, W.: Pyrenean orogeny and
plate kinematics, J. Geophys. Res., 109, B08104,
https://doi.org/10.1029/2003JB002514, 2004.
Sibson, R. H.: A note on fault reactivation, J. Struct. Geol., 7, 751–754,
https://doi.org/10.1016/0191-8141(85)90150-6, 1985.
Sibson, R. H.: Selective fault reactivation during basin inversion:
potential for fluid redistribution through fault-valve action, Geol. Soc.
Spec. Publ., 88, 3–19,
https://doi.org/10.1144/GSL.SP.1995.088.01.02, 1995.
Sibson, R. H.: Rupturing in overpressured crust during compressional
inversion – the case from NE Honshu, Japan, Tectonophysics, 473, 404–416,
https://doi.org/10.1016/j.tecto.2009.03.016, 2009.
Sibson, R. H. and Scott, J.: Stress/fault controls on the containment and
release of overpressured fluids: Examples from gold–quartz vein systems in
Juneau, Alaska; Victoria, Australia and Otago, New Zealand, Ore Geol. Rev.,
13, 293–306, https://doi.org/10.1016/S0169-1368(97)00023-1, 1998.
Smith, N. J. P.: It's time for explorationists to take hydrogen more
seriously, First Break, 20, 246–253, 2002.
Sokoutis, D. and Willingshofer, E.: Decoupling during continental collision
and intra-plate deformation, Earth Planet. Sc. Lett., 305, 435–444,
https://doi.org/10.1016/j.epsl.2011.03.028, 2011.
Souloumiac, P., Maillot, B., and Leroy, Y. M.: Bias due to side wall
friction in sand box experiments, J. Struct. Geol., 35, 90–101,
https://doi.org/10.1016/j.jsg.2011.11.002, 2012.
Souriot, T. and Brun, J.-P.: Faulting and block rotation in the Afar
triangle, East Africa: the Danakil “crank-arm” model., Geology, 20,
911–914, https://doi.org/10.1130/0091-7613, 1992.
Stewart, S. A.: Salt tectonics in the North Sea Basin: a structural style
template for seismic interpreters, Geol. Soc. Spec. Publ., 272, 361–396,
https://doi.org/10.1144/GSL.SP.2007.272.01.19, 2007.
Stewart, S. A. and Clark, J. A.: Impact of salt on the structure of the
Central North Sea hydrocarbon fairways, Petrol. Geol. Conf. Ser., 5,
179–200, https://doi.org/10.1144/0050179, 1999.
Stewart, S. A. and Coward, M. P.: Synthesis of salt tectonics in the
southern North Sea, UK, Mar. Petrol. Geol., 12, 457–475,
https://doi.org/10.1016/0264-8172(95)91502-G, 1995.
Strzerzynski, P., Dominguez, S., Boudial, A., and Déverchère, J.:
Tectonic inversion and geomorphic evolution of the Algerian margin since
Messinian times: Insights from new onshore/offshore analog modeling
experiments, Tectonics, 40, e2020TC006369.
https://doi.org/10.1029/2020TC006369, 2021.
Tron, V. and Brun, J.-P.: Experiments on oblique rifting in brittle-ductile
systems, Tectonophysics, 188, 71–84,
https://doi.org/10.1016/0040-1951(91)90315-J, 1991.
Tari, G., Arbouille, D., Schléder, Z., and Tóth, T.: Inversion
tectonics: a brief petroleum industry perspective, Solid Earth, 11,
1865–1889, https://doi.org/10.5194/se-11-1865-2020, 2020.
Turner, J. P. and Williams, G. A.: Sedimentary basin inversion and intra-plate
shortening, Earth-Sci. Rev., 65, 277–304,
https://doi.org/10.1016/j.earscirev.2003.10.002, 2004.
Ustaszewski, K., Schumacher, M. E., Schmid, S. M., and Nieuwland, D.: Fault
reactivation in brittle–viscous wrench systems–dynamically scaled analogue
models and application to the Rhine–Bresse transfer zone, Quaternary Sci.
Rev., 24, 365–382,
https://doi.org/10.1016/j.quascirev.2004.03.015, 2005.
Van Winden, M., De Jager, J., Jaarsma, B., and Bouroullec, R.: New insights
into salt tectonics in the northern Dutch offshore: a framework for
hydrocarbon exploration, Geol Soc. Spec. Publ., 469, 99–117,
https://doi.org/10.1144/SP469.9, 2018.
Vaughan, A. P. M. and Scarrow, J. H.: Ophiolite obduction pulses as a proxy
indicator of superplume events?, Earth Planet. Sc. Lett., 213, 407–416,
https://doi.org/10.1016/S0012-821X(03)00330-3, 2003.
Vendeville, B., Cobbold, P. R., Davy, P., Brun, J.-P., and Choukroune, P.:
Physical models of extensional tectonics at various scales, Geol Soc. Spec.
Publ., 28, 95–107,
https://doi.org/10.1144/GSL.SP.1987.028.01.08, 1987.
Vermeer, P. A.: The orientation of shear bands in biaxial tests,
Géotechnique, 40, 223–236,
https://doi.org/10.1680/geot.1990.40.2.223, 1990.
Vially, R., Letouzey, J., Bénard, F., Haddadi N., Desforges, G., Askari,
H., and Boujema, A.: Basin inversion along the North African Margin – The
Saharan Atlas (Algeria), in: Peri-Tethyan Platforms, edited by: Roure, F.,
Editions Technip, Paris, France, 79–118, ISBN: 9782710806790, 1994.
Vidal, J. and Genter, A.: Overview of naturally permeable fractured
reservoirs in the central and southern Upper Rhine Graben: Insights from
geothermal wells, Geothermics, 74, 57–73,
https://doi.org/10.1016/j.geothermics.2018.02.003, 2018.
Villarroel, M., Jara, P., Herrera, S., and Charrier, R.: In uence of the
orientation of cohesive blocks upon the structural grain of fold-and-thrust
belts: An appraisal by means of analogue modeling, J. S. Am. Earth. Sci.,
103, 102725, https://doi.org/10.1016/j.jsames.2020.102725, 2020.
Voormeij, D. A. and Simandl, G. J.: Geological, ocean, and mineral CO2
sequestration options: A technical review, Geosci. Can., 31, 11–22, 2004.
Wang, Q., Li, S., Guo, L., Suo. Y., and Dai., L.: Analogue modelling and
mechanism of tectonic inversion of the Xihu Sag, East China Sea Shelf Basin,
J. Asian Earth Sci., 139, 129–141,
https://doi.org/10.1016/j.jseaes.2017.01.026, 2017.
Warren J. K.: Flowing Salt: Halokinesis, in: Evaporites, edited by: Warren,
J.K., Springer, Cham, 491–612,
https://doi.org/10.1007/978-3-319-13512-0_6, 2016.
Weibel, R., Olivarius, M., Vosgerau H., Mathiesen, A., Kristensen, L.,
Nielsen, C., and Nielsen, L.: Overview of potential geothermal reservoirs in
Denmark, Neth. J. Geosci., 99, E3,
https://doi.org/10.1017/njg.2020.5, 2020.
Weijermars, R.: Flow behaviour and physical chemistry of bouncing putties
and related polymers in view of tectonic laboratory applications,
Tectonophysics, 124, 325–358,
https://doi.org/10.1016/0040-1951(86)90208-8, 1986.
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian
fluid dynamics without inertia for quantitative modelling of rock flow due
to gravity (including the concept of rheological similarity), Phys. Earth
Planet. In., 43, 316–330,
https://doi.org/10.1016/0031-9201(86)90021-X, 1986.
Willems, C. J. L., Vondrak, A., Mijnlief, H. F., Donselaar, M. E., and Van
Kempen, B. M. M.: Geology of the Upper Jurassic to Lower Cretaceous
geothermal aquifers in the West Netherlands Basin – an overview, Neth. J.
Geosci., 99, E1, https://doi.org/10.1017/njg.2020.1, 2020.
Williams, G. D., Powell, C. M., and Cooper, M. A.: Geometry and kinematics
of inversion tectonics, Geol. Soc. Spec. Publ., 44, 3–15,
https://doi.org/10.1144/gsl.sp.1989.044.01.02, 1989.
Willingshofer, E. and Sokoutis, D.: Decoupling along plate boundaries: Key
variable controlling the mode of deformation and the geometry of collisional
mountain belts, Geology, 37, 39–42,
https://doi.org/10.1130/G25321A.1, 2009.
Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., and Cloetingh,
S.: Subduction and deformation of the continental lithosphere in response to
plate and crust-mantle coupling, Geology, 41, 1239–1242,
https://doi.org/10.1130/G34815.1, 2013.
Wilson, R. W., Houseman, G. A., Buiter, S. J. H., McCaffrey, K. J. W., and
Doré, A. G.: Fifty years of the Wilson Cycle concept in plate tectonics:
an overview, Geol. Soc. Spec. Publ., 470, 1–17,
https://doi.org/10.1144/SP470-2019-58, 2019.
Withjack, M. O. and Callaway, S.: Active normal faulting beneath a salt
layer: An experimental study of deformation patterns in the cover sequence,
AAPG Bull., 84, 627–651,
https://doi.org/10.1306/C9EBCE73-1735-11D7-8645000102C1865D, 2000.
Withjack, M. O. and Jamison, W. R.: Deformation produced by oblique rifting,
Tectonophysics, 126, 99–124,
https://doi.org/10.1016/0040-1951(86)90222-2, 1986.
Yagupsky, D. L., Cristallini, E. O., Fantín, J., Valcarce, G. Z.,
Bottesi, G., and Varadé, R.: Oblique half-graben inversion of the
Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza,
Argentina: New insights from analogue models, J. Struct. Geol., 30, 839–853,
https://doi.org/10.1016/j.jsg.2008.03.007, 2008.
Yamada, Y. and McClay, K. R.: Application of geometric models to inverted
listric fault systems in sandbox experiments. Paper 1: 2D hanging wall
deformation and section restoration, J. Struct. Geol., 25, 1551–1560,
https://doi.org/10.1016/S0191-8141(02)00181-5, 2003a.
Yamada, Y. and McClay, K. R.: Application of geometric models to inverted
listric fault systems in sandbox experiments, Paper 2: insights for possible
along strike migration of material during 3D hanging wall deformation, J.
Struct. Geol., 25, 1331–1336,
https://doi.org/10.1016/S0191-8141(02)00160-8, 2003b.
Yamada, Y. and McClay, K. R.: 3-D analogue modeling of inversion thrust
structures, in: Thrust tectonics and hydrocarbon systems, edited by: McClay,
K. R., AAPG Memoir, 82, 276–301,
https://doi.org/10.1306/M82813C16, 2004.
Yamada, Y. and McClay, K. R.: Influence of shear angle on hangingwall
deformation during tectonic inversion, Isl. Arc, 19, 546–559,
https://doi.org/10.1111/j.1440-1738.2010.00731.x, 2010.
Yu, F., Zhang, R., Yu, J., Wang, Y., Chen, S., Liu, J., Wu, C., Wang, Y.,
Wang, S., Wang, Y., and Liu, Y.: Meso-Cenozoic negative inversion model for
the Linhe Depression of Hetao Basin, China, Geol. Mag., 1–24,
https://doi.org/10.1017/S0016756821001138, 2021.
Ziegler, P. A., Cloetingh, S., and Van Wees, J.-D.: Dynamics of intra-plate
compressional deformation: the Alpine foreland and other examples,
Tectonophysics, 252, 7–59,
https://doi.org/10.1016/0040-1951(95)00102-6, 1995.
Zwaan, F. and Schreurs, G.: Rift segment interaction in orthogonal and
rotational extension experiments: Implications for the large-scale
development of rift systems, J. Struct. Geol., 140, 104119,
https://doi.org/10.1016/j.jsg.2020.104119, 2020.
Zwaan, F. and Schreurs, G.: Analogue Modeling of Continental Rifting: An
Overview, in: Continental Rifted Margins I, edited by: Peron-Pinvidic, G.,
ISTE-Wiley, https://doi.org/10.1002/9781119986928.ch6, 2022a.
Zwaan, F. and Schreurs, G.: Analogue models of lithospheric-scale rifting
monitored in an X-ray CT scanner, ESSOAr [preprint],
https://doi.org/10.1002/essoar.10510709.1, 2022b.
Zwaan, F., Schreurs, G., Naliboff, J., and Buiter, S. J. H.: Insights into
the effects of oblique extension on continental rift interaction from 3-D
analogue and numerical models, Tectonophysics, 693, 239–260,
https://doi.org/10.1016/j.tecto.2016.02.036, 2016.
Zwaan, F., Schreurs, G., and Adam, J.: Effects of sedimentation on rift
segment evolution and rift interaction in orthogonal and oblique extensional
settings: Insights from analogue models analysed with 4D X-ray computed
tomography and digital volume correlation techniques, Glob. Planet. Change,
171, 110–133, https://doi.org/10.1016/j.gloplacha.2017.11.002, 2018a.
Zwaan, F., Schreurs, G., Ritter, M., Santimano, T., and Rosenau, M.:
Rheology of PDMS-corundum sand mixtures from the Tectonic Modelling Lab of
the University of Bern (CH), V. 1. GFZ Data Services [data set],
https://doi.org/10.5880/fidgeo.2018.023, 2018b.
Zwaan, F., Schreurs, G., and Buiter, S. J. H.: A systematic comparison of
experimental set-ups for modelling extensional tectonics, Solid Earth, 10,
1063–1097, https://doi.org/10.5194/se-10-1063-2019, 2019.
Zwaan, F., Corti, G., Keir, D., and Sani, F.: Analogue modelling of marginal
flexure in Afar, East Africa: Implications for passive margin formation,
Tectonophysics, 796, 228595,
https://doi.org/10.1016/j.tecto.2020.228595, 2020a.
Zwaan, F., Schreurs, G., and Rosenau, M.: Rift propagation in rotational
versus orthogonal extension: Insights from 4D analogue models, J. Struct.
Geol., 135, 103946, https://doi.org/10.1016/j.jsg.2019.103946, 2020b.
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., and Schreurs, G.: Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models, Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, 2021.
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., and Scheurs, G.:
Competition between 3D structural inheritance and kinematics during rifting:
insights from analogue models, Basin Res., 34, 1–31,
https://doi.org/10.1111/bre.12642, 2022.
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it...
Special issue