Articles | Volume 15, issue 1
https://doi.org/10.5194/se-15-63-2024
https://doi.org/10.5194/se-15-63-2024
Method article
 | 
02 Feb 2024
Method article |  | 02 Feb 2024

Integration of automatic implicit geological modelling in deterministic geophysical inversion

Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard

Related authors

Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024,https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023,https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
loopUI-0.1: indicators to support needs and practices in 3D geological modelling uncertainty quantification
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022,https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022,https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022,https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Seismic wave modeling of fluid-saturated fractured porous rock: including fluid pressure diffusion effects of discretely distributed large-scale fractures
Yingkai Qi, Xuehua Chen, Qingwei Zhao, Xin Luo, and Chunqiang Feng
Solid Earth, 15, 535–554, https://doi.org/10.5194/se-15-535-2024,https://doi.org/10.5194/se-15-535-2024, 2024
Short summary
Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023,https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Seismic amplitude response to internal heterogeneity of mass-transport deposits
Jonathan Ford, Angelo Camerlenghi, Francesca Zolezzi, and Marilena Calarco
Solid Earth, 14, 137–151, https://doi.org/10.5194/se-14-137-2023,https://doi.org/10.5194/se-14-137-2023, 2023
Short summary
Investigation of the effects of surrounding media on the distributed acoustic sensing of a helically wound fibre-optic cable with application to the New Afton deposit, British Columbia
Sepidehalsadat Hendi, Mostafa Gorjian, Gilles Bellefleur, Christopher D. Hawkes, and Don White
Solid Earth, 14, 89–99, https://doi.org/10.5194/se-14-89-2023,https://doi.org/10.5194/se-14-89-2023, 2023
Short summary
Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022,https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary

Cited articles

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.: {LAPACK} Users' Guide, 3rd Edn., Society for Industrial and Applied Mathematics, Philadelphia, PA., https://www.netlib.org/lapack/lug/ (last access: 24 September 2023), 1999. 
Barnes, G. J., Lumley, J. M., Houghton, P. I., and Gleave, R. J.: Comparing gravity and gravity gradient surveys, Geophys. Prospect., 59, 176–187, https://doi.org/10.1111/j.1365-2478.2010.00900.x, 2011. 
Calcagno, P., Chilès, J. P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules, Phys. Earth Planet. Inter., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008. 
Caumon, G., Lepage, F., Sword, C. H., and Mallet, J.-L.: Building and Editing a Sealed Geological Model, Math. Geol., 36, 405–424, https://doi.org/10.1023/B:MATG.0000029297.18098.8a, 2004. 
Clausolles, N., Collon, P., Irakarama, M., and Caumon, G.: Stochastic velocity modeling for assessment of imaging uncertainty during seismic migration: application to salt bodies, Interpretation, 11, T361–T378, 1–67, https://doi.org/10.1190/int-2022-0071.1, 2023. 
Download
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.