Articles | Volume 15, issue 3
https://doi.org/10.5194/se-15-367-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-367-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Farbod Khosro Anjom
CORRESPONDING AUTHOR
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10128, Italy
Frank Adler
CSTJF, TotalEnergies, Pau, 64000, France
Laura Valentina Socco
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10128, Italy
Related authors
Sikelela Gomo, Farbod Khosro Anjom, Chiara Colombero, Mohammadkarim Karimpour, Bibi Ayesha Jogee, Musa Siphiwe Doctor Manzi, and Laura Valentina Socco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2401, https://doi.org/10.5194/egusphere-2025-2401, 2025
Short summary
Short summary
Near-surface imaging plays a crucial role in mine development, safety, efficiency, and environmental risk mitigation. Challenges in deep mining often stem from complex geological conditions and anthropogenic factors, such as undocumented historical mining activities. This study presents an integrated geophysical approach that combines multiple geophysical techniques to characterize the near-surface environment and delineate potential water conduits in a deep mining context.
Sikelela Gomo, Farbod Khosro Anjom, Chiara Colombero, Mohammadkarim Karimpour, Bibi Ayesha Jogee, Musa Siphiwe Doctor Manzi, and Laura Valentina Socco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2401, https://doi.org/10.5194/egusphere-2025-2401, 2025
Short summary
Short summary
Near-surface imaging plays a crucial role in mine development, safety, efficiency, and environmental risk mitigation. Challenges in deep mining often stem from complex geological conditions and anthropogenic factors, such as undocumented historical mining activities. This study presents an integrated geophysical approach that combines multiple geophysical techniques to characterize the near-surface environment and delineate potential water conduits in a deep mining context.
Mohammadkarim Karimpour, Evert Slob, and Laura Valentina Socco
Solid Earth, 13, 1569–1583, https://doi.org/10.5194/se-13-1569-2022, https://doi.org/10.5194/se-13-1569-2022, 2022
Short summary
Short summary
Near-surface characterisation is of great importance. Surface wave tomography (SWT) is a powerful tool to model the subsurface. In this work we compare straight-ray and curved-ray SWT at near-surface scale. We apply both approaches to four datasets and compare the results in terms of the quality of the final model and the computational cost. We show that in the case of high data coverage, straight-ray SWT can produce similar results to curved-ray SWT but with less computational cost.
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Short summary
Passive-source surface waves may be exploited in mineral exploration for deeper investigations. We propose a semi-automatic workflow for their processing. The geological interpretation of the results obtained at a mineral site (Siilinjärvi phosphorus mine) shows large potentialities and effectiveness of the proposed workflow.
Cited articles
Auken, E. and Christiansen, A. V.: Layered and laterally constrained 2D inversion of resistivity data, Geophysics, 69, 752–761, https://doi.org/10.1190/1.1759461, 2004.
Auken, E., Christiansen, A. V., Jacobsen, B. H., Foged, N., and Sorensen, K. I.: Piecewise 1D laterally constrained inversion of resistivity data, Geophys. Prospect., 53, 497–506, https://doi.org/10.1111/j.1365-2478.2005.00486.x, 2005.
Badal, J., Chen, Y., Chourak, M., and Stankiewicz, J.: S-wave velocity images of the Dead Sea Basin provided by ambient seismic noise, J. Asian Earth Sci., 75, 26–35, https://doi.org/10.1016/j.jseaes.2013.06.017, 2013.
Bao, X., Song, X., and Li, J.: High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography, Earth Planet. Sc. Lett., 417, 132–141, https://doi.org/10.1016/j.epsl.2015.02.024, 2015.
Beaty, K. S., Schmitt, D. R., and Sacchi, M.: Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure, Geophys. J. Int., 151, 622–631, https://doi.org/10.1046/j.1365-246X.2002.01809.x, 2002.
Blonk, B. and Herman, G. C.: Inverse scattering of surface waves: A new look at surface Consistency, Geophysics, 59, 963–972, https://doi.org/10.1190/1.1443656, 1994.
Boiero, D.: Surface wave analysis for building shear wave velocity models, PhD thesis, 233 pp., Politecnico di Torino, https://www.researchgate.net/publication/334598582_Surface_Wave_Analysis_for_Building_Shear_Wave_Velocity_Models (last access: 11 March 2024), 2009.
Boiero, D. and Socco, L. V.: Retrieving lateral variations from surface wave dispersion curves, Geophys. Prospect., 58, 977–996, https://doi.org/10.1111/j.1365-2478.2010.00877.x, 2010.
Boschi, L. and Ekström, G.: New images of the Earth's upper mantle from measurements of surface wave phase-velocity anomalies: J. Geophys. Res. Solid Earth, 107, 1–14, https://doi.org/10.1029/2000JB000059, 2002.
Colombero, C., Papadopoulou, M., Kauti, T., Skyttä, P., Koivisto, E., Savolainen, M., and Socco, L. V.: Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland), Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, 2022.
Comina, C., Foti, S., Boiero, D., and Socco, L. V.: Reliability of VS,30 evaluation from surface-wave tests, J. Geotech. Geoenviron., 137, 579–586, https://doi.org/10.1061/(asce)gt.1943-5606.0000452, 2011.
Da Col, F., Papadopoulou, M., Koivisto, E., Sito, Ł., Savolainen, M., and Socco, L. V.: Application of surface-wave tomography to mineral exploration: a case study from Siilinjärvi, Finland, Geophys. Prospect., 68, 254–269, https://doi.org/10.1111/1365-2478.12903, 2020.
Ernst, F. E., Herman, G. C., and Ditzel, A.: Removal of scattered guided waves from seismic data, Geophysics, 67, 1240–1248, https://doi.org/10.1190/1.1500386, 2002.
Fang, H., Yao, H., Zhang, H., Huang, Y.-C., and van der Hilst, R. D.: Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application, Geophys. J. Int., 201, 1251–1263, https://doi.org/10.1093/gji/ggv080, 2015.
Feng, S., Sugiyama, T., and Yamanaka, H.: Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations, Explor. Geophys., 36, 26–33, https://doi.org/10.1071/eg05026, 2005.
Foti, S. and Strobbia, C.: Some notes on model parameters for surface wave data inversion, Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), 10–14 February 2002, Las Vegas, Nevada, USA, https://doi.org/10.4133/1.2927179, 2002.
Foti, S., Lai, C. G., Rix, G. J., and Strobbia, C.: Surface wave methods for near-surface site characterization, in: 1st Edn., CRC Press, London, England, ISBN 9781138077737, 2015.
Halliday, D. F., Curtis, A., Vermeer, P., Strobbia, C., Glushchenko, A., van Manen, D.-J., and Robertsson, J. O.: Interferometric ground-roll removal: Attenuation of scattered surface waves in single-sensor data, Geophysics, 75, SA15–SA25, https://doi.org/10.1190/1.3360948, 2010.
Karimpour, M.: processing workflow for estimation of dispersion curves from seismic data and QC = Extraction of Dispersion Curves from Field Data, MSc thesis, Politecnico di Torino, 71 pp., http://webthesis.biblio.polito.it/id/eprint/8714 (last access: 11 March 2024), 2018.
Karimpour, M., Slob, E., and Socco, L. V.: Comparison of straight-ray and curved-ray surface wave tomography approaches in near-surface studies, Solid Earth, 13, 1569–1583, https://doi.org/10.5194/se-13-1569-2022, 2022.
Kennett, B. L. N. and Yoshizawa, K.: A reappraisal of regional surface wave tomography, Geophys. J. Int., 150, 37–44, https://doi.org/10.1046/j.1365-246x.2002.01682.x, 2002.
Khosro Anjom, F.: S-wave and P-wave velocity model estimation from surface waves, PhD thesis, Politecnico di Torino, 165 pp., https://iris.polito.it/handle/11583/2912984 (last access: 11 March 2024), 2021.
Khosro Anjom, F., Arabi, A., Socco, L. V. and Comina, C.: Application of a method to determine S and P wave velocities from surface waves data analysis in presence of sharp lateral variations, in: 36th GNGTS national convention, 14–16 November 2017, Trieste, Italy, 632–635, https://hdl.handle.net/11583/2740539 (last access: 11 March 2024), 2017.
Khosro Anjom, F., Teodor, D., Comina, C., Brossier, R., Virieux, J., and Socco, L. V.: Full-waveform matching of VP and VS models from surface waves, Geophys. J. Int., 218, 1873–1891, https://doi.org/10.1093/gji/ggz279, 2019.
Khosro Anjom, F., Browaeys, T. J., and Socco, L. V.: Multimodal surface-wave tomography to obtain S- and P-wave velocities applied to the recordings of unmanned aerial vehicle deployed sensors, Geophysics, 86, R399–R412, https://doi.org/10.1190/geo2020-0703.1, 2021.
Lai, C. G.: Simultaneous inversion of Rayleigh phase-velocity and attenuation for near-surface site, PhD thesis, Georgia Institute of Technology, https://ui.adsabs.harvard.edu/abs/1998PhDT.......268L/abstract (last access: 11 March 2024), 1998.
Lys, P.-O., Elder, K., Archer, J., and the METIS Team: METIS, a disruptive R&D project to revolutionize land seismic acquisition, in: RDPETRO 2018: Research and Development Petroleum Conference and Exhibition, 9–10 May 2018, Abu Dhabi, UAE, https://doi.org/10.1190/RDP2018-41752683.1, 2018.
Mari, J. L.: Estimation of static corrections for shear-wave profiling using the dispersion properties of Love waves, Geophysics, 49, 1169–1179, https://doi.org/10.1190/1.1441746, 1984.
Marquart, D.: An algorithm for least squares estimation of nonlinear parameters, Journal of the Society of Industrial Applied Mathematics, 2,431-44, https://doi.org/10.1137/0111030,1963.
Mordret, A., Landès, M., Shapiro, N. M., Singh, S. C., and Roux, P.: Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: depth inversion with a Neighbourhood Algorithm, Geophys. J. Int., 198, 1514–1525, https://doi.org/10.1093/gji/ggu217, 2014.
Neducza, B.: Stacking of surface waves, Geophysics, 72, 51–58, https://doi.org/10.1190/1.2431635, 2007.
Pan, Y., Gao, L., and Bohlen, T.: Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography, J. Appl. Geophys., 152, 77–85, https://doi.org/10.1016/j.jappgeo.2018.03.006, 2018.
Papadopoulou, M.: Surface-wave methods for mineral exploration, PhD thesis, Politecnico di Torino, https://iris.polito.it/handle/11583/2914550 (last access: 11 March 24), 2021.
Park, C. B.: ParkSEIS-3D for 3D MASW Surveys, Vol. 24, Environmental and Engineering Geophysical Society, Fast Time, 67–70, https://www.masw.com/files/FastTIMES_Vol_24_4_V2_ParkSEIS-3D_.pdf (last access: 11 March 2024), 2019.
Park, C. B., Miller, R. D., and Xia, J.: Imaging dispersion curves of surface waves on multi-channel record, in: SEG Technical Program Expanded Abstracts 1998, 27–30 September 1998, Ernest N. Morial Convention Center, New Orleans, Louisiana, USA, https://doi.org/10.1190/1.1820161, 1998.
Picozzi, M., Parolai, S., Bindi, D., and Strollo, A.: Characterization of shallow geology by high-frequency seismic noise tomography, Geophys. J. Int., 176, 164–174, https://doi.org/10.1111/j.1365-246x.2008.03966.x, 2009.
Ritzwoller, M. H. and Levshin, A. L.: Eurasian surface wave tomography: Group velocities, J. Geophys. Res.-Sol. Ea., 103, 4839–4878, https://doi.org/10.1029/97JB02622, 1998.
Roy, S., Stewart, R. R., and Al Dulaijan, K.: S-wave velocity and statics from ground-roll inversion, Leading Edge, 29, 1250–1257, https://doi.org/10.1190/1.3496915, 2010.
Shapiro, N. M. and Ritzwoller, M. H.: Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle, Geophys. J. Int., 151, 88–105, https://doi.org/10.1046/j.1365-246X.2002.01742.x, 2002.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H.: High-resolution surface-wave tomography from ambient seismic noise, Science, 307, 1615–1618, https://doi.org/10.1126/science.1108339, 2005.
Socco, L. V. and Boiero, D.: Improved Monte Carlo inversion of surface wave data, Geophys. Prospect., 56, 357–371, https://doi.org/10.1111/j.1365-2478.2007.00678.x, 2008.
Socco, L. V. and Comina, C.: Time-average velocity estimation through surface-wave analysis: Part 2 – P-wave velocity, Geophysics, 82, U61–U73, https://doi.org/10.1190/geo2016-0368.1, 2017.
Socco, L. V., Boiero, D., Foti, S., and Wisén, R.: Laterally constrained inversion of ground roll from seismic reflection records, Geophysics, 74, G35–G45, https://doi.org/10.1190/1.3223636, 2009.
Socco, L. V., Boiero, D., Bergamo, P., Garofalo, F., Yao, H., van der Hilst, R. D., and Da Col, F.: Surface wave tomography to retrieve near surface velocity models, in: SEG Technical Program Expanded Abstracts 2014, 26–31 October 2014, Denver, USA, https://doi.org/10.1190/segam2014-1278.1, 2014.
Socco, L. V., Comina, C., and Khosro Anjom, F.: Time-average velocity estimation through surface-wave analysis: Part 1 – S-wave velocity, Geophysics, 82, U49–U59, https://doi.org/10.1190/geo2016-0367.1, 2017.
Wang, L., Xu, Y., and Luo, Y.: Numerical Investigation of 3D multichannel analysis of surface wave method, J. Appl. Geophys., 119, 156–169, https://doi.org/10.1016/j.jappgeo.2015.05.018, 2015.
Wespestad, C. E., Thurber, C. H., Andersen, N. L., Singer, B. S., Cardona, C., Zeng, X., Bennington, N. L., Keranen, K., Peterson, D. E., Cordell, D., Unsworth, M., Miller, C., and Williams-Jones, G.: Magma reservoir below Laguna del Maule volcanic field, Chile, imaged with surface-wave tomography, J. Geophys. Res.-Sol. Ea., 124, 2858–2872, https://doi.org/10.1029/2018jb016485, 2019.
Wisén, R. and Christiansen, V.: Laterally and Mutually Constrained Inversion of Surface Wave Seismic Data and Resistivity Data, J. Env. Eng. Geophy., 10, 251–262, https://doi.org/10.2113/JEEG10.3.251, 2005.
Wisén, R., Auken, E., and Dahlin, T.: Combination of 1D laterally constrained inversion and 2D smooth inversion of resistivity data with a priori data from boreholes, Near Surf. Geophys., 3, 71–79, https://doi.org/10.3997/1873-0604.2005002, 2005.
Xia, J.: Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods, J. Appl. Geophys., 103, 140–151, https://doi.org/10.1016/j.jappgeo.2014.01.016, 2014.
Xia, J., Miller, R. D., and Park, C. B.: Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64, 691–700, https://doi.org/10.1190/1.1444578, 1999.
Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., and Ivanov, J.: Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements, Soil Dyn. Earthq. Eng., 22, 181–190, https://doi.org/10.1016/s0267-7261(02)00008-8, 2002.
Xia, J., Miller, R. D., Xu, Y., Luo, Y., Chen, C., Liu, J., Ivanov, J., and Zeng, C.: High-frequency Rayleigh-wave method, J. Earth Sci., 20, 563–579, https://doi.org/10.1007/s12583-009-0047-7, 2009.
Yao, H., Beghein, C., and Van Der Hilst, R.: Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – II. Crustal and upper-mantle structure, Geophys. J. Int., 173, 205–219, https://doi.org/10.1111/j.1365-246X.2007.03696.x, 2008.
Yoshizawa, K. and Kennett, B. L. N.: Multimode surface wave tomography for the Australian region using a three‐stage approach incorporating finite frequency effects, J. Geophys. Res., 109, B02310, https://doi.org/10.1029/2002JB002254, 2004.
Short summary
Most surface-wave techniques focus on estimating the S-wave velocity (VS) model and consider the P-wave velocity (VP) model as prior information in the inversion step. Here, we show the application of three surface-wave methods to estimate both VS and VP models. We apply the methods to the data from a hard-rock site that were acquired through the irregular source–receiver recording technique. We compare the outcomes and performances of the methods in detail.
Most surface-wave techniques focus on estimating the S-wave velocity (VS) model and consider the...